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Preface  

The Handbook is written for academics, researchers, practitioners and advanced 
graduate students. It has been designed to be read by those new or starting out in 
the field of spatial analysis as well as by those who are already familiar with the 
field. The chapters have been written in such a way that readers who are new to 
the field will gain important overview and insight. At the same time, those readers 
who are already practitioners in the field will gain through the advanced and/or 
updated tools and new materials and state-of-the-art developments included. 

This volume provides an accounting of the diversity of current and emergent 
approaches, not available elsewhere despite the many excellent journals and text-
books that exist. Most of the chapters are original, some few are reprints from the 
Journal of Geographical Systems, Geographical Analysis, The Review of Regional 
Studies and Letters of Spatial and Resource Sciences. We let our contributors de-
velop, from their particular perspective and insights, their own strategies for map-
ping the part of terrain for which they were responsible. As the chapters were 
submitted, we became the first consumers of the project we had initiated. We 
gained from depth, breadth and distinctiveness of our contributors’ insights and, in 
particular, the presence of links between them. 

The chapters were rigorously refereed blindly by the contributors to this vol-
ume. Referee reports were sent to each author and changes made accordingly. We 
supervised this process to guarantee that authors received reviews that would be 
useful for finalizing their chapters. The soundness of the comments and ideas have 
contributed immensely to the quality of the Handbook. Fortunately, we were deal-
ing with truly exemplary scholars, the most distinguished and sophisticated repre-
sentatives of the fields of inquiry.  

We thank the contributors for their diligence, not only in providing extremely 
thoughtful and useful contributions, but also in meeting all deadlines in a timely 
manner and in following stringent editorial guidelines. Moreover, we acknowl-
edge the generous support provided by the Institute for Economic Geography and 
GIScience, Vienna University of Economics and Business. Thomas Seyffertitz 
greatly assisted in keeping the project well organized. Last but not at least, we 
have benefitted greatly from the editorial assistance he and Ingrid Divis provided. 
Their expertise in handling several word processing systems, formatting, and in-
dexing, together with their care and attention to detail, helped immeasurably. 
 
August 2009 Manfred M. Fischer, Vienna 
 Arthur Getis, San Diego 
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Introduction 

Manfred M. Fischer and Arthur Getis 

1   Prologue 

The fact that the 2008 Nobel Prize in Economics was awarded to Paul Krugman 
indicates the increasing attention being given to spatially related phenomena and 
processes.  Given the growing number of academics currently doing research on 
spatially related subjects, and the large number of questions being asked about 
spatial processes, the time has come for some sort of summary statement, such as 
this Handbook, to identify the status of the methods and techniques being used to 
study spatial data. This Handbook brings together contributions from the most ac-
complished researchers in the area of spatial analysis.  Each was asked to describe 
and explain in one chapter the nature of the types of analysis in which they are ex-
pert. Clearly, having only one chapter to explain, for example, exploratory spatial 
data analysis or spatial econometric models, is a daunting task, but the authors of 
this book were able to summarize the key notions of their spatial analytic fields 
and point readers in directions that will help them to better understand their data 
and the techniques available to them. 

Whether or not spatial analysis is a separate academic field, the fact remains 
that in the last twenty years spatial analysis has become an important by-product 
of the interest in and the need to understand georeferenced data.  The current in-
terest in environmental sciences is a particular stimulant to the development of 
new and better ways of analyzing spatial data. Environmental studies have become 
either an important subfield of or a major thrust in such fields as ecology, geology, 
atmospheric sciences, sociology, political science, economics, urban planning, 
epidemiology, and the field that sometimes characterizes itself as the archetype 
environmental science, geography.  There is no shortage of articles in the applied 
journals of these fields where the analysis of spatial data is central.   

Many researchers are busy developing techniques for the study of georefer-
enced data, and many more use spatial analytic tools.  Following the adage ‘Ne-
cessity is the mother of invention,’ very often the developers are also the users.  
Thus, we see that in the fields mentioned above, new and tantalizingly imaginative 
techniques have been created for analytic purposes.  Most often, but not exclu-
sively, however, the fundamental principles for spatial analysis come from 

© Springer-Verlag Berlin Heidelberg 2010
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mathematics, statistics, and econometrics. Applied spatial scientific studies require 
use of probability and statistics and, for model development, the techniques of the 
econometricians and geostatisticians.  

Since the practical nature of spatial analysis is the driving force for the field’s 
development, it was inevitable that creating software would be a major activity of 
spatial analysts.  Unlike most compendia, where principles are laid out first, fol-
lowed by applications and notes on software, the editors of this Handbook placed 
software tools first.  Some of the very best innovative techniques for spatial analy-
sis come from the wide variety of software packages discussed in Part A.  As the 
reader will deduce from perusing the table of contents, we approach spatial analy-
sis as a series of surveys of what is available for the practical user.  We want it to 
be possible for anyone new to the field to find relevant ideas and techniques for 
his/her research.  In addition, our goal is to have seasoned researchers find new 
ideas or key references from unfamiliar spatial analytic fields.  The fact that not 
everything available for spatial analysis is included in the discussions that follow 
has more to do with the background, research interests, and points of view of the 
editors than it does with space limitations.  

Not unusual to academic research is the disciplinary boundaries surrounding 
some of the types of work being done in spatial analysis.  For example, econo-
mists have a record of being reluctant to look at literature outside of their own 
field. It usually takes a strong societal interest in a given problem to encourage 
disciplinarians to consider, or become conversant, with other literatures.  Although 
less true in a field such as spatial analysis, many are unwilling to get involved with 
names and ideas outside of their immediate research area.  Fortunately, spatial 
analysis is the type of field that tends to break down those barriers.  Especially 
with the development of GISystem software, user friendly software packages, Na-
tional Institute of Health and National Science Foundation summer institutes in 
the US, interdisciplinary conferences and meetings, and internet activity, spatial 
analysis is taking on an ecumenical flavor.  The difficulty that remains is the need 
for researchers to become familiar with the language of spatial analysis, the spatial 
point of view, and the techniques of those working on similar problems, but in 
other fields. We hope that this Handbook enhances the interdisciplinary nature of 
this field. 

The history of spatial analysis is noteworthy for its genesis in a number of dif-
ferent fields nearly simultaneously. Much of the development has been based on 
the types of data characteristic of the particular research being done in the respec-
tive fields. For example, geologists and climatologists tend to study continuous 
data.  Economists and political scientists pay a great deal of attention to time se-
ries data. Geographers, anthropologists, and sociologists are especially fond of 
point and area (choropleth) data. Transportation planners favor network data.  
Many environmentalists use remotely sensed spatial data.  The data-driven em-
phasis of spatial analysis helped to create specialized ‘schools of thought’ on spa-
tial analysis methodologies.  Our view is that in recent years these schools are be-
ing opened to include ideas and methods from other schools.  We believe, too, that 
in the future the field of spatial analysis will become less discipline oriented as the 
need for interdisciplinary research teams becomes a greater part of the research 
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landscape.  For example, no longer is it possible for a microbiologist or an epide-
miologist alone to solve problems of disease transmission. Researchers well 
versed in the nuances of continuous or discrete spatial data must become members 
of the team.  Moreover, the epidemiologist must be conversant with the techniques 
of analysis used to solve a disease transmission problem. 

In the following section we briefly outline what may be called the points of 
view of the various schools of thought.  Our goal, of course, is to have readers bet-
ter understand how others approach spatial data.  In this Handbook, these areas of 
interest are described, explained, and demonstrated.  

2    Schools of thought on spatial analysis methodologies  

Exploratory spatial data analysis (ESDA) is the extension of a Tukey-type data 
exploration (see Tukey 1977) to georeferenced data.  ESDA represents a prelimi-
nary process where data and research results are viewed from many different van-
tage points, one of which is the display of data on maps.  The power of computers 
to summarize and visualize large sets of georeferenced data has helped to stimu-
late the creation of amazingly evocative procedures for data manipulation.  Sci-
ence has always emphasized the need for high quality data and for researchers to 
have an informed sense of what problems may be in the offing once data are sub-
jected to rigorous study.  Computer programmers in a number of different fields 
have now made it possible to view data in a myriad of ways.   

Of particular interest is GI software that allows for the mapping of data, mak-
ing measurements on the mapped data, identifying weaknesses in the data, correct-
ing incorrect data or data placed in incorrect locations, producing summary meas-
ures of data, manipulating point data into surfaces, viewing these surfaces from 
many different angles, and, if the data are time related, viewing data changes over 
time.  The summary measures are the usual histograms and box plots, but the abil-
ity of the programs to, for example, identify a data outlier on a map at the same 
time as one views the location of the outlier in a histogram, in a cumulative distri-
bution function, and in a three dimensional scatter diagram that can be viewed 
from any angle, gives ESDA a powerful role to play in much research.   

Our view is that much of ESDA is used prior to the model building phase of 
research, but interestingly enough, some new techniques of ESDA act as model 
builders by allowing us to see how variables relate to one another in space. The 
field of data visualization, especially as related to maps, is just beginning to make 
an impact on research.  There is a need to more closely unite those working on 
new techniques for data visualization with the actual needs of the various spa-
tially-oriented fields of study. 

The software discussed in Part A of the Handbook gives researchers an idea of 
the many tools and functions available for them to engage in ESDA.  At one time 
it was anathema for many ‘purists’ to engage in exploratory work when preparing 
their data for analysis.  The goal was to statistically test a model that was a direct 
descendant of well-documented theory.  Now, awareness of all that is available in 
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the software stimulates us to create final models only after performing a good deal 
of exploration and experimentation.  In a sense, ESDA and EDA represent a new 
wave of research methodology.  The traditional six steps of hypothesis guided in-
quiry – problem, hypothesis, sampling distribution, test, results, decision – has 
been expanded to a seventh step, data exploration, but instead of squeezing data 
exploration between two of the former steps, exploration is now represented at 
nearly all stages of analysis. 

Spatial Statistics. The roots of spatial statistics go back to Pearson and Fisher, 
but their modern manifestation is mainly due to Whittle, Moran, and Geary.  The 
field is indebted to Cliff and Ord for explicating, extending, and making their 
work socially relevant.  From Cliff and Ord’s papers and books of the late 1960s 
to the early 1980s comes the basic outline of what constitutes spatial statistics 
(see, for example, Cliff and Ord 1973, 1981).  It probably is a stretch to call this 
area a school of thought, but the vast number of researchers who look to spatial 
autocorrelation statistics, for example, indicates a strong interest area. The point is 
that spatial statistics is also a part of ESDA, spatial econometrics, and remote 
sensing analysis, and to a lesser extent, geostatistics.  One might ask the question, 
how can we model spatially varying phenomena without testing patterns on maps?   
The process of creating hypotheses and testing map patterns gives spatial statistics 
its raison d’être.  Because of space limitations, this Handbook cannot cover in any 
detail all of the types of issues that spatial statistics practitioners address.  

As a field, spatial statistics is concerned with map-related problems.  Geomet-
rically, one can think of point, line, and area patterns as well as mixtures of these 
three as the fundamental elements that are included in the use and study of spatial 
statistics.  What is crucial, of course, is that these points, lines, and areas represent 
real world phenomena. How these phenomena pattern themselves and interact 
with one another has come to be an important element of scientific inquiry.  

This Handbook reviews the fundamental knowledge required of the user of 
spatial statistics.  Users are found in all of the social and environmental sciences 
and, to a lesser extent, the physical sciences.  Hypotheses include conjectures 
about the mapped patterns of diseases and crime, the pattern of residuals from re-
gression, the tendency for some phenomena to cluster or disperse, the differences 
among patterns, the spatial relationship between a given observation and other 
designated observations, and perhaps most important, how defined points, lines, 
and areas, interact with one another, either statically or over time and space.  

Since the field’s inception, certain particular problems have given rise to new 
statistical tests and routines.  For example, the large data sets that began to emerge 
in the 1980s required researchers to find ways to reduce data redundancy or to 
subdivide regions into smaller units for statistical analysis.  Eventually, the fo-
cused spatial tests developed and popularized in the 1990s became widely used, 
especially because spatial cluster analyses have come to depend on them. The 
ability of computers to create interaction data between all members of a popula-
tion or sample has given rise to large sample statistics like the K function of Rip-
ley (see Ripley 1977). The fundamental patterns of Voronoi polygons have now 
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been studied using algorithms capable of manipulating tessellations of area pat-
terns.  The same is true of networks of lines.   

Two of the most promising areas of spatial statistical analysis are the creation 
of defensible spatial weights matrices and the employment of spatial filters, dis-
cussed in the chapters of Section B of this Handbook.  These new techniques are 
designed to facilitate understanding of what may be called the nature of spatial ef-
fects in any spatial system of variables.  In addition, work is proceeding on ways 
to better test hypotheses concerning pattern representation. These include such 
tests as false discovery rates and simulation routines that create sampling distribu-
tions on which tests can be carried out. 

Spatial Econometrics. Since Jean Paelinck and Leo Klaassen’s description of 
the field in 1979 and Luc Anselin’s influential volume Spatial Econometrics, pub-
lished in 1988, spatial econometrics has blossomed.  Before those auspicious 
events, economists with a spatial bent, such as Walter Isard (see Isard 1960), had 
begun to study the spatial manifestation of economic activities.    The models that 
Anselin classified as spatial lag models and spatial error models (among several 
others), while related to the well-established field of econometrics, have become 
the fundamental regression tools of the spatial econometrician. 

Although not deeply ingrained into the thinking characteristic of the discipline 
of economics, the discipline of regional science has become the home for spatial 
econometrics practitioners.  Judging from the number of researchers who are in 
daily contact with Anselin’s website, this field is growing very rapidly.  Today, 
such researchers originally educated in economics and/or geography, such as 
LeSage, Pace, Kelejian, Florax, and Rey, are expanding the field to Bayesian 
thinking, new spatial regression estimating techniques and tests, and time-space 
modeling.   

An interesting and crucial overlap between spatial statistics and spatial econo-
metrics is the need to apply spatial statistical tests in order to check for the validity 
of the assumption of spatial randomness among the residuals of spatial, and non-
spatial diagnostic, models.  Commonly the well known Moran’s I statistic is used 
for testing purposes. In Anselin’s GeoDa software and in LeSage’s spatial econo-
metrics toolbox, Moran’s I and newly developed tests are prominent parts of the 
software capabilities.   

A new and useful system of econometric study, described in this Handbook, is 
geographically weighted regression (GWR).  The realization that the constant na-
ture of regression coefficients seems to fly in the face of reality when a geographic 
system is being modeled, stimulated Fotheringham, Brunsdon, and Charlton to 
create a spatial econometric system that allows regression parameters to vary over 
space (see Fotheringham et al. 2002). The developers of GWR are continually im-
proving the system to avoid some of the difficulties in dealing with georeferenced 
data.  Related to, but in addition to GWR, are expositions in this Handbook on the 
expansion method and the new techniques of spatial hierarchical models.    

Geostatistics. Evolving differently than the previous schools of thought is the 
field of geostatistics, which is outlined in this Handbook.  Primarily as a way to 
describe and explain physical phenomena in a continuous spatial data environ-
ment, geostatistics is the principal methodology of analysis.  From its roots in the 
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1950s as a way to predict gold ore quality to its current widespread use for the 
study of all manner of physical phenomena, including petroleum reserve locations, 
soil quality, and patterns of weather and climate, geostatistics has become a main-
stay of most earth science departments both in the academy and in the business 
world.   

The field includes both spatial data descriptive routines and sophisticated 
modeling.  The major themes are the study of variograms and the use of predictive 
devices called kriging, named after the mining engineer, Krige (1951), who pio-
neered the techniques. Matheron (1963), and most recently Cressie (1993), have 
laid out the statistical principles on which the methodology is based.    

Variogram analysis is based on the principle of intrinsic stationarity, that is, 
inherent in the nature of spatial effects is that as distance increases between obser-
vations on the same variable, variance will increase. The increasing variance con-
tinues with increasing distance until a particular distance is reached when the vari-
ance will equal the population variance.  The semivariogram is a function 
represented in a diagram that shows the nature of this increasing function.  Con-
sidered to be theoretical, the function is most often estimated from real world data.  
The large amount of software available for the study of geostatistics is one of the 
field’s features.  Some GISystem modules include many exploratory features as 
well as capabilities for sophisticated modeling. 

The second area of study, mentioned above – kriging – is a series of tech-
niques that allows for the prediction of variable values or multi-variable interac-
tions at locations where no data are available. Thus, via the simultaneous equation 
systems of kriging, point data can be used to create surfaces where each location 
in the study area is represented by a point estimate of the true value at that point.  
Kriging creates map surfaces and error surfaces, that is, surfaces that represent the 
confidence level in spatial point estimates. The manner in which kriging is carried 
out ranges from relatively simple procedures (simple and ordinary kriging) to 
complex prediction systems (co-kriging and disjunctive kriging). Given the enor-
mous number of calculations that must be performed, the techniques require large 
samples and high levels of computer power. 

3    Structure of the handbook 

This volume is not intended as a textbook or research monograph, nor does it at-
tempt to cover the field of spatial analysis exhaustively, or in great depth. It does 
attempt, though, to provide a useful manual or guidebook to spatial analytic fields, 
and to offer a wide range of views on spatial analysis that may lead the reader to 
inquire more deeply into specific areas that are touched on herein. It is intended 
that this Handbook should be as accessible as possible, especially to those who are 
relatively unfamiliar with this area of work. 

The material in this volume has been chosen to provide an accounting of the 
diversity of current and emergent models, methods, and techniques, not available 
elsewhere despite the many excellent journals and text books that exist. The inter-
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national collection of authors was selected for their knowledge of a subject area, 
and their ability to communicate basic information in their subject area succinctly 
and accessibly.  

The volume is structured as a series of parts ranging from software tools over 
spatial statistical and geostatistical approaches to spatial econometric models and 
techniques, and finally to applications in various domain areas. The parts are as 
follows:  

 
• Part A: GI software tools, 
• Part B: Spatial statistics and geostatistics, 
• Part C: Spatial econometrics, 
• Part D: The analysis of remotely sensed data,  
• Part E: Applications in economic sciences,  
• Part F: Applications in environmental sciences, and 
• Part G: Applications in health sciences.  

 
where the chapters in Part D to Part G represent in many ways an application of 
models, methods, and techniques discussed in the preceding chapters. 

Part A: GI software tools 

The focus of Part A is on GI software packages, from which some of the very best 
innovative techniques for spatial analysis come. This part is composed of ten con-
tributions, viz:  

 
• Spatial statistics in ArcGIS (Chapter A.1), 
• Spatial statistics in SAS (Chapter A.2), 
• Spatial econometric functions in R (Chapter A.3), 
• GeoDa: An introduction to spatial data analysis (Chapter A.4), 
• STARS: Space-time analysis of regional systems (Chapter A.5), 
• Space-time intelligence system software for the analysis of complex systems 

(Chapter A.6), 
• Geostatistical software (Chapter A.7), 
• GeoSurveillance: A GIS-based exploratory spatial analysis tool for monitoring 

spatial patterns and clusters (Chapter A.8), 
• Web-based analytical tools for the exploration of spatial data (Chapter A.9), 

and 
• PySAL: A Python library of spatial analytical methods (Chapter A.10).  

 
The first chapter, written by Lauren M. Scott and Mark V. Janikas, provides an 
overview of the tools in the ArcGIS spatial statistics toolbox, an extendible set of 
feature pattern analysis and regression analysis tools, specifically designed to 
work with spatial data. There are four core analytical toolsets: measuring geo-
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graphic distributions, analysing patterns, mapping clusters, and modeling spatial 
relationships. The chapter not only provides an overview of the tools, but presents 
also application examples and references, and outlines strategies for extending   
ArcGIS functionality through custom tool development.  

The next chapter, by Melissa I. Rura and Daniel A. Griffith, describes ways 
SAS has been used in the past for spatial statistical analyses. It covers recent work 
that explicitly includes spatial information and geographic visualization, and gives 
two SAS implementation examples, namely the calculation of Moran’s I and the 
eigenvector spatial filtering spatial statistical technique. First, SAS’s embedded 
spatial functionality is discussed in terms of function options and procedures like 
PROC VARIOGRAM and PROC MIXED.  Next, SAS’s GISystem module func-
tionality, including map display and data import, is described.  Then PROC NLIN-
based spatial autoregressive code capabilities are discussed.  Finally, two example 
implementations and their necessary input and output data are described. An ex-
ample calculation of Moran’s I is presented, and an implementation of eigenvector 
spatial filtering is described, in order to illustrate how customized SAS can be cre-
ated to put spatial statistical techniques into practice.   Several sources are summa-
rized from which a user may download or look up freely available spatial statisti-
cal SAS implementations. This chapter seeks to show how the use of a mature 
statistical programming language like SAS can enable advanced spatial analysis. 

Placing spatial econometrics and more generally spatial statistics in the con-
text of an extensible data analysis environment such as R exposes similarities and 
differences between traditions of analysis. This can be fruitful, and is explored in 
Chapter A.3, written by Roger S. Bivand, in relation to prediction and other meth-
ods usually applied to fitted models in R. R is a language and environment for sta-
tistical computing and graphics, available as Free Software under the terms of the 
Free Software Foundation’s GNU General Public License in source code form. It 
compiles and runs on a wide variety of UNIX platforms and similar operating sys-
tems (including Linux), Windows, and MacOS. Objects in R may be assigned a 
class attribute, including fitted model objects. Such fitted model objects may be 
provided with methods allowing them to be displayed, compared, and used for 
prediction, and it is of interest to see whether fitted spatial models can be treated 
in the same way. 

Chapter A.4, by Luc Anselin, Ibru Syabri, and Younghin Kho, presents an 
overview of GeoDaTM, a free software program intended to serve as a user-
friendly and graphical introduction to spatial analysis for non-GIS specialists. It 
includes functionality ranging from simple mapping to exploratory data analysis, 
the visualization of global and local spatial autocorrelation, and spatial regression. 
A key feature of GeoDa is an interactive environment that combines maps with 
statistical graphics, using the technology of dynamically linked windows. A brief 
review of the software design is given, as well as some illustrative examples that 
highlight distinctive features of the program in applications dealing with public 
health, economic development, real estate analysis and criminology. 
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Space-Time Analysis of Regional Systems (STARS) is an open source software 
package designed for the dynamic exploratory analysis of data measured for areal 
units at multiple points in time. STARS consists of four core analytical modules: 
exploratory spatial data analysis; inequality measures; mobility metrics; spatial 
Markov. Developed using the Python object oriented scripting language, STARS 
lends itself to three main modes of use. Within the context of a command line in-
terface (CLI), STARS can be treated as a package which can be called from within 
customized scripts for batch oriented analyses and simulation. Alternatively, a 
graphical user interface (GUI) integrates most of the analytical modules with a se-
ries of dynamic graphical views containing brushing and linking functionality to 
support the interactive exploration of the spatial, temporal and distributional di-
mensions of socioeconomic and physical processes. Finally, the GUI and CLI 
modes can be combined for use from the Python shell to facilitate interactive pro-
gramming and access to the many libraries contained within Python. Chapter A.5, 
by Serge J. Rey and Mark V. Janikas, provides an overview of the design of 
STARS, its implementation, functionality and future plans. A selection of its ana-
lytical capabilities is also illustrated that highlight the power and flexibility of the 
package. 

The development and implementation of software tools that account for both 
spatial and temporal dimensions, and that provide advanced visualization and 
space-time analysis capabilities is recognized as an important technological chal-
lenge in Geographic Information Science. Chapter A.6, written by Geoffrey M. 
Jacquez, provides an overview of space-time intelligence system (STIS) software 
that has been developed by BioMedware with funding from the National Institutes 
of Health.  STIS is founded on space-time data structures for representing points, 
geospatial lifelines, polygons and rasters, and how they morph through time.  
Linked windows, cartographic and statistical brushing are time-enabled, as are 
visualizations including tables, maps, principal coordinate plots, histograms, scat-
terplots, variogram clouds, and box plots. Spatial weight relationships that change 
through time for points, geospatial lifelines and polygons include nearest 
neighbors, inverse distance, geographic distance, and adjacencies.  These are used 
by advanced space-time analysis methods including clustering, regression (linear, 
logistic, Poisson, and step-wise), geographically-weighted regression, variogram 
models, kriging, and disparity statistics, among others. STIS allows researchers to 
span the analytical continuum for space-time data on one software platform, from 
visualization, animation, exploratory space-time data analysis, through hypothesis 
testing and modeling. 

During the last two decades one has witnessed an increasing interest in the 
application of geostatistics to the analysis of space-time datasets. A critical issue 
for many novice users is the availability of affordable and user-friendly software 
that offer basic (for example, variogram estimation and modeling, kriging) and 
advanced (for example, non-parametric kriging, stochastic simulation) algorithms 
for geostatistical modeling. The chapter, by Pierre Goovaerts, presents a brief 
overview of the main geostatistical software, stressing their advantages and weak-
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nesses in terms of flexibility and completeness. Concomitant with the growing 
range of geostatistical applications, the software market is expanding and nowa-
days fairly general software or add-on modules that are open source but have lim-
ited graphical capabilities coexist with highly visual commercial software that are 
often tailored to specific applications, such as 2D health data or 3D assessment of 
contaminated sites. In particular, when geostatistics is combined with classical sta-
tistical techniques, such as regression analysis for trend modeling, the user often 
will have to rely on several programs to accomplish the different steps of the 
analysis. 

Chapter A.8, written by Gyoungju Lee, Ikuho Yamada, and Peter Rogerson, 
describes GeoSurveillance, a GIS-based exploratory spatial analysis tool for moni-
toring spatial patterns and clusters over time.  During the past decade, significant 
methodological advances have been made in assessing geographic clustering and 
in searching for local spatial clusters based on diverse statistical models. Recently, 
prospective surveillance models have been proposed to detect spatial pattern 
changes over time quickly, in contrast with traditional retrospective tests. As fre-
quent updates of spatial databases are now made possible on a regular basis with 
the rapid development of GISystems, the development of prospective methods for 
monitoring emerging spatial clusters of geographic events (for example, disease 
outbreak) has been facilitated. GeoSurveillance provides a statistical framework 
integrated with a GISystem platform, where both retrospective and prospective 
tests for spatial clustering can be carried out effectively. To demonstrate the pro-
gram, illustrations are given for Sudden Infant Death Syndrome (SIDS) in North 
Carolina and breast cancer cases in the northeastern part of the US. 

In the next chapter, Luc Anselin, Yong Wook Kim, and Ibru Syabri deal with 
the extension of internet-based geographic information systems with functionality 
for exploratory spatial data analysis. The specific focus is on methods to identify 
and visualize outliers in maps for rates or proportions. Three sets of methods are 
included: extreme value maps, smoothed rate maps and the Moran scatterplot. The 
implementation is carried out by means of a collection of Java classes to extend 
the Geotools open source mapping software toolkit. The web based spatial analy-
sis tools are illustrated with applications to the study of homicide rates and cancer 
rates in US counties. 

PySAL is an open source library for spatial analysis written in the object ori-
ented language Python. It is built upon shared functionality in two exploratory 
spatial data analysis packages: GeoDA and STARS and is intended to leverage the 
shared development of these components. This final chapter of Part A, written by 
Serge J. Rey and Luc Anselin, presents an overview of the motivation behind and 
the design of PySAL, as well as suggestions for how the library can be used with 
other software projects. Empirical illustrations of several key components in a va-
riety of spatial analytical problems are given, and plans for future development of 
PySAL are discussed. 
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Part B: Spatial statistics and geostatistics 

This part of the Handbook shifts attention to spatial statistical and geostatistical 
approaches, methods and techniques, and includes the following chapters: 

 
• the nature of georeferenced data (the Chapter B.1), 
• exploratory spatial data analysis (Chapter B.2),  
• spatial autocorrelation (Chapter B.3), 
• spatial clustering (Chapter B.4),  
• spatial filtering (Chapter B.5), and  
• the variogram and kriging (Chapter B.6).  

 
In the first chapter of Part B, Robert Haining identifies various types of georefer-
enced data but focuses attention on the spatial data matrix.  He considers the rela-
tionship between it and the complex, continuous geographic reality from which it 
is obtained and the difficulties that need to be addressed in constructing a spatial 
data set for the purpose of undertaking practical spatial data analysis.  The links 
between each of the stages involved in the construction of the data matrix and the 
properties of spatial data are described.  The author continues to discuss the impli-
cations of these findings for the conduct of exploratory and confirmatory data 
analysis and for the interpretation of results. The chapter concludes by discussing 
the role of models in influencing the types of georeferenced data that are needed 
and the consequences for model inference. 

The focus of Chapter B.2, written by Roger S. Bivand, is on exploratory spa-
tial data analysis, an extension of exploratory data analysis geared especially to 
dealing with the spatial aspects of data. This chapter presents the underlying inten-
tions of ESDA, and surveys some of the outcomes. It challenges the frequently 
drawn conclusion that ESDA can somehow replace proper modeling. Exploratory 
spatial data analysis remains a key step prior to the model building phase of re-
search, but interestingly enough, some new techniques of ESDA act as model 
builders by allowing us to see how variables relate to one another in space. 
A fundamental concept for the study of spatial phenomena is spatial autocorrela-
tion.  The concept has played a pivotal role in the development of the field of spa-
tial analysis. 

Chapter B.3, written by Arthur Getis, reviews the literature on spatial autocor-
relation and explains its various representations.  Most definitions of the concept 
concern the spatial relationships among realizations of a random variable.  The 
uses of spatial autocorrelation are many, including its major role in testing for 
model mis-specification and for testing hypotheses concerned with spatial rela-
tionships.  The cross product statistic, a fundamental spatial autocorrelation struc-
ture, is used to record the geometrical relationships and the variable relationships 
among the spatial units under study and to assess the degree of similarity between 
the two relationships.  The spatial weights matrix represents the geometric rela-
tionships. Each matrix element records the spatial association among the spatial 
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units under study.  Many tests and indicators of spatial autocorrelation are avail-
able. Chief among these is Cliff and Ord’s extension of Moran’s spatial autocorre-
lation statistic. At the local scale, Getis and Ord’s statistics and Anselin’s LISA 
statistics enable researchers to evaluate spatial autocorrelation at particular sites.  
Also at the local level, geographically weighted regression is an entire system de-
voted to the study of stationarity in spatial relationships among variables by loca-
tion.  Many software packages are available for the study of various aspects of 
spatial autocorrelation, including exploratory, global, local, time-space, and spatial 
econometric. 

Chapter B.4, by Jared Aldstadt, reviews techniques for spatial clustering 
analysis. Emphasis is placed on the most commonly used techniques and their di-
rect precursors. Some attention is given to recently developed clustering routines. 
These techniques may not yet be in wide use, but they are relevant because they 
overcome deficiencies in existing methodologies. They also indicate the direction 
of current research. Following the path of development, global clustering indices 
are covered first, followed by local clustering techniques. When applicable, test 
statistics are presented in the general cross-product form. In this format the simi-
larities between and distinguishing characters of the clustering statistics are appar-
ent. 

Chapter B.5, written by Daniel A. Griffith, directs attention to spatial filtering, 
a spatial statistical methodology that enables spatial autocorrelation effects to be 
accounted for while preserving conventional statistical model specifications. A 
spatial filter is a synthetic variate that is constructed from locational information 
independent of the thematic nature of affiliated georeferenced data, being based 
upon the underlying geographic configuration of the data georeferencing. The 
primary idea is that some spatial proxy variables extracted from a spatial relation-
ship matrix are added as control variables to a standard statistical model specifica-
tion. To date, four principal approaches to spatial filtering have been imple-
mented: autoregressive linear operators (à la Cochrane-Orcutt prewhitening), 
Getis’s Gi-based specification, linear combinations of eigenvectors extracted from 
either distance-based principal coordinates of neighboring matrices, or topology-
based spatial weights matrices. Not only does spatial filtering allow a more de-
tailed analysis of spatial autocorrelation effects for geographic distributions of at-
tribute variables, but it also supports sounder geographically varying coefficients 
analyses, spatial interpolation, and the analysis of spatial autocorrelation effects in 
geographic flows data. Spatial filtering can be employed with both the normal 
probability model, and the entire family of probability models affiliated with gen-
eralized linear models. 

The final chapter of Part B, by Margaret Oliver, shifts focus to the variogram 
and kriging, the two central techniques of geostatistics. The variogram describes 
quantitatively how a property changes as the separation between places increases. 
Its values are estimated from data for a set of separating distances or lags to give 
the experimental variogram. This may then be modeled by a limited set of mathe-
matical functions. Methods of estimating the variogram and the models that are 
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fitted most frequently in the earth sciences are described and illustrated with a 
case study of soil data. The parameters of the models fitted to the variograms are 
used with the data to predict by employing kriging techniques. Kriging is a best 
linear unbiased predictor; it provides predictions and estimates of errors at each 
prediction point. Kriging is now a generic term that embraces several types of 
kriging that have been developed to solve particular problems in prediction. The 
emphasis in this chapter is on ordinary kriging, which is the type of kriging most 
often used. Factorial kriging is also described because of its value when the varia-
tion has more than one spatial scale.. 

Part C: Spatial econometrics 

Part C is concerned with estimation and testing problems encountered when at-
tempting to implement regional economic models. The problems often are charac-
terized by the difficulties associated with assessing the importance of spatial de-
pendence and spatial heterogeneity in a regression setting. Seven chapters 
represent the diversity of spatial econometric approaches, methods and techniques:  

 
• spatial econometric models (Chapter C.1), 
• spatial panel data models (Chapter C.2), 
• spatial econometric methods for modeling origin-destination flows  

(Chapter C.3), 
• spatial econometric model averaging (Chapter C.4), 
• geographically weighted regression (Chapter C.5), 
• expansion method, dependency, and multimodeling (Chapter C.6), and 
• multilevel modeling (Chapter C.7). 

 
The first chapter, written by James P. LeSage and R. Kelley Pace, provides an in-
troduction to spatial econometric models and methods in a cross-sectional context. 
The authors show how conventional regression models can be augmented with 
spatial autoregressive processes to produce models that incorporate simultaneous 
feedback between regions located in space, and discuss methods estimating these 
models that are useful when modeling cross-sectional regional observations. The 
authors conclude the chapter in showing that for models containing spatial lags of 
the explanatory or dependent variables, interpretation of the parameters becomes 
richer and more complicated than in a least squares regression context with inde-
pendent observations. Interpretation of parameter estimates and inferences re-
quires an interpretation based on a steady-state equilibrium view, where changes 
in the explanatory variables lead to a series of simultaneous feedbacks that pro-
duce a new steady-state equilibrium. Because of working with cross-sectional 
sample data, these model adjustments appear as if they are simultaneous. The au-
thors argue that these spatial regression models can be viewed as containing an 
implicit time dimension. 
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Chapter C.2, written by J. Paul Elhorst, focuses on the estimation of the spatial 
fixed effects model and the spatial random effects model extended to include spa-
tial error autocorrelation or a spatially lagged dependent variable, including the 
determination of the variance-covariance matrix of the parameter estimates. In ad-
dition, it deals with robust LM tests for spatial interaction effects in standard panel 
data models, the estimation of fixed effects and the determination of their signifi-
cance levels, a test for the fixed effects specification against the random effects 
specification using Hausman's specification test, the determination of goodness-
of-fit measures, and the best linear unbiased predictor when using these models 
for prediction purposes. Finally, it briefly discusses possibilities for testing for en-
dogeneity of one or more of the explanatory variables and to include dynamic ef-
fects. 

Spatial interaction models of the gravity type are used in conjunction with 
sample data on flows between origin and destination locations to analyse interna-
tional and interregional trade, commodity, migration, and commuting patterns. 
The focus of Chapter C.3, by James P. LeSage and Manfred M. Fischer, is on 
problems that plague empirical implementation of conventional regression-based 
spatial interaction models and econometric extensions that have appeared in the 
literature. The new models replace the conventional assumption of independence 
between origin-destination flows with formal approaches that allow for spatial de-
pendence in flow magnitudes. Particular emphasis is laid on discussing problems, 
such as efficient computation, spatial dependence in origin-destination flows, 
large diagonal flows matrix elements, and the zero flows problem.  

Model specification decisions represent a source of uncertainty typically ig-
nored in applied modeling when we conduct statistical inference regarding model 
parameters. Chapter C.4, written by Olivier Parent and James P. LeSage, dis-
cusses formal methods that can be used to incorporate model specification uncer-
tainty into inferences about model parameters. The focus is on how this can be ac-
complished in the context of spatial regression models, with an applied illustration 
involving the relation between local government expenditures and population mi-
gration. 

Chapter C.5, by David Wheeler and Antonio Páez, deals with geographically 
weighted regression (GWR), a local form of spatial analysis drawing from statisti-
cal approaches for curve fitting and smoothing applications. GWR is based on the 
idea of estimating local models using subsets of observations centered on a focal 
calibration point. Since its introduction in 1996, GWR rapidly captured the atten-
tion of many in spatial analysis for its potential to investigate non-stationary rela-
tions in regression models. The basic concepts of GWR have also been used to ob-
tain local descriptive statistics and other spatially weighted models, such as for 
Poisson regression. GWR has been instrumental in calling attention to the exis-
tence of potentially complex spatial relationships in linear regression. At the same 
time, there have been a number of issues raised concerning the nature and range of 
applications of the method, including its application for formal statistical inference 
on regression relationships. The available evidence suggests that GWR is an effec-



Introduction      15 

tive tool for spatial interpolation, but that it is problematic for inferring spatial 
processes. Collinearity has been shown to exacerbate inferential issues in GWR, 
but diagnostic tools have been developed to highlight local collinearity. In addi-
tion, other available approaches are discussed, such as hierarchical Bayesian re-
gression models. 

Chapter C.6, by Emilio Casetti, shows that the expansion method can provide 
an avenue for remedying residual spatial dependence, and, moreover, that within a 
multimodel frame of reference the expansion method can be used to identify the 
correlates and determinants of spatial dependence. The expansion method is a 
technique for widening the scope of a simpler initial model by expansion equa-
tions that redefine some or all of the initial model's parameters into functions of 
contextual variables. By replacing the parameters of the initial model with their 
expansions a terminal model is produced that encompasses both the initial model 
and a specification of its contextual variation. An initial model that upon estima-
tion and testing displays significant residual spatial autocorrelation can be often 
expanded into terminal models that upon estimation and testing display no signifi-
cant autocorrelation. Thus, the expansion method may provide an avenue to rem-
edy the problem of spatial dependence. Omitted variables can produce autocorre-
lated residuals. The variables added to a terminal model by expansions obviously 
do not appear in its initial model. If upon estimation and testing, significant auto-
correlation is found in the initial model’s residuals but not in the terminal model’s 
residuals, it follows that the variables generated by expansions are what makes the 
difference. These results can be used to investigate which properties and attributes 
of the models are associated with the occurrence of spatial dependence. 

The final chapter of Part C, by S.V. Subramanian, continues to discuss the 
concept of multilevel statistical models as it relates to understanding place effects 
and more generally contextual effects. The chapter begins by identifying what 
constitutes a multilevel data analysis followed by a discussion on how a range of 
data structures that are observed in the real word or due to sampling design can be 
accommodated within a multilevel framework.  After laying down the substantive 
motivation to utilize multilevel methods, some key statistical models are specified 
with a description of the property of each of the model.  In particular, multilevel 
models are contrasted with fixed effect models.  Finally, the chapter closes with a 
discussion of the substantive as well as the technical advantages of using a multi-
level modeling approach to statistical analysis. 

Part D: The analysis of remotely sensed data 

Part D deals with the analysis of remotely sensed data. Remote sensing is the ac-
quisition and analysis of data about an object or area acquired from a device that is 
not in contact with the object or area.  Most of the remote sensor devices are 
placed in earth-observing satellites and both high and low flying aircraft.   Much 
of the spatial analysis that is carried out on the data must take into account the 
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usually very large number of observations, sometimes in the billions, and the size 
of the fundamental observations (the pixels).  Increasingly, spatial statistics has 
become an integral part of the remote sensing experience.  The main issues facing 
researchers are that results differ by spatial scale and that typical study regions 
(landscapes) vary appreciably, even over short distances.  The type of data sensed 
is usually values on the electromagnetic spectrum condensed into pixels of a par-
ticularly scale. A principal task is to aggregate refined data or select a sensor that 
will capture data at a scale appropriate to the problem being solved.  Spatial varia-
tion is often modeled by covariance, variograms or fractals.  Surfaces are con-
structed using Fourier transforms of the covariance. Variograms are often used to 
model topography, vegetation indices, and soil properties.  GISystems and data 
based management systems provide the computing capability for organizing and 
storing what usually are very large data sets.  Analysis is dependent on visualiza-
tion techniques designed to extract information from the massive data sets.  Issues 
of spatial sampling, especially with regard to spatial scales are an ongoing re-
search question. Part D of the Handbook is made up of three major constituent 
chapters, viz: 

      
• ARTMAP neural network multisensor fusion model for multiscale land cover 

characterization (Chapter D.1),  
• model selection in Markov random fields for high spatial resolution hyperspec-

tral data (Chapter D.2), and 
• geographic object-based image change analysis (Chapter D.3).  

 
Land cover characterization is one of the primary objectives in using and analyz-
ing geospatial information gathered by remote sensing. Land cover characteriza-
tion is essential for terrestrial ecosystem modeling and monitoring, as well as cli-
mate modeling and prediction. To improve estimates of proportions or mixtures of 
land cover at a global scale, it is necessary to exploit information from multiple 
sensors and develop models that explicitly handle scale effects in data fusion. In 
Chapter D.1, Sucharita Gopal, Curtis Woodcock, and Weiguo Liu present a frame-
work for multisensor fusion using an ARTMAP neural network to extract sub-
pixel information from coarser resolution imagery. The framework is applied to 
the extraction of the proportion of forest cover using an image pair-TM (30M) and 
MODIS (one K) imagery for a region of North Central Turkey. The ARTMAP 
neural network multisensor fusion model is compared to a conventional linear 
mixture model and shows its superiority in terms of estimation of sub-pixel class 
proportion. This research suggests that nonlinear mixture models hold consider-
able promise for land cover mapping using information from multiple sensors. 

Chapter D.2, written by Francesco Lagona, implements Markov random 
fields, implemented for the analysis of remote sensing images to capture the natu-
ral spatial dependence between band wavelengths taken at each pixel, through a 
suitable adjacency relationship between pixels, to be defined a priori. In most 
cases several adjacency definitions seem viable and a model selection problem 
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arises. A BIC-penalized pseudo-likelihood criterion is suggested which combines 
good distributional properties and computational feasibility for analysis of high 
spatial resolution hyperspectral images. Its performance is compared with that of 
the BIC-penalized likelihood criterion for detecting spatial structures in a high 
spatial resolution hyperspectral image for the Lamar area in Yellowstone National 
Park. 

The objective of Chapter D.3, by Douglas A. Stow, is to provide an overview 
of the use of multi-temporal remotely sensed image data to map earth surface 
changes from an object-based perspective. An initiation of research activity on 
GEOBICA techniques for detecting, identifying, and/or delineating earth surface 
changes has occurred over the past five or six years. Such techniques may be re-
ferred to as geographic object-based image change analysis or GEOBICA. 
GEOBICA is based on quantitative spatial analytical methods and generates data 
sets that can support spatial analysis of geographic areas.  The chapter provides 
background and details on: (i) reasons and purposes for conducting GEOBICA, 
(ii) image acquisition and pre-processing requirements and types of image data 
that are input to GEOBICA routines, (iii) image segmentation and segment-based 
classification, (iv) approaches to multi-temporal image analysis, (v) GEOBICA 
strategies, (vi) post-processing techniques, and (vii) accuracy assessment for ob-
ject-based and land cover change maps. 

Part E: Applications in economic sciences 

The focus of Part E is on applications in economic sciences in general and re-
gional economics in particular. Three chapters have been chosen to demonstrate 
the range of spatial analytical applications in economic research:  

 
• the impact of human capital on regional labor productivity in Europe (Chapter 

E.1),  
• income distribution dynamics and cross-region convergence in Europe (Chapter 

E.2), and 
• a multi-equation spatial econometric model, with application to EU manufac-

turing productivity growth (Chapter E.3). 
 

The focus of Chapter E.1, by Manfred M. Fischer and associates, is on the role of 
human capital in explaining labor productivity variation among 198 European re-
gions. Human capital is measured in terms of educational attainment using data 
for the active population aged 15 years and older that obtained the level of tertiary 
education. The existence of unobserved human capital that is excluded from the 
model but correlated with the included educational attainment variable and most 
likely exhibiting spatial dependence motivates the use of a spatial regression rela-
tionship that is known as spatial Durbin model. The chapter outlines the model 
along with the associated methodology for estimating the impact of human capital 
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on regional labor productivity, based upon LeSage and Pace’s approach to calcu-
lating scalar summary measures of direct and indirect impacts, described in detail 
in Chapter C.1. A simulation approach with 10,000 random draws is used to pro-
duce an empirical distribution of the model parameters that are needed for com-
puting measures of dispersion for the impact estimates. The results obtained shed 
some interesting light on the role given to human capital in explaining labor pro-
ductivity variation among European regions. Based on the estimate for the direct 
impact, we can conclude that a ten percent increase in human capital will on aver-
age result in a 1.3 percent increase in the final period level of labor productivity. 
But this positive direct impact is offset by a significant and negative indirect im-
pact producing a total impact that is not significantly different from zero.  

Chapter E.2, written by Manfred M. Fischer and Peter Stumpner, presents a 
continuous version of the model of distribution dynamics to analyze the transition 
dynamics and implied long-run behavior of the EU-27 NUTS-2 regions over the 
period 1995-2003. It departs from previous research in two respects: first, by in-
troducing kernel estimation and three-dimensional stacked conditional density 
plots as well as highest density regions plots for the visualization of the transition 
function and second, by combining Getis’ spatial filtering view with kernel esti-
mation to explicitly account for the spatial dimension of the growth process. The 
results of the analysis indicate a very slow catching-up of the poorest regions with 
the richer ones, a process of shifting away of a small group of very rich regions, 
and highlight the importance of geography in understanding regional income dis-
tribution dynamics. 

In the next chapter, Bernard Fingleton uses a multi-equation spatial econo-
metric model to explain variations across EU regions in manufacturing productiv-
ity growth based on recent theoretical developments in urban economics and eco-
nomic geography. The chapter shows that temporal and spatial parameter 
homogeneity is an unrealistic assumption, contrary to what is typically assumed in 
the literature. Constraints are imposed on parameters across time periods and be-
tween core and peripheral regions of the EU, with the significant loss of fit provid-
ing overwhelming evidence of parameter heterogeneity, although the final model 
does highlight increasing returns to scale, which is a central feature of contempo-
rary theory. 

Part F: Applications in environmental sciences 

With the focus on applications in environmental sciences, Part F includes three 
chapters that may illustrate the potential of spatial analysis in this domain area: 

 
• fuzzy k-means classification and a Bayesian approach for spatial prediction of 

landslide hazard (Chapter F.1),  
• incorporating spatial autocorrelation in species distribution models (Chapter 

F.2), and 
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• a Web-based environmental decision support system for environmental plan-
ning and watershed management (Chapter F.3). 
 

In Chapter F.1, Pece V. Gorsevski, Paul E. Gessler, and Piotr Jankowski describe 
a robust method for spatial prediction of landslide hazard in roaded and roadless 
areas of forest. The method is based on assigning digital terrain attributes into con-
tinuous landform classes. The continuous landform classification is achieved by 
applying a fuzzy k-means approach to a watershed scale area before the classifica-
tion is extrapolated to a broader region. The extrapolated fuzzy landform classes 
and datasets of road-related and non road-related landslides are then combined in a 
GISystem for the exploration of predictive correlations and model development. 
In particular, a Bayesian probabilistic modeling approach is illustrated using a 
case study of the Clearwater National Forest in central Idaho, which experienced 
significant and widespread landslide events in recent years. The computed land-
slide hazard potential is presented on probabilistic maps for roaded and roadless 
areas. The maps can be used as a decision support tool in forest planning involv-
ing the maintenance, obliteration or development of new forest roads in steep 
mountainous terrain. 

Spatial analysis is one of the most rapidly growing areas in ecology. This is 
due in part to an increasing awareness among ecologists about the importance of 
spatial structure in ecological phenomena, as well as an expanding variety of spa-
tial analysis tools. Species distribution models, used to quantify the distribution of 
a (plant or animal) species along environmental gradients, have become an impor-
tant research focus in this area. These models generally ignore or attempt to re-
move spatial autocorrelation in the data. When explicitly included in the model, 
spatial autocorrelation can increase model accuracy and clarify the influence of 
other predictor variables. Chapter F.2, written by Jennifer A. Miller and Janet 
Franklin, develops presence/absence models for eleven vegetation alliances in the 
Mojave Desert with classification trees and generalized linear models (GLMs), 
and uses geostatistical interpolation to calculate spatial autocorrelation terms 
(autocovariates) used in the models. Results are mixed across models and meth-
ods, but in general, the autocovariate terms more consistently increase model ac-
curacy for widespread alliances. GLMs tend to have higher accuracy in general. 

Local governments often struggle to balance competing demands for residen-
tial, commercial and industrial development with imperatives to minimize envi-
ronmental degradation. In order to effectively manage this development process 
on a sustainable basis, local planners and government agencies are increasingly 
seeking better tools and techniques. In Chapter F.3, Ramanathan Sugumaran, 
James C. Meyer and Jim Davis describe the development of a Web-based envi-
ronmental decision support system, which helps to prioritize local watersheds in 
terms of environmental sensitivity using multiple criteria identified by planners 
and local government staff in the city of Columbia, and Boone County, Missouri. 
The development of the system involved three steps, the first was to establish the 
relevant environmental criteria and to develop data layers for each criterion, then a 



20      Manfred M. Fischer and Arthur Getis 

spatial model was developed for analysis, and lastly a Web-based interface with 
analysis tools using client-server technology. The system is an example of a way 
to run spatial models over the Web and represents a significant increase in capa-
bility over other WWW-based GI applications that focus on database querying and 
map display. The decision support system seeks to aid in the development of 
agreement regarding specific local areas deserving increased protection and the 
public policies to be pursued in minimizing the environmental impact of future 
development. The tools are also intended to assist ongoing public information and 
education efforts concerning watershed management and water quality issues for 
the City of Columbia (Missouri) and adjacent developing areas within Boone 
County, Missouri. 

Part G: Applications in health sciences 

Part G closes the Handbook with three chapters illustrating applications in health 
sciences:  

 
• spatio-temporal patterns of viral meningitis in Michigan, 1993-2001 (Chapter 

E.1),  
• space-time visualization and analysis in the Cancer Atlas Viewer (Chapter E.2), 

and  
• exposure assessment in environmental epidemiology (Chapter E.3). 

 
Viral meningitis results in an estimated 26-42 thousand hospitalizations in the US 
each year. The incidence of this and other diseases can be successfully understood 
and controlled by examining cases in terms of person, place and time, and explor-
ing spatio-temporal patterns. Areas with high incidence may be targeted for 
heightened surveillance, education, and prevention efforts. In Chapter G.1, Sharon 
K. Greene, Mark A. Schmidt, Mary Grace Stobierski, and Mark L. Wilson applied 
spatial analytical techniques to investigate viral meningitis incidence in Michigan 
and clarify disease patterns. Specifically, viral meningitis cases from 1993 to 2001 
were analysed using standard epidemiological methods, mapped with a GISystem, 
and then further analysed using spatial and temporal cluster statistics.  

Chapter G.2, written by Dunrie A. Greiling, Geoffrey M. Jacquez, Andrew M. 
Kaufmann, and Robert G. Rommel, demonstrates the use of the Cancer Atlas 
Viewer – an example of a space-time information system as described in Chapter 
A.6 – by exploring colon patterns for African-American and white females and 
males in southeastern United States over the period 1970-1995. Specifically, the 
authors use data from the National Cancer Institute and assess changes in spatial 
patterns of mortality from colon cancer by examining trends in the local Moran 
and the Getis-Ord statistics, and the persistence of patterns over time.  

A key component of environmental epidemiologic research is the assessment 
of historic exposure to environmental contaminants. The expansion of space-time 
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databases, coupled with the need to incorporate mobility histories in environ-
mental epidemiology, has highlighted the deficiencies of current software to visu-
alize and process space-time information for exposure assessment. This need is 
most pressing in retrospective studies or large studies where collection of individ-
ual biomarkers is unattainable or prohibitively expensive, and models and soft-
ware tools are required for exposure reconstruction. In diseases of long latency 
such as cancer, exposure may need to be reconstructed over the entire life course, 
taking into consideration residential mobility, occupational mobility, changes in 
risk behavior, and time changing maps generated from models of environmental 
contaminants. Chapter G.3, written by Jaymie R. Meliker, Melissa J. Slotnick, 
Gillian A. AvRuskin, Andrew Kaufman, Geoffrey D. Jacquez, and Jerome O. 
Nriagu, undertakes a modest attempt to apply Time-GIS software tools – as de-
scribed in Chapter A.6 – for space-time exposure reconstruction, using data from a 
bladder cancer case control study in Michigan. 

4 Outlook 

The field of spatial analysis can be defined by the problems it attempts to solve.  
The problems emanate from the peculiarities of georeferenced data.  Even if deal-
ing with multidirectional data were the only problem of the spatial analyst, re-
searchers in this field would have their hands full. Multidirectionality issues re-
quire insight into problems of dependency, heterogeneity, the meaning of 
clustering, what constitutes filtering, nonstationarity, scale differences, spatial 
sampling, and so on.  Much of this Handbook is devoted to these issues.  But, in 
addition, there are spatial problems having to do with boundaries, object size, zon-
ing, redundancy, data transformations, representations, parameter estimation, and 
the design of appropriate tests.   

Particular problems characterize the schools of thought mentioned above.  
ESDA is challenged by use of the technology and new types of scripts for display 
and manipulation of spatial data.  Spatial statisticians are beginning to address the 
problem of multiple, simultaneous, spatially dependent tests.  Spatial econometri-
cians are translating some of the more traditional problems into a Bayesian 
framework. Geostatisticians are developing new models employing spatial-
temporal data.  The use of new sensors, especially high resolution instruments 
challenges remote sensing specialists to devise methods for the classification and 
study of land cover at a variety of scales.  

The outlook for spatial analysis is one of promise for new and innovative so-
lutions to all of these problems. Given these challenges, the fact that many of the 
substantive issues revolve around environmental concerns means that for the fore-
seeable future the field will grow.  By bringing together the technical and substan-
tive issues of spatial analysis into a computer aided statistical setting has served 
and will continue to serve to move the field forward quickly.  Granting agencies 
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usually support research concerning societal issues.  If the economies of the world 
hold up, we expect that granting agencies around the world will continue to em-
phasize this field. 
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A.1   Spatial Statistics in ArcGIS 

Lauren M. Scott and Mark V. Janikas 

A.1.1  Introduction 

With over a million software users worldwide, and installations at over 5,000 uni-
versities, Environmental Systems Research Institute, Inc. (ESRI), established in 
1969, is a world leader for the design and development of Geographic Information 
Systems (GIS) software.  GIS technology allows the organization, manipulation, 
analysis, and visualization of spatial data, often uncovering relationships, patterns, 
and trends.  It is an important tool for urban planning (Maantay and Ziegler 2006), 
public health (Cromley and McLafferty 2002), law enforcement (Chainey and 
Ratcliffe 2005), ecology (Johnston 1998), transportation (Thill 2000), demograph-
ics (Peters and MacDonald 2004), resource management (Pettit et al. 2008), and 
many other industries (see http://www.esri.com/industries.html).  Traditional GIS 
analysis techniques include spatial queries, map overlay, buffer analysis, interpo-
lation, and proximity calculations (Mitchell 1999).  Along with basic cartographic 
and data management tools, these analytical techniques have long been a founda-
tion for geographic information software.  Tools to perform spatial analysis have 
been extended over the years to include geostatistical techniques (Smith et al. 
2006), raster analysis (Tomlin 1990), analytical methods for business (Pick 2008), 
3D analysis (Abdul-Rahman et al. 2006), network analytics (Okabe et al. 2006), 
space-time dynamics (Peuquet 2002), and techniques specific to a variety of in-
dustries (e.g., Miller and Shaw 2001). In 2004, a new set of spatial statistics tools 
designed to describe feature patterns was added to ArcGIS 9. This chapter focuses 
on the methods and models found in the Spatial Statistics toolbox.   

Spatial statistics comprises a set of techniques for describing and modeling 
spatial data.  In many ways they extend what the mind and eyes do, intuitively, to 
assess spatial patterns, distributions, trends, processes and relationships.  Unlike 
traditional (non-spatial) statistical techniques, spatial statistical techniques actu-
ally use space – area, length, proximity, orientation, or spatial relationships – di-
rectly in their mathematics (Scott and Getis 2008). 

© Springer-Verlag Berlin Heidelberg 2010

M.M. Fischer and A. Getis (eds.), Handbook of Applied Spatial Analysis: 27
Software Tools, Methods and Applications, DOI 10.1007/978-3-642-03647-7_2,



28      Lauren M. Scott and Mark V. Janikas  

 

Fig. A.1.1. Right click on a script tool and select Edit to see the Python source code 

 
By 2008 the Spatial Statistics toolbox in ArcGIS contained 25 tools.  The majority 
of these were written using the Python scripting language. Consequently, Arc- 
GIS users have access not only to the analytical methods for these tools, but also 
to their source code (see Fig. A.1.1). 

The Spatial Statistics toolbox includes both statistical functions and general-
purpose utilities.  With the most recent release of ArcGIS 9.3, statistical functions 
are grouped into four toolsets:  Measuring Geographic Distributions, Analyzing 
Patterns, Mapping Clusters, and Modeling Spatial Relationships. 

A.1.2    Measuring geographic distributions 

The tools in the Measuring Geographic Distributions toolset (Table A.1.1) are de-
scriptive in nature; they help summarize the salient characteristics of a spatial dis-
tribution.  They are useful for answering questions like: 

• Which site is most accessible? 
• Is there a directional trend to the spatial distribution of the disease outbreak? 
• What is the primary wind direction for this region in the winter? 
• Where is the population center? 
• Which species has the broadest territory? 
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Table A.1.1. Tools in the measuring geographic distributions toolset 

Tool Description 

Central feature Identifies the most centrally located feature in a point, line, or polygon fea-
ture class 

Directional distribution 
(standard deviational  
ellipse) 

Measures how concentrated features are around the geographic mean, and 
whether or not they exhibit a directional trend 

Linear directional mean Identifies the general (mean) direction and mean length for a set of vectors 

Mean center Identifies the geographic center for a set of features 

Standard distance Measures the degree to which features are concentrated or dispersed around 
the geographic mean center 

 

Even the simplest tool in the Spatial Statistics toolbox can be a powerful commu-
nicator of spatial pattern when used with animation.  The mean center tool is a 
measure of central tendency; it computes the geometric center – the average X and 
average Y coordinate – for a set of geographic features.  In Fig. A.1.2, the 
weighted mean center of population for the counties of California is computed 
every decade from 1910 to 2000.  The center of population is initially located in 
the northern half of the state near San Francisco.  Animation reveals steady 
movement of the mean center south, every decade, as population growth in South-
ern California outpaces population growth in the state’s northern counties. 

 

Fig. A.1.2. Weighted mean center of population, by county, 1910 through 2000   



30      Lauren M. Scott and Mark V. Janikas  

  

Fig. A.1.3. Core areas for five gangs based on graffiti tagging 

The Standard Deviational Ellipse and Standard Distance tools measure the spatial 
distribution of geographic features around their geometric center, and provide in-
formation about feature dispersion and orientation.  Gangs often mark their terri-
tory with graffiti.  In Fig. A.1.3, a standard deviational ellipse is computed, by 
gang affiliation, for graffiti incidents in a city.  The ellipses provide an estimate of 
the core areas associated with each gang’s turf.  The potential for increased gang-
related conflict and violence is highest in areas where the ellipses overlap. By in-
creasing the presence of uniformed police officers in these overlapping areas and 
around nearby schools, the community may be able to curtail gang violence. Mit-
chell (2005), Scott and Warmerdam (2005), Wong (1999) and Levine (1996) pro-
vide additional examples of applications for descriptive statistics like mean center, 
standard distance, and standard deviational ellipse. 

A.1.3    Analyzing patterns 

The Analyzing Patterns toolset (Table A.1.2) contains methods that are most ap-
propriate for understanding broad spatial patterns and trends (Mitchell 2005).  
With these tools you can answer questions like:   
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• Which plant species is most concentrated? 
• Does the spatial pattern of the disease mirror the spatial pattern of the popula-

tion at risk? 
• Is there an unexpected spike in pharmaceutical purchases? 
• Are new AIDs cases remaining geographically fixed? 

Consider the difficulty of trying to measure changes in urban manufacturing pat-
terns for the United States over the past few decades.  Certainly broad changes 
have occurred with globalization and the move from vertical integration to a more 
flexible and dispersed pattern of production.  One approach might be to map man-
ufacturing employment by census tract for a series of years, and then try to visu-
ally discern whether or not spatial patterns are becoming more concentrated or 
more dispersed.  Most likely a range of scenarios would emerge.  The Global 
Moran’s I tool computes a single summary value, a z-score, describing the degree 
of spatial concentration or dispersion for the measured variable (in this case manu-
facturing employment).  Comparing this summary value, year by year, indicates 
whether or not manufacturing is becoming, overall, more dispersed or more con-
centrated.  

Similarly, viewing thematic maps of per capita incomes (PCR)1 in New York 
for a series of years (see Fig. A.1.4), it is difficult to determine whether rich and 
poor counties are becoming more or less spatially segregated.  Plotting the resul-
tant z-scores from the Spatial Autocorrelation (Global Moran’s I) tool, however, 
reveals decreasing values indicating that spatial clustering of rich and poor has 
dissipated between 1969 and 2002. 

Table A.1.2. A summary of the tools in the analyzing patterns toolset 

Tool Description 

Average nearest neighbor Calculates the average distance from every feature to its nearest 
neighbor based on feature centroids 

High/low clustering (Getis-Ord 
general G) 

Measures concentrations of high or low values for a study area 

Spatial autocorrelation   (global 
Moran’s I) 

Measures spatial autocorrelation (clustering or dispersion) based 
on feature locations and attribute values 

Multi-distance spatial cluster  
analysis (Ripley’s K function) 

Assesses spatial clustering/dispersion for a set of geographic fea-
tures over a range of distances 

The K function is a unique tool in that it looks at the spatial clustering or disper-
sion of points/features at a series of distances or spatial scales.  The output from 
the K function is a line graph (see Fig. A.1.5).  The dark diagonal line represents 
the expected pattern, if the features were randomly distributed within the study 
area.  The X axis reflects increasing distances.  The solid curved line represents the 

                                                           
1  PCR is per capita income relative to the national average. 
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observed spatial pattern for the features being analyzed.  When the curved line 
goes above the diagonal line, the pattern is more clustered at that distance than we 
would expect with a random pattern; when the curved line goes below the diago-
nal line, the pattern is more dispersed than expected. Based on a user-specified 
number of randomly generated permutations of the input features, the tool also 
computes a confidence envelope around the expected line.  When the curved line 
is outside the confidence envelope, the clustering or dispersion is statistically sig-
nificant.  

    

Fig. A.1.4. Relative per capita income for New York, 1969 to 2002 

 

 
 

Fig. A.1.5. Components of the K function graphical output 
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The K function is useful for comparing different sets of features within the same 
study area, such as two strains of a disease or disease cases in relation to popula-
tion at risk.  Similar observed spatial patterns suggest similar factors (similar spa-
tial processes) are at work.  A researcher might compare the spatial pattern for a 
disease outbreak, for example, to the spatial pattern of the population at risk to 
help determine if factors other than the spatial distribution of population are pro-
moting disease incidents. Wheeler (2007), Levine (1996), Getis and Ord (1992), 
and Illian et al. (2008) provide examples of additional applications for the tools in 
the Analyzing Patterns toolset. 

A.1.4   Mapping clusters 

The tools discussed above in the Analyzing Patterns toolset are global statistics 
that answer the question: Is there statistically significant spatial clustering or dis-
persion?  Tools in the Mapping Clusters toolset (Table A.1.3), on the other hand, 
identify where spatial clustering occurs, and where spatial outliers are located:   

• Where are their sharp boundaries between affluence and poverty in Ecuador? 
• Where do we find anomalous spending patterns in Los Angeles? 
• Where do we see unexpectedly high rates of diabetes? 

In Fig. A.1.6, the Local Moran’s I tool is used to analyze poverty in Ecuador.  A 
string of outliers separate clusters of high poverty in the north from clusters of low 
poverty in the south, indicating a sharp divide in economic status. 

Table A.1.3. A summary of the tools in the mapping clusters toolset 

Tool Description 

Cluster and outlier analysis  
(Anselin’s local Moran’s I) 

Given a set of weighted features, identifies clusters of high or 
low values as well as spatial outliers 

Hot spot analysis  (Getis-Ord iG∗
) Given a set of weighted features, identifies clusters of features 

with high values (hot spots) and clusters of features with low  
values (cold spots) 

The Hot Spot Analysis (Getis-Ord iG∗ ) tool is applied to vandalism data for Lin-
coln, Nebraska in Fig. A.1.7.   In  the  first  map  (left),  raw  vandalism  counts for 
each census block are analyzed.  The picture that emerges would not surprise local 
police officers.  Most vandalism is found where most people and most overall  
crime are found: downtown and in surrounding high crime areas.  Fewer cases of 
vandalism are associated with the lower density suburbs.  In the second map 
(right), however, vandalism is normalized by overall crime incidents prior to anal-
ysis.  Running the  Hot Spot Analysis  tool on this normalized data shows that  
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Fig. A.1.6. An analysis of poverty in Ecuador using local Moran’s I 

 

 
Fig. A.1.7. An analysis of vandalism hot spots in Lincoln, Nebraska using *

iG  

Local Moran’s I 
Statistically Significant Results
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while Lincoln may have more  incidents  of  vandalism  in  downtown areas, van-
dalism represents a larger proportion of total crime in suburban areas. Zhang et al. 
(2008), Jacquez and Greiling (2003), Getis and Ord (1992), Ord and Getis (1995), 
and Anselin (1995) provide additional applications for the tools in the Mapping 
Clusters toolset. 

A.1.5   Modeling spatial relationships 

The tools in the Modeling Spatial Relationships toolset (Table A.1.4) fall into two 
categories. The first category includes tools designed to help the user define a 
conceptual model of spatial relationships.  The conceptual model is an integral 
component of spatial modeling and should be selected so that it best represents the 
structure of spatial dependence among the features being analyzed (Getis and Ald-
stadt 2004). 

The options available for modeling spatial relationships include inverse dis-
tance, fixed distance, polygon contiguity (Rook’s and Queen’s case), k nearest 
neighbors, Delaunay triangulation, travel time and travel distance.  Figure A.1.8 il-
lustrates how spatial relationships change when they are based on a real road net-
work, rather than on straight line distances. 

  
 

Fig. A.1.8. Traffic conditions or a barrier in the physical landscape can dramatically change 
actual travel distances, impacting results of spatial analysis 

Table A.1.4.  A summary of the tools in the modeling spatial relationships toolset 

Tool Description 

Generate network  
spatial weights 

Builds a spatial weights matrix file specifying spatial relationships among 
features in a feature class based on a Network dataset 

Generate spatial  
weights matrix 

Builds a spatial weights matrix file specifying spatial relationships among 
features in a feature class 

Geographically  
weighted regression  

A local form of linear regression used to model spatially varying relation-
ships among a set of data variables 

Ordinary least squares 
regression  

Performs global linear regression to model the relationships among a set 
of data variables 
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Constructing spatial relationships prior to analysis generally results in improved 
performance, particularly within the context of larger datasets or  when applied to 
multiple attribute fields.  The spatial weights matrix files (*.swm) are sharable, re-
usable and can be directly edited within ArcGIS.  Furthermore, options are avail-
able to facilitate both importing and exporting spatial weights matrix files from/to 
other formats (*.gal, *.gwt, or a simple *.dbf table).2 

The second category of tools in the Modeling Spatial Relationships toolset in-
cludes ordinary least squares (OLS) (Woolridge 2003), and geographically 
weighted regression (GWR) (Fortheringham et al. 2002 and Chapter C.5).  These 
tools can help answer the following types of questions: 

• What is the relationship between educational attainment and income? 
• Is there a relationship between income and public transportation usage?  Is that 

relationship consistent across the study area?   
• What are the key factors contributing to excessive residential water usage? 

Regression analysis may be used to model, examine, and explore spatial relation-
ships, in order to better understand the factors behind observed spatial patterns or 
to predict spatial outcomes.  There are a large number of applications for these 
techniques (Table A.1.5).   

               
Fig. A.1.9. GWR optionally creates a coefficient surface for each model explanatory vari-
able reflecting variation in modeled relationship 

OLS is a global model.  It creates a single equation to represent the relationship 
between what you are trying to model and each of your explanatory variables.  
Global models, like OLS, are based on the assumption that relationships are static 
and consistent across the entire study area.  When they are not – when the rela-
tionships behave differently in separate parts of the study area – the global model 
becomes less effective.  You might find, for example, that people’s desire to live 
and work close, but not too close, to a metro line encourages population growth: 
the relationship for being fairly close to a metro line is positive while the relation-

                                                           
2  See http://resources.esri.com/geoprocessing/ for a description and examples of exporting 

/importing *.swm files to *.gal and *.gwt formats. 



A.1     Spatial statistics in ArcGIS      37 

ship for being right up next to a metro line is negative.  A global model will com-
pute a single coefficient to represent both of these divergent relationships.  The re-
sult, an average, may not represent either situation very well.  

Local models, like GWR, create an equation for every feature in the dataset, 
calibrating each one using the target feature and its neighbors.  Nearby features 
have a higher weight in the calibration than features that are farther away. What 
this means is that the relationships you are trying to model are allowed to change 
over the study area; this variation is reflected in the coefficient surfaces optionally 
created by the GWR tool (see Fig. A.1.9).  If you are trying to predict foreclo-
sures, for example, you might find that an income variable is very important in the 
northern part of your study area, but very weak or not important at all in the 
southern part of your study area.  GWR accommodates this kind of regional varia-
tion in the regression model. 

Table A.1.5. A variety of potential applications for regression analysis  

Application Area Analysis Example 

Public health Why are diabetes rates exceptionally high in particular regions of the United 
States? 

Public safety What environmental factors are associated with an increase in search and res-
cue event severity? 

Transportation What demographic characteristics contribute to high rates of public transpor-
tation usage? 

Education Why are literacy rates so low in particular regions? 

Market analysis What is the predicted annual sales for a proposed store? 

Economics Why do some communities have so many home foreclosures? 

Natural resource 
management 

What are the key variables promoting high forest fire frequency?   

Ecology Which environments should be protected to encourage reintroduction of an 
endangered species? 

 
The default output for both regression tools is a residual map showing the model 
over- and underpredictions (see Fig. A.1.10).  The OLS tool automatically checks 
for muliticollinearity  (redundancy  among  model  explanatory  variables), and 
computes coefficient probabilities, standard errors, and overall model significance 
indices that are robust to heteroscedasticity.  The online help documentation for 
these tools provides a beginner’s guide to regression analysis, suggested step by 
step instructions for the model building process, a table outlining and carefully 
explaining the challenges and potential pitfalls associated with using regression 
analysis with spatial data, and recommendations for how to overcome those poten-
tial problems.3 

                                                           
3  See http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Regression_analysis_basics 
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Fig. A.1.10. Default output from the regression tools is a map of model over- and under-
predictions 

A.1.6    Custom tool development 

The tools in the Spatial Statistics toolbox were developed using the same methods 
and techniques that an ArcGIS user might adopt to create his/her own custom 
tools.  They illustrate the extendibility of ArcGIS, and ESRI’s commitment to 
providing a framework for custom tool development. 

The simplest way to create a new tool in the geoprocessing framework is to 
use Model Builder to string existing tools together.  The resultant model tool can 
then be exported to Python and further extended with custom code.  In addition, 
any third party software package that can be launched from the DOS command 
line is an excellent custom tool candidate.  Simply point to the executable for that 
software and define the needed tool parameters. 

For software developers, the geoprocessing framework offers sophisticated 
options for custom tool development.  Python script tools can be run ‘in process’, 
resulting in a cohesive interface that improves both performance and usability.  
Numerical Python (NumPy) provides an avenue to perform complex mathematical 
operations (Oliphant 2006), and is currently part of the ArcGIS software installa-
tion.  Other Python libraries can be added as well.  Perhaps the most logical exten-
sion is Scientific Python (SciPy),4 which provides a host of powerful statistical 
techniques and works directly with NumPy.  PySAL (a Python Library for Spatial 
Analytical Functions, see Chapter A.10), developed in conjunction with GeoDa 
(see Chapter A.4) and STARS (see Chapter A.5), is a crossplatform library of spa-
tial analysis functions that may also provide opportunities for extending Arc GIS 
functionality.5 

                                                           
4  http://www.scipy.org/ 
5  See http://www.sal.uiuc.edu/tools/tools-sum/pysal and http://www.sal.uiuc.edu/tools/tools-

sum/pysal 
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Python works nicely with other programming languages, and this has resulted in 
several hybrid libraries including Rpy and PyMat, giving users access to the me-
thods in R (see Chapter A.3 for spatial econometric functions in R) and in Mat-
Lab, respectively.6  There are also a number of spatial data analysis add-on pack-
ages for R (Bivand and Gebhardt 2000) and a spatial econometrics toolbox for 
MatLab (LeSage 1999).  Sample scripts demonstrating integration of ArcGIS 9.3 
with R are available for download from the Geoprocessing Resource Center7 (see 
Fig. A.1.11). 

 

 
Fig. A.1.11. Geoprocessing Resource Center Web page 

A.1.7   Concluding remarks 

The Spatial Statistics toolbox provides feature pattern analysis and regression 
analysis capabilities inside ArcGIS where users can leverage, directly, all of its 
powerful database management and cartographic functionalities.  The source code 
for these tools is provided inside a geoprocessing framework that encourages de-
velopment and sharing of custom tools and methods.  People and organizations 
developing custom Python tools can take advantage of existing libraries, docu-
mentation, sample scripts, and support from a worldwide community of Python 
software developers.  The Geoprocessing Resouce Center (see Fig. A.1.11), 

                                                           
6  See http://rpy.sourceforge.net/, http://www.r-project.org/, http://www.mathworks.com/, 

and http://claymore.engineer.gvsu.edu/~steriana/Python/pymat.html.  
7  http://resources.esri.com/geoprocessing/  
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launched in August of 2008, offers a platform for asking questions and getting an-
swers, for sharing ideas, tools, and methodologies, and for participating in an on-
going conversation about spatial data analysis.  The sincere hope is that this con-
versation will extend beyond the realm of academics, theoreticians, and software 
developers – that it will embrace the hundreds of thousands of GIS users grappling 
with real world data and problems – and that, as a consequence, this might foster 
new tools, new questions, perhaps even new approaches altogether. 
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A.2    Spatial Statistics in SAS 

Melissa J. Rura and Daniel A. Griffith 

A.2.1    Introduction 

From the abacus to the adding machine to the supercomputer, for centuries hu-
mans have used aids to enable mathematical computations. As the mathematical 
tabulations grew in complexity, so did the ‘machines’ that enabled more complex 
calculations. This in turn presented the problem of implementing beautifully writ-
ten formulas in a form a computer ‘aid’ could understand. Today statistics specifi-
cally has a huge variety of software implementations available to choose from, 
some of which focus on a specific subdiscipline of statistics, while others encom-
pass statistics more broadly. SAS Institute, as did many specialized software com-
panies, evolved from an academic background in partnership with IBM, and its 
statistical package is used widely in statistics as well as a plethora of disciplines 
that rely on statistical results. Here we describe some of the ways SAS has been 
used in the past for spatial statistics, and some of the more recent additions made 
to explicitly include spatial information and geographic visualization, and give 
two SAS implementation examples, the calculation of Moran’s I and the eigenvec-
tor spatial filtering spatial statistical technique.  

A.2.2   Spatial statistics and SAS 

SAS provides a programming language and components called procedures that 
perform data management functions as well as many different kinds of analyses. 
Combining the SAS language and its procedures allows a user to do tasks ranging 
from general-purpose data processing to highly specialized analysis, including ac-
cessing raw data files and data in external databases, managing data efficiently, 
analyzing data using descriptive statistics, multivariate techniques, forecasting and 
modeling, linear programming, customized analyses, and presenting data in re-
ports and statistical graphics. Although in the past SAS did not include any strictly 
spatial statistical procedures, the computational mathematics of spatial statistics 
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has been done for decades using statistical functions and procedures available in 
SAS. The reason for this is twofold. First, large spatial datasets, like census data or 
image pixels, often cause problems for software that hold the entire dataset in vir-
tual memory. By integrating with both host (OS) file systems and a variety of third 
party DBMS products, SAS efficiently handles very large datasets. Second, the 
functions and procedures provided by SAS are flexible enough that models can be 
designed to allow researchers to include spatial information. Griffith (1993) im-
plements spatial autoregressive models using SAS’s nonlinear procedure PROC 
NLIN. The estimation is a nonlinear problem because: (i) the Jacobian term, 
which is a function of the spatial autocorrelation parameter, appears as a divisor of 
each regression model term; and, (ii) each regression coefficient also appears in a 
product term where it is multiplied by the spatial autocorrelation parameter.  

The availability of SAS code for spatially informed models is found both in 
print (Moser 1987; Griffith 1993; Griffith et al. 1999), and on the web (Waller and 
Gotway 2004; Yiannakoulias 2008; Rura 2008; UCLA 2008), from a variety of 
authors across several disciplines. One can find freely available SAS code for the 
Moran Coefficient (i.e., Moran's I), the Geary Ratio (i.e., Geary’s c), spatial auto-
regressive models, spatial random effects models, cluster detection, spatial diffu-
sion, and much more. Regardless of the operating environment in which a particu-
lar version of SAS is running, the precision and algorithms do not change. SAS 
also creates log files that give a user feedback about what is happening inside pro-
cedures, including warnings about possible problems with model specification, 
convergence, and explanations of error messages.  

A.2.3  SAS spatial analysis built-ins 

Recently SAS has included many specifically geographical functions for mapping. 
The SAS/GIS and SAS/GRAPH software provide many mapping capabilities 
within SAS (see SAS/GIS 2008 and SAS/GRAPH 2008 for details about the soft-
ware and its procedures). Also, SAS has implemented geostatistical procedures 
like PROC VARIOGRAM, which includes an option for computing Moran’s I and 
Geary’s c statistics using binary, row standardized or distance weights matrices, 
and PROC KRIGE2D which performs ordinary kriging in two dimensions. Also 
available is a spatially structured random effects intercept option in PROC 
MIXED based on a geostatistical semivariogram model, using a statement like re-
peated/sub=intercept type=SP(EXP) (U V), where EXP is the exponential charac-
terization of semivariance and (U V) are geographic coordinate pairs. A spatially 
structured random effects intercept also can be specified without this built-in geo-
statistical option, using, for instance, an eigenvector spatial filter specification by 
including selected eigenvectors in the model statement and specifying random in-
tercept/type=VC sub=ID.  
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Probably the most powerful use of SAS in spatial statistics is the ability to modify 
existing procedures to include spatial information. PROC NLIN can be used with 
weights to estimate any valid semivariogram model using the output of PROC 
VARIOGRAM. A spatial regression can be specified a variety of different ways 
using the PROC NLIN procedure (see Griffith 1993 for details). And, PROC 
GENMOD can be used for generalized linear model spatial regression specifica-
tions by including eigenvector spatial filter proxy variables in a regression. Wang 
(2006) gives an example of wasteful commuting and sample SAS code using 
PROC LP to solve linear programming problems. These procedures, along with 
the flexibility of PROC IML, SAS’s interactive matrix language, and the data step 
enable the customized programming of many standard quantitative geographical 
models, such as the Huff model, the Garin-Lowry model, and the doubly con-
strained gravity model.  

SAS/GIS is an interactive Geographic Information System (GIS) within the 
SAS System that has an open data model, meaning the information stored in both 
the attribute and spatial datasets is accessible to users. SAS spatial datasets also 
must conform to the topological rules outlined by Boudriault (1987) and published 
by the American Society for Photogrammetry and Remote Sensing and the Amer-
ican Congress on Surveying and Mapping. These rules include topological com-
pleteness and topological geometric consistency. Spatial files failing to meet the 
topological criteria cause errors, alerting a user that quality control is necessary if 
spatial analysis is to be conducted. PROC GIS creates and maintains spatial data-
sets for use in SAS, and allows for batch accessibility to the GIS functionality. 
PROC MAPIMPORT can be used to import ESRI shapefiles into SAS. A user in-
terface exists (found in the Solutions menu ► Analysis ► Geographic Information 
Systems), with an interactive GIS window (not supported on all platforms). This 
interface is not very intuitive, so producing sophisticated maps, although possible, 
is programmatically challenging. Mapping also can be done using SAS/GRAPH, 
which can be used to create four types of maps using PROC GMAP: two-
dimensional choropleth maps and three-dimensional block, prism, and surface 
maps. SAS and ESRI also have partnered to create a bi-directional bridge between 
SAS data and analytical tools and the ERSI mapping environment. This bridge has 
been implemented by the U.S. Bureau of the Census to create school district de-
mographics.  

A.2.4   SAS implementation examples 

Two examples of spatial statistical implementations within a GIS are presented 
here. Neither of these implementations takes advantage of built-in spatial func-
tions within SAS, and both require only the base SAS license. The first example is 
the calculation of Moran’s I, a straightforward computation and the creation of a 
Moran scatterplot. The second example is an implementation of eigenvector spa-
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tial filtering that includes a user interface within ArcGIS, a widely used GIS soft-
ware package, and a simple exchange file in order for mapping to be done in     
ArcGIS and statistical analysis to be done in SAS.  

Moran’s I. Moran’s I is a common statistical diagnostic that tests for spatial 
autocorrelation in data. First proposed by Moran (1950), it is implemented in a va-
riety of software packages, including, but not limited to R, Geoda, and ArcGIS. 
This statistic essentially computes a weighted Pearson product moment correlation 
of a variable against itself, where the weighting relates to the variable’s spatial ar-
rangement (see Chapter B.5 for more details). Moran’s I allows for the investiga-
tion of correlation within a single variable due to the spatial relationship amongst 
its observations. The work flow shown in Fig. A.2.1 illustrates the steps involved 
in its calculation. 
 
 

 

Fig. A.2.1. Moran’s I workflow implemented in SAS 

Initially, the variable of interest should be standardized (for example, the mean 
made equal to zero, and the standard deviation made equal to one); in SAS this 
can be done using PROC STANDARD or with simple calculations (that is, sub-
tract the mean and divide by the standard deviation) in a DATA step. Next geo-
graphic connectivity should be defined for use as the weights. This is done by im-
porting a neighbor file as in Table A.2.1. A connectivity matrix is created based 
on the weight information in the neighbor file.  Next, Moran’s I and the probabil-
ity of Moran’s I can be calculated. These calculations can be made either using 
PROC IML or inside a DATA step, depending on a programmer’s preference for 
matrix or summation notation. Finally, using PROC GPLOT, a Moran scatterplot 
is displayed by plotting the variable information against the weighted variable in-
formation.  

Tiefelsdorf and Boots (1995) show a relationship between Moran’s I and the 
eigenvalues of  (I–11T/n)C(I–11T/n) (see Chapter B.5). After the calculation of the 
eigenvalues, a simple conversion calculates Moran’s I again either in a data step or 
using PROC IML. This relationship is very useful, especially in the case where 
data have a massive number of observations. SAS code for both the traditional 
Moran’s I calculation and eigenvalue conversion to Moran’s I is available for 
download from Rura (2008).  

Eigenvector spatial filtering with SAS and ArcGIS. An example of a spatial 
statistical model implemented in SAS is the technique of eigenvector spatial filter-
ing. This spatial regression technique accounts for spatial autocorrelation in geo-
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referenced variables by including map patterns based on, say topological connec-
tivity as covariates in a model (see Chapter B.5 for details on this method). The 
map patterns are portrayals of eigenvectors extracted from a connectivity matrix 
of the underlying surface. This technique can be implemented in a tight coupling 
of SAS and ArcGIS.  
 
 

 
 

 

Fig. A.2.2. Visual Basic interface inside ArcGIS, the Load Data and Model Tabs; informa-
tion is collected through this interface and sent to SAS programmatically for computation  
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Combining the established statistical procedures in SAS with the familiar interface 
of ArcGIS, a tool for creating eigenvector spatial filter models was created. This 
tool consists of a Visual Basic (VB) interface within ArcGIS that acts as a simple 
facade for SAS procedures executing in the background. The interface consists of 
four tabs: Load Data, Data Diagnostics, Model Data, and Residual Diagnostics 
(see Fig. A.2.2). 

This tool, consisting of an open source ArcMap map file (for example, *.mdx) 
and a series of SAS program files (for example, *.sas), and can be downloaded 
from Rura (2008). The SAS programs can be run independently from ArcGIS to 
produce the spatial statistical outputs, but they include no mapping functionality 
within SAS.  

Necessary data. Although eigenvector spatial filter models can be incorpo-
rated into a generalized linear model specification (and probably should be when 
data are counts or percentage), this implementation assumes that the given data 
can be modeled by a Gaussian-normal spatial linear regression. First, two pieces 
of information are necessary: the variable information and the geographic connec-
tivity information. Generally, the attribute variable information is stored in a data-
base. Since this program interacts with shapefiles, a Dbase4 (for example, *.dbf) 
file is assumed; but when running the program independently from ArcGIS, any 
database format supported by SAS (see SAS 2008 for a current listing of sup-
ported formats) can be used. The definition of the surface connectivity might be 
characterized in many ways, including contiguity rules or distance measures (see 
Cliff and Ord 1981; Griffith 1987). The definition of connectedness of a surface 
should be considered carefully by a user, and be justifiable in theoretical terms. 
This implementation only requires that the defined connectivity can be written in-
to a file of the form shown in Table A.2.1, where each row is written in the fol-
lowing format: a unique ID, a region ID, a neighbor ID, and the weight associated 
with a connection. 

Table A.2.1. Neighbor file format 

ID Region Neighbor Weight 
1 1 3 1 
2 1 2 1 
3 2 1 1 
4 2 4 1 

 
 

When executed inside ArcGIS, this file should be comma-delimited (for example, 
*.csv), and can be created by default using a button in the tool. The default connec-
tivity creates a first-order Queen’s adjacency connectivity matrix, using the Arc- 
GIS spatial query ‘esriSpatailRelTouches’ to query each region for neighbors. If 
topological problems exist with data (for example, slivers or unclosed polygons), 
mistakes will occur in the resulting neighbor file. The accuracy of any neighbor 
file should be checked. Once a neighbor file is created, considered reliable and 
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loaded, an output path should be specified, where the statistical outputs from SAS 
are stored; a list of these outputs is found in Table A.2.2. Also, within this toolset 
is a set of geographic data diagnostic tools (not discussed here); some of these di-
agnostics require centroid locations. This centroid file can be specified as a point 
or a polygon file containing X and Y coordinate pairs in an ArcGIS attribute table, 
or when run in SAS, any table containing centroid values; these values are not ne-
cessary to specify a spatial filter model.  

The model: Spatial filtering with eigenvectors in SAS. After data are collected, 
perhaps the response variable transformed, and a spatial regression model speci-
fied based upon data conceptualization and diagnostics, a Gaussian-normal linear 
spatial filter model can be computed. Within the interface in ArcGIS, a response 
variable and a set of explanatory variables are chosen from the attribute fields of a 
polygon file. The advanced button allows a user to set the adjusted Moran Coeffi-
cient (MC/MCMax) threshold (see Chapter B.5 and Griffith 2003 for details) and 
the stepwise selection criterion for a model. Finally, the Spatial Filter button calls 
a function that initiates an instance of SAS, and the information input into ArcGIS 
by a user is read by SAS and used to calculate a spatial filter model. This interface 
is a convenient way for collecting the information used by SAS. The file read into 
SAS is comma-delimited, and includes the following information: 
 

Attribute, the file-path and filename for the variable information;  
Neighbor, the file-path and filename for the neighbor file;  
Response, the response variable name; 
Explain, the set of explanatory variable names, space delimited;  
Selection, the stepwise selection criterion;  
MCadj, the adjusted Moran Coefficient threshold value; and,  
SavePath, the file-path where all output information is to be saved.  

 
An example of this file and other data formats can be downloaded from Rura 
(2008).  
 
 

 

Fig. A.2.3. Eigenvector spatial filtering work flow implemented in SAS 
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The flow chart appearing in Fig. A.2.3 shows the work flow and the procedures 
used within SAS to create an eigenvector spatial filter model. First, a connectivity 
matrix is created from a neighbor file using PROC IML. This matrix is pre- and 
post-multiplied by the standard projection matrix, making the mean of all but one 
of the eigenvectors zero (see Griffith 2003 for details). Next, the sets of eigenval-
ues and eigenvectors are extracted from the connectivity matrix using the EIGEN 
function. In the case of positive spatial autocorrelation, a threshold set of eigen-
vectors containing positive spatial autocorrelation, called the candidate set, is cho-
sen by a PROC SQL statement, using a user-defined minimum amount of positive 
spatial autocorrelation. This candidate set of eigenvectors is included in the Gaus-
sian-normal linear regression model. The subsequent stepwise regression, which 
forces the chosen explanatory variables to remain in a model, is executed (for ex-
ample, PROC REG; Model Response = Explain CandidateEigenvectors 
/selection=stepwise sle= UserValue include = Number of Explain), choosing 
those eigenvectors that are statistically significant, and that explain the most resid-
ual variation in the response variable. Then these eigenvectors are used to specify 
a final Gaussian-normal linear regression model that includes the explanatory va-
riable and the selected eigenvectors. Finally, using the SAS ods system, the files in 
Table A.2.2 are exported to the file-path specified by a user, a Dbase4 file contain-
ing an ID, the spatial filter, and the model residuals is joined to the attribute table 
of the given polygon file, and the constructed spatial filter is mapped in ArcGIS.  

Table A.2.2. Eigenvector spatial filtering for ArcGIS and SAS output file descriptions  

Output  Description 
Map (SFmap.dbf) The response variable, the predicted values, and 

the residuals for each region are automatically joined to the as-
sociated polygon file (these are mapped in ArcGIS)  

Initial data diagnostics (Diagnostics.pdf) Univariate diagnostics, correlation diagnos-
tics, and SAS experimental ods graphics for response and ex-
planatory variables  

Stepwise regression information (StepwiseReg.pdf) SAS stepwise regression output (including 
all steps), univariate diagnostics of residuals, and output from 
regression of the observed on the predicted values 

Final regression information (FinalReg.pdf) SAS regression output, including ods graphs, 
univariate residual diagnostics, and the regression of the ob-
served on the predicted values  

Chosen eigenvectors (SFChosenEV.dbf) Eigenvectors chosen to be included in the 
final spatial filter regression (an output file) 

Coefficient values (FinalCoef.dbf) The regression coefficient values for the inter-
cept, covariates and each chosen eigenvector 

Log (SFCOVlog.pdf) The SAS log file 
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No SAS/ESRI bridge is used for this implementation. A text file containing in-
formation collected using the VB interface in ArcGIS is written to a predefined 
location and an instance of SAS is initiated. Next, SAS reads this file and uses the 
path and file names to automatically import the data into SAS. Then a series of sql 
statements results in the storage of variable names and data information. Finally, 
SAS executes the code and exports the output to a user-defined location. After the 
completion of this task, the SAS instance is closed, and the output table is auto-
matically joined to the shapefile attribute table and mapped in ArcGIS.  

A.2.5  Concluding remarks  

The tools available in SAS for statistical analysis have been used for decades to 
analyze spatial statistical problems. Often this analysis is done through customiza-
tion, although SAS now embeds spatial functionality into function options through 
its own GIS module. An implementation of eigenvector spatial filtering in SAS is 
described here in order to illustrate how customized SAS code can be created to 
put spatial statistical techniques into practice. This implementation uses standard 
statistical procedures and SAS functionality to estimate a spatial statistical model, 
expanding the already existing PROC NLIN-based spatial autoregressive code ca-
pabilities. The flexibility of SAS’s statistical procedures, its stability with large 
datasets, and its ability to interface with many different software packages across a 
variety of platforms gives a researcher a large tool box from which to build upon 
in finding solutions to many different kinds of spatial statistical problems. 
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A.3   Spatial Econometric Functions in R 

Roger S.  Bivand 

A.3.1    Introduction 

Developments in the R implementation of the S data analysis language are 
providing new and effective tools needed for writing functions for spatial analysis. 
The release of an R package for constructing and manipulating spatial weight, and 
for testing for global and local dependence during 2001 has been followed by 
work on functions for spatial econometrics (package spdep; the package may be 
retrieved from: http://cran.r-project.org). This chapter gives an introduction to 
some of the issues faced in writing this package in  R, to the use of classes and 
object attributes, and to class-based method dispatch. In particular, attention will 
be paid to the question of how prediction should be understood in relation to the 
most commonly employed spatial econometrics simultaneous autoregressive 
models. Prediction is of importance because fitted models may reasonably be 
expected to be used to provide predictions of the response variable using new data 
− both attribute and position − that may not have been available when the model 
was fitted. 

Class-based features are important because they encapsulate information 
about the data in a generic way, also when the data is given, for example, in form 
of a model formula, an object describing spatial neighbourhood relationships, or 
the results of fitting a model to data. This permits the flexible handling of 
subsetting, missing data, dummy variables, and other issues, based on existing 
classes that are extended to handle spatial econometrics functions. For the analyst, 
it is convenient if generic access functions can be applied to spatial analysis 
classes, such as making a summary or plotting a spatial neighbours’ structure. The 

for a range of estimating functions. In this setting, a spatial linear model should 
build on the classes of the arguments of the underlying linear model. There should 

model, spatial econometrics models, or geographically weighted regression 
models, although of course function-specific arguments would be introduced. 
 

same applies to the use of model formulae, describing the model to be estimated, 

Reprinted in  slightly  modified form  from  Bivand RS (2002)  Spatial econometric functions in R, 

be no difference in the syntax of shared arguments between the a-spatial linear 
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It is also of interest to compare spatial econometric formulations with other related 
model structures, such as those for mixed effects models, and to explore other 
alternative approaches. These may include extensions to repeated measurements, 
to spatial time series, and to generalised linear models, although here the spatial 
case is often currently unresolved. However, the underlying classes are important 
in that their implementation may make the flexible extension of spatial analysis 
tools more or less difficult, and consequently may admit the quick prototyping of 
experimental new modelling techniques rather than hinder it. 

It is clear that different disciplines and data analysis communities do not 
approach the writing of code, or the use of command line interfaces, in the same 
ways, and have varying expectations regarding the concerns of users. It is however 
arguable that language environments such as  S, and its implementations R and  S-
PLUS, are instrumental in reducing barriers between users, who are not supposed 
to meddle with the software, but who can be expected to know about their data 
and methods, and developers. When these qualities of the S language environment 
for data analysis are coupled to free access to source code, opportunities for 
mutual peer-review and exchange between and among users and developers arise 
that are otherwise very difficult to create. 

This chapter – after sketching the position of the R project and the spdep 
package – first reviews some open problems in spatial econometrics and then 
draws on the experience of the class/method mechanisms in S and R, including a 
discussion of the use of classes in spdep at present. This leads to an extended 
discussion of how prediction might be approached in spatial econometrics, since  
predict() is a method typically implemented for classes of fitted models. This is 
exemplified using the revised Harrison and Rubinfeld Boston house price data set, 
which is also distributed with spdep . 

The R project. As summarised in brief in Bivand and Gebhardt (2000), R is a 
language and environment for statistical computing and graphics1, and is similar to 
S. The S language is described and documented in Becker et al. (1988), Chambers 
and Hastie (1992), and more recently in Chambers (1998). There are differences 
between implementations of S: S-PLUS − which is a well-supported commercial 
product with many enhancements − manages both memory and data object storage 
in different ways from R. The chief syntactic differences are described in Ihaka 
and Gentleman (1996). Perhaps the most comprehensive introduction to the use of 
current versions of S-PLUS and R is Venables and Ripley (2002); a simpler 
alternative for  R  is Dalgaard (2002).2 

R is available as source, and as binaries for Unix/Linux, Windows, and 
Macintosh platforms3. Contributed code is distributed from mirrored archives 

                                                           
1  See also Bivand (2006) and Bivand et al. (2008). 
2  See also http://www.r-project.org/doc/bib/R-books.html for an up to date list of books of 

relevance to R . 
3  Both R itself and contributed packages may be downloaded from http://cran.r-

project.org. 
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following control for adherence to accepted standards for coding, documentation 
and licensing. The contributed packages are distributed as source, and for some 
platforms − including Windows − as binaries, which can in addition be updated 
on-line using the update.packages() function within  R. As usual in Free 
Software projects, there is no guarantee that the code does what it is intended to 
do, but since it is open to inspection and modification, the analyst is able to make 
desired changes and fixes, and if so moved, to contribute them back to the 
community, preferably through the package maintainer. 

The spdep package.The current version of the spdep package is a collection of 
functions to create spatial weight matrix objects from polygon contiguities, from 
point patterns by distance and tessellations, for summarising these objects, and for 
permitting their use in spatial data analysis4; a collection of tests for spatial 
autocorrelation, including global Moran's I, Geary's c, Hubert-Mantel general 
cross product statistic, and local Moran's I and Getis-Ord G, saddlepoint 
approximations for global and local Moran's I; and functions for estimating spatial 
regression models. It contains contributions including code and/or assistance in 
creating code and access to legacy data sets from quite a number of spatial data 
analysts. Full details are in the licence file installed with the package. It is indeed 
central to the dynamics of free software/open source software projects such as R 
and its contributed packages, that communities are brought into being and 
fostered, leading where appropriate to collaborative development, and indeed to 
the replacement of code or class structures found by users in the community to be 
unsatisfactory or limiting. 

A.3.2   Spatial models and spatial statistics 

It often seems to be the case that spatial statistical analysis, including spatial 
econometrics, finds it challenging to give insight into general relationships 
guiding a data generation process. It is quite obvious that inference to general 
relationships from cross-section spatial data using a-spatial techniques raises the 
question of whether the locations of the observations in relation to each other 
should not have been included in the model specification. We now have quite a 
range of tests for examining these kinds of potential mis-specifications. We can 
also offer tools for exploring and fitting local and global spatial models, so that 
perhaps better supported inferences may be drawn for the data set in question, 
under certain assumptions. 

These assumptions are not in general easy or convenient to handle, and 
constitute a major part of the motivation for further work on inference for spatial 
data generation processes. As Ripley (1988, p.2) suggests and Anselin (1988, p.9) 
confirms, they remove hope that spatial data are a simple extension of time series 

                                                           
4  The treatment of spatial weight matrices has been discussed in greater length in Bivand 

and Portnov (2004). 
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to a further dimension (or dimensions). The assumptions of concern (Ripley 1988) 
here include those affecting the edges of our chosen or imposed study region, how 
to perform asymptotic calculations and how this doubt impacts the use of 
likelihood inference, how to handle inter-observational dependencies at multiple 
scales (both short-range and long-range), stationarity, and discretisation and 
support. Ripley (1988, p.8) concludes: ‘(T)he above catalogue of problems may 
give rather a bleak impression, but this would be incorrect. It is intended rather to 
show why spatial problems are different and challenging’. 

Although many of these challenges are intractable in the point-process part of 
spatial statistics, more has been done to address them here. In particular, it has 
been recognised for some time that if we have a simple null hypothesis to simulate 
the spatial process model, we can generate exchangeable samples permitting us to 
test how well the model fits the data. As Ripley (1992) notes, an early example of 
this approach for the non-point-process case is the use of Monte Carlo simulation 
by Cliff and Ord (1973, pp.50-52). Substantial advances have also been taking 
place in geostatistics (Cressie 1993; Diggle et al. 1998). In addition, the 
implications of large volumes of data from remote sensing and geographical 
information systems, including data with differing support, have been recognised 
in a recent review by Gotway and Young (2002). 

One of the characteristics of treatments of the statistical modelling of spatial 
data − especially lattice data − is that changes in techniques occur slowly, despite 
radical changes in data acquisition and computing speed. Haining's discussion of 
the research agenda twenty years ago (Haining 1981, pp.88-89), focusing on 
spatial homogeneity and stationarity, is taken up again by him ten years later 
(Haining 1990, pp.40-50), and remains relevant. Apart from the actual difficulty 
of the problems, it may be argued that exploring feasible solutions has been 
hindered by poor access to toolboxes combining both the specificity needed for 
handling spatial dependence between observations and general numerical and 
statistical functions. The coming first of SpaceStat (Anselin 1995), then James 
LeSage's Econometrics Toolbox for MATLAB5, have created important 
opportunities, which the R spdep package attempts to follow up and build upon. In 
addition, code by Griffith (1989) for MINITAB, and by Griffith and Layne (1999) 
for SAS and SPSS has been made available. Finally, the spatial statistics module 
for S-PLUS provides additional and supplementary analytical techniques in a 
somewhat different form (Kaluzny et al. 1996). 

To concentrate attention on the problem at hand, it may help to express the 
relationship between data and model in a number of parallel ways: 
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5  http://www.spatial-econometrics.com/ 
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where our general grasp of the spatial data generation process on the data is 
incorporated in the first term on the right hand side, while the second term 
comprises the difference between this understanding and the observed data for our 
possibly unique region of study (Haining 1990, p.29 and p.51; cf. Hartwig and 
Dearing 1979, p.10; Cox and Jones 1981, p.140). 

The model term may be made up of say fixed and random effects, of global 
and local smooths, of a-spatial and spatial component models, of trend surface and 
variogram model components, or of locally or geographically weighted parts. The 
distribution of the error term is assumed to be known, and should be such that as 
much as possible of the predictable regularity is taken up in the model. 

In general, the model term should give a parsimonious description of the 
process or processes driving the data, and techniques used to choose between 
alternative models should take this requirement into account. It is also not 
necessarily the case that the model should be fitted using all of the data to hand; 
indeed many model forms may be compared by partitioning the available data into 
training and testing subsets. This position in fact reaches back to fundamental 
questions regarding the application of statistical estimation methods to spatial 
data, especially when the goals of such application may include inference, 
generalisation to a wider domain than the data used for calibration (Olsson 1970, 
Gould 1970). In particular, Olsson's comment that: ‘If the ultimate purpose is 
prediction, then it also follows that specification of the functional relationships is 
more urgent than specification of the geometric properties of a spatial 
phenomenon’ (Olsson 1968, p.131) continues to point up the question of what is 
being inferred to in spatial statistical analyses, also known as the geographical 
inference problem. 

A.3.3    Classes and methods in modelling using R  

Three main programming paradigms underly S: object-oriented programming, 
functional languages, and interfaces (Chambers and Hastie 1992, pp.455-480). 
Classes and methods were introduced to  S  at the time of this 1992 ‘White’ book, 
and were not part of the 1988 ‘Blue’ book (Becker et al. 1988) defining the 
fundamentals of the language. This step was, for practical reasons, incremental, 
and was intended to assist in the further development of modelling functions. For 
this reason, language objects may, but do not have to, have a class attribute − all 
objects may have attributes with name strings, and class is simply one such string 
with specific consequences for the way that functions in the system handle 
objects. 

This established form of class and method use in S and hence R is the one 
which will be covered here. It should however be noted that a new class/method 
formalism has been introduced to S in the 1998 ‘Green’ book (Chambers 1998), 
and is being introduced to R, as well as underlying S-PLUS 6.x. Programming 
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using both styles of classes and methods is described in detail in Venables and 
Ripley (2000, pp.75-121). From the point of view of the user, however, the 
differences are either few or beneficial, and now require that each object shall 
have a class, and that each object of a given class shall have the same structure, 
requirements which were not present before. 

The class/method formalisms in S have been adopted in the spirit of object-
oriented programming, that evaluation should be data-driven. Functions for 
generic tasks, such as print(), plot(), summary(), or logLik(), are 
constructed as stubs that pass their own arguments through to the UseMethod(). 
In the following code snippets, > is the R command line prompt, entering the 
name of a function causes its body to be printed: 
 
 >   print    

 
function (x, ...)  
UseMethod("print")  
<environment: namespace:base>    

 
Within UseMethod(), the first argument object is examined to see if it has an 
attribute named "class". If it does, and a function named, say, print. 
"class"() exists, the arguments are passed to this function. If it has no class 
attribute, or if no generic function qualified with the class name is found, the 
object is passed to, say, print.default(). If we have estimated a spatial error 
model for the Columbus data set, and wish to display the log likelihood value of 
the object, we might do the following: 

 
> COL.err <- errorsarlm(CRIME~INC+HOVAL,data = COL.OLD, nb2listw(COL.nb))  
> class(COL.err) 
 
[1] "sarlm"    
 
> ll.COL.err <- logLik(COL.err) 
> class(ll.COL.err)    
 
[1] "logLik"    
> ll.COL.err    
 
'log Lik.' -183.3805 (df=5)    
 
The model object COL.err has class sarlm, so the function used by method 
dispatch from logLik() is logLik.sarlm(), yielding a resulting object with 
class logLik. If an object with class logLik, is to be printed, UseMethod() 
will look for print.logLik(). As can be seen, this function expects the  
logLik object to be a scalar value, with an attribute named "df", the value of 
which is also printed. 
 
> print.logLik    
 
function (x, digits = getOption("digits"), ...)   
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{ 
cat("'log Lik.' ", paste(format(c(x), digits = digits), collapse = ", "),  

" (df=", format(attr(x, "df")), ")", sep = "") 
invisible(x) 

} 
<environment: namespace:stats>    
 
This brief example shows both the convenience of the class/method mechanism, 
and the reason for moving to the new style, since in the old style there are no 
barriers to prevent the class attribute of an object being changed or removed, nor 
are there any structures to ensure that class objects have the same properties. It 
could be argued that software code, and by extension the formalisms employed in 
writing software, such as class/method formalisms in object oriented programming 
described briefly above, are not of importance for advancing spatial data analysis. 

A response to this position is that, for computable applications, abstractions 
and conjectures are enriched by being implemented in structured code, especially 
where the code is available, documented, and open to peer review, as in R and 
other community supported software projects and repositories. Further, 
formalisms such as class/method mechanisms also provide useful standards 
through which the assumptions and customs underlying computing practises may 
be exposed and compared. Finally, class/method mechanisms, in particular care in 
constructing classes, are associated with concern for data modelling as also 
understood for example in geographical information systems. In this case, it is 
important that classes support data types, structures, and metadata components 
adequately and in a robust way. 

At present the key classes in spdep are written in the old style, and are "nb",  
"listw", "sarlm", and the generic class "htest" for hypothesis tests.6 The first 
is for lists of neighbours, the second for sparse neighbour weights lists, and the 
third for the object returned from the fitting of SAR (simultaneous autoregressive) 
linear models of three types: lag, mixed, and error (corresponding to LeSage's 
sar(), sdm(), and sem() functions; there is no equivalent to his sac() function). The 
"htest" class is used to report the results of hypothesis tests, not least because 
print.htest()already existed, and conveniently standardised the displaying of 
test results. 

The "sarlm" class is still under development, not least because writing 
methods leads to changes in components that need to be in the object itself, or can 
conveniently be computed at a later stage by functions such as summary 
.sarlm(),  logLik.sarlm(), residuals.sarlm(), and so on. Migration to 
new-style classes will occur when the requirements have been refined following 
further exploration − old-style classes can be augmented without breaking existing 
code more easily than can new-style classes. 
                                                           
6  While classes in spdep are still written in the old style, there are now many more of them, 

suiting the increasing number of model fitting functions and local indicators of spatial as-
sociation; functions and methods in spdep use new style class objects defined in the sp 
package for spatial data, and in the  Matrix package for sparse matrices. 
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The function that has prompted the most thought is however predict 
.sarlm(). Essentially all the fitted model classes in S (and R and its contributed 
packages) have methods for prediction, including prediction from new data. It is to 
this problem we will turn to show that class/method formalisms are more than a 
programming convenience, but also establish baselines for what analysts should 
expect from model fitting software. 

A.3.4   Issues in prediction in spatial econometrics 

Prediction may be subdivided into several similar kinds of tasks: calculating the 
fitted values when the values of the response variable observation are known and 
are those used in fitting the model, the same scenario, but when the predictions are 
not for observations used to fit the model, and finally predictions for observations 
for which the value of the response variable is unknown. Here we choose to 
measure the difference between the predicted and observed values of the response 
variable using the root mean square error of prediction. In the a-spatial linear 
model, predictions are a function of the fitted coefficients and their standard 
errors, and confidence intervals may be obtained using the fitted residual standard 
error. Extensions to the linear model can be furnished with prediction mechanisms 
in generally similar ways, although expressing standard errors and confidence 
intervals may become more difficult. 

Work on filling in missing values (Bennett et al. 1984; Haining et al. 1989; 
Griffith et al. 1989) has not been followed up in the spatial econometrics 
literature, and was focused on the case when the position of an observation was 
known, but where one or more attribute values was missing (see also Martin 
1990). This differs from prediction using new data where there is no contiguity 
between the positions of the data used to fit the model and the new data, where 
both the positions of the observations are new, and only explanatory variable 
values are available for making the prediction. Where contiguity between the data 
sets' positions is present, predicting missing values can be accommodated in the 
present approach; the main thrust of this literature has been to explore the 
consequences for parameter estimation of the absence of some data values. Given 
the provision noted by Martin (1984, p.1278) that data should be missing at 
random, it is not clear how to proceed when the new data adjoin the data used for 
fitting, for instance in one direction. 

Trend, signal and noise. Prediction for spatial data may be seen as the core of 
geostatistics; most applications of kriging aim to interpolate from known data 
points to other points within or adjacent to the study area, or to other support. 
Interpolation of this kind also underlies the use of modern statistical techniques, 
such as local regression or generalised additive models among many others. As 
pointed out above, it is usual for prediction functions to accompany each new 
variety of fitted model object in  S, not least because the comparison of prediction 
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errors for in-sample and out-of-sample data give insight into how well models 
perform. Some model fitting techniques can be found to perform very well in 
relation to in-sample data, but do very poorly on out-of-sample data, that is, they 
are ‘over-fitted’. While they may exhaust the training data, they will be very 
restricted to that particular region of data-space, and may perform worse than 
other, less ‘over-fitted’ models, on unseen test data. 

The three terms: trend, signal and noise, are taken from Haining (1990, p.258), 
and the S-PLUS spatial statistics module (Kaluzny et al. 1996, pp.154-156), in 
which Haining's comment is followed up. In Haining (1990), the underlying linear 
model was a trend surface model, so that it was logical to partition the data into 
trend and noise 

 

noisetrenddata

εβXy +=  (A.3.2) 

  

where E[ε] = 0 and E[εεT] = σ2 I. If we generalise this model to the error 
autoregressive form, we get 

 

uXy += β  (A.3.3) 

 
with E[u] = 0 and E[uuT] =V. If we write V= σ2LLT, and L–1 = (I – λW) , we can 
rewrite the relationship 

 

εβXWλIyWλI +−=− )()(  (A.3.4)

 

noisesignaltrenddata

)( εβXyWλβXy +−+=  (A.3.5) 

 

To predict y, we could pre-multiply by (I – λW)−1 

 

ε1)( −−+= WIβXy λ  (A.3.6) 

 
which can yield the trend component, but for which the signal and noise 
components are combined. Cliff and Ord (1981, p.152, cf. pp.146-147) give u = 

 { {  {

 {  {  {  {
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σ (I – λW)−1ε as the simultaneous autoregressive generator from ε independent 
identically distributed random deviates, yielding u ~ N (0,V). If normality is 
assumed for ε ,  then u is multivariate normal. Here, predictions from error 
autoregressions are restricted to the trend component. 

Kaluzny et al. (1996, pp.158-160) use Haining's results (1990, p.116) to 
suggest that a simulation of the unobservable autocorrelated error term may be 
used to attempt to predict the signal, but this necessarily depends on the 
assumption of normality. In the SAR case, they suggest computing V = σ 2[(I – 
λW)T(I – λW)] −1, next computing L as the lower triangular matrix of the Cholesky 
decomposition of V, and finally simulating u by u = Lε , where ε is a random 
deviate as above. 

A further alternative based on work by Martin (1984, see also modifications 
by Haining et al. 1989; Griffith et al. 1989, and comment by Martin 1990) is to 
base the approximation of the unobservable autocorrelated signal on the projection 
of the residuals of the fitted process through a covariance matrix expressing the 
spatial dependence of the positions used to fit the model and the positions of the 
new data (using the spatial parameter from the fitted model). If the data used for 
fitting the model and the new data are not contiguous in position, this term is zero. 

This alternative may be compared to the case of for time series with 
autocorrelated errors, since the estimate of the autoregressive coefficient is needed 
to make an estimate of the one-period forecast error (Stewart and Wallis 1981, 
pp.239-241; Johnson and NiDardo 1997, pp.192-193). Johnson and DiNardo term 
this the feasible forecast, and note that there is no closed form expression for the 
forecast variance in this case. Suppose we have ttt uβXy += T , where 

ttt λ εuu += −1 . The same model can be written 

 

.T
11 ttttt εβXβXyy +−=− −− λλ T  (A.3.7) 

 
Assuming λ known, β can be estimated, and substituting and rearranging, we can 
make a forecast of yt+1 by 

 

4434421321
signal

T

trend

T
11 )ˆ(ˆˆ βXyβXy tttt −+= ++ λ  (A.3.8)

 

for which the forecast variance is also available; the terms trend and signal here 
describe the non-autoregressive and the autoregressive components of the forecast 
by analogy with Haining's description. When we only have an estimate of λ, the 
feasible forecast becomes 
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)ˆ(ˆˆˆ TT
11 βX ttt −+= ++ tyβXy λ   (A.3.9) 

 
that is the sum of products of the new xt+1 values and the β̂  fitted using 
observations 1, …, t , plus λ̂ times the residual at time t, representing the temporal 
dependency of the series, the forecast error for the one-step-ahead forecast.  

Since t and t+1 are contiguous, it is possible to use the residual value from the 
fitted model in prediction in the time series case. In the simultaneous 
autoregressive spatial error model, when the new data positions coincide with, or 
are contiguous to, the positions of data used for fitting, it may be possible to 
calculate a signal component on the basis of the residuals of the fitted model and a 
rectangular matrix expressing the correlation structure of the original and new data 
positions. This approach has, however, not been attempted here, although Martin 
(1984, p.1279) provides a solution. To accommodate this, modifications to the 
current spatial weights list class in spdep are required, but have not yet been 
implemented. Consequently, for the simultaneous autoregressive error model, the 
prediction currently implemented in  predict.sarlm() for the newdata case is 
the trend, and the signal is set to zero. 

Haining's approach may be extended to the spatial lag model, in which 
dependence is not present in the error term, but rather in the dependent variable. 
Here we have 

 

noisesignaltrenddata

.ˆˆˆ εyWXy ++= ρβ  (A.3.10) 

 
Rewriting, we have  

 

.)( εβXyWI +=−ρ  (A.3.11)

 
Once again, to predict y , we could pre-multiply by (I−ρW)−1  

 

.)()( 11 εWIβXWIy −− −+−= ρρ  (A.3.12)

 
The second term on the right hand side is equivalent to that in the error 
autoregressive case, and combines signal and noise components, while the first 
term combines trend and signal components. 

 {  {  {  {
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As a first approximation, the predict.sarlm() function assumes that the trend 
can be expressed by βX ˆ , and part of the signal by βXWIW ˆ)ˆ(ˆ 1−− ρρ . The 
rationale is that if 

 

βXyWI ˆ)ˆ( =− ρ  (A.3.13)

 

βXWIy ˆ)ˆ(ˆ 1−−= ρ  (A.3.14)

 
then the signal may be approximated by 

 

.ˆ)ˆ(ˆˆˆ 1 βXWIWW −−= ρρρ y  (A.3.15)

 
While this yields an estimate of part of the signal component, it is not complete, 
for new data missing the part combined with the noise component. This is clearly 
less than adequate, and more work is required here, as with the completely 
missing signal component for the error model. 

Finally, it has been assumed that the weight matrix used for fitting the model 
is furnished with attributes detailing its construction: whether it is row 
standardised, and which type of underlying binary or general neighbourhood 
representation has been used (contiguity, distance, triangulation, k-nearest 
neighbours, etc.). Consequently, in predicting from new data, it is expected that 
the new attribute data will be accompanied by a suitable spatial weight list. This is 
not used in the error model predictions, but is used for the lag model, in the 
approximation to the part of the signal component described above.  

Even if prediction for new data is as yet less well grounded, the partition of 
spatial model fitted values into trend and signal allows us to use alternative 
diagnostic plots. Examples of such plots for the data set discussed in Section A.3.5 
below are shown in Fig. A.3.1. Tracts lying in towns in Boston city are 
distinguished in the plot, since their patterns seem to indicate different behaviour 
both in relation to the a-spatial trend, and the spatial autoregressive error signal. It 
may be remarked that the fit of the spatial error model (AIC = –506.85) is better 
than that of the spatial lag model (AIC = –496.02), than the a-spatial linear model 
(AIC = –283.96), but worse than the mixed spatial lag model (AIC = –543.23). 
The full results may be obtained by executing example(boston) after loading 
spdep into R7, in which the sphere of influence row standardised weighting 
scheme is also presented. 

                                                           
7   Copy and paste commented out lines from the help page to the console. 
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Fig. A.3.1. Boston tract log median house price data: plots of spatial autoregressive error 
model fit components and residuals for all 506 tracts; tracts in towns in Boston plotted with 
a grey  
 

A.3.5   Boston housing values case 

The data set chosen here is that described by Gilley and Pace (1996), a revision of 
the Harrison and Rubinfeld Boston hedonic house price data, relating median 
house values to a range of environmental and social variables over 506 tracts. It is 
chosen because it is easily available, it has been used in a range of spatial 
econometric studies, including particularly  LeSage’s  online  materials  on  spatial 
econometrics8. The original data set is also featured  as one of a corpus of machine 
learning datasets9,  and as  such is well  suited  to applications such as the present. 
Most use of this dataset in machine learning research also seems to ignore the 
spatial nature of the data. Here, two prediction settings will be used. 

In the first, the data are divided into northern and southern parts at UTM zone 
19 northing 4,675,000m (dividing the tracts into two almost equal groups, with the 
dividing line running through the Boston city tracts). The data frame is subsetted 
by a logical variable expressing whether the centre point of the tract is north or 

                                                           
8  http://www.rri.wvu.edu/WebBook/LeSage/etoolbox/index.html 
9  ftp://ftp.ics.uci.edu/pub/machine-learning-databases 
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south of the dividing line. The spatial weights used are constructed using the 
sphere of influence approach based on a triangulation of the UTM zone 19 
projected tract centres, subsetted using the same north/south logical variable. An 
ordinary least squares model was fitted to each of the parts of the city, and 
predictions were made with the data used for fitting the models, and then using the 
model fitted on the southern data with the northern data, and vice-versa. The same 
procedure was repeated for the spatial lag model, the spatial error model, and the 
spatial mixed model (the spatial lag model augmented with the spatial lags of the 
explanatory variables − also known as the spatial Dublin model). 

Although it can be seen from Fig. A.3.2 that the spatial models are better fitted 
to the data, the cross-predictions are no better than, and often worse than those for 
the a-spatial linear model (lm). The linear model gives the best prediction of the 
southern median house prices using the fitted coefficient values from the northern 
data. At least part of the reason for this is that the fits of the models, both a-spatial 
and spatial coefficient values, differed between the two parts of the metropolitan 
area, suggesting that spatial regimes and/or non-stationarity are present. This 
could be held to justify the abandonment of methods not accommodating this lack 
of stability in parameter estimates across the chosen data set, for example by 
comparing the fit of a geographically weighted regression with the baseline model. 
This will, however, not be pursued here, although some indication is given of the 
specific behaviour of Boston city tracts is given in Fig. A.3.1.  

 
 

 

Fig. A.3.2. Comparison of model prediction root mean square errors for four models 
divided north/south, Boston house price data 
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In the second approach, 100 samples of 250 in-sample tracts were chosen, leaving 
256 tracts out-of-sample. The samples were replicated in order to get a feeling for 
the variations in predictions which could result. Here, the spatial weight matrices 
were prepared for each data set as row standardised schemes for the six nearest 
neighbours of  each  tract  centre  (UTM zone 19).  In  addition,  use was  made  of  
the gam() function in package mgcv to fit a generalised additive model (see 
Kelsall and Diggle 1998 for a similar use of GAM). In this specification, the 
model fitted was: 
 

εβXy ++= )latlon,(s  (A.3.16)

 
where s(lon,lat) is a smoothing function using a penalised thin plate regression 
spline basis in 12 dimensions to incorporate spatial dependence. Alternative 
modern statistical fitting techniques could have been used, and here the joint 
smoothing of longitude and latitude was chosen after inspecting the results of 
smoothing each of them and their interaction separately. Although such fitting 
techniques are not typically used in spatial econometric analyses, it may be of 
interest to compare prediction results across such analysis-community boundaries. 
It can be noted that GAM predictions in the first setting, with the data set divided 
into Northern and Southern parts, were very poor when predicting for new data. 
 
 

 

Fig. A.3.3. Comparison of model prediction root mean square errors means and 
standard deviations for 100 random samples of 250 in-sample tracts and 256 out-
of-sample tracts, for five models, Boston house price data 

Linear           Spatial lag       Spatial error    Spatial mixed   Ged.Additive 
 
                                                     Models 
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Figure A.3.3 reinforces the results of testing model predictions after dividing 
Boston into two parts. The linear model (lm) has the least satisfactory fit within 
the sample from which the model was fitted, but performs as well or better than all 
the spatial econometrics models when predicting for other data than those used to 
fit the model. The mixed spatial lag model (the Common Factor model) does best 
in predicting on the training set the data it was fitted with, but worst on the test-
excluded data. This may be taken as an indication of over-fitting, capturing too 
much of the specificity of the spatial dependencies of the training data set. The 
performance of the generalised additive model is better than that of the linear 
model both on the training and the test data sets, despite the ‘black-box’ nature of 
the specification of the spatial pattern in this case as penalised thin plate 
regression spline. 

A.3.6   Concluding remarks 

Among the opportunities and challenges posed by trying to implement spatial 
econometric techniques in R in the spdep package have been issues raised by the 
object-oriented data-driven approach implicit in classes and methods. So far, old 
style classes and methods have been used for spatial neighbour objects, spatial 
weights objects, and for spatial simultaneous autoregressive model objects. Many 
of the methods usually accompanying fitted model objects are simple to write, but 
predict.sarlm() revealed areas of spatial econometrics which perhaps have 
received little attention hitherto. The current implementation does however need 
to be augmented to handle situations in which the dependencies between the 
locations of observations from which the model to be used for prediction was 
fitted, and the locations of new data observations, can be represented as a 
correlation structure of some kind, thus better capturing the signal component. 

It does seem that Haining's partitioning of the fitted values of spatial models is 
of interest in itself, as indicated by the diagnostic plots in Fig. A.3.1. It may well 
be that such diagnostic plots, perhaps dynamically linked to maps, will help us in 
establishing which further misspecification problems are present in our spatial 
models, shifting focus from criticising the mis-specification of a-spatial models to 
trying to construct spatial models with better properties. Haining's proposals for 
more general regression diagnostics for models in which spatial dependence is 
present do not seem to have as yet met with the acceptance they deserve (Haining 
1990, 1994). Prediction for new data and new spatial weight matrices is a 
challenge for legacy spatial econometric models, raising the question of what 
spatial predictions should look like. Can for example spatial econometrics models 
be recast as mixed effects models, since as Pinheiro and Bates (2000) show, 
spatial correlation structures can ‘plugged’ into such models? 

A further consequence of examining fitted model classes and methods, in 
particular with regard to prediction, is to question whether we need to fit models 
on very large data sets. Can we not rather fit and refine them on smaller data sets 
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and predict or interpolate to larger data sets? Housing values are not infrequently 
the subject of analysis, and would perhaps be an attractive target for prediction. 
An advantage of fitting on moderate sized data sets, maybe training sets from 
larger data collections, is that the use of sparse matrix techniques in some circum-
stances would become unnecessary. Standard errors of prediction remain open. 

It also seems that a relaxation of single data set fitting of spatial econometrics 
models may also help to lower barriers between geostatistics and legacy spatial 
econometrics models when using distance criteria for representing dependence. It 
appears that some movement is already taking place in this regard, given the use 
of spatial covariance in Ord and Getis (2001) in the development of the Oi(d) local 
spatial autocorrelation statistic allowing for global dependence. In addition, the 
Getis filtering approach (Getis 1995; Getis and Griffith 2002) is distance based, 
and seems to admit prediction to new data locations using the distance criteria and 
filtering functions recorded in the fitted model. The Griffith eigenfunction 
decomposition approach discussed in Getis and Griffith (2002), and described in 
detail in Griffith (2000a, 2000b), does not, however, seem to open for prediction 
to new locations not contiguous with the locations on which the estimated model 
was fitted, because of its clear focus on the eigenvectors of the spatial weight 
matrix of the training data set. In addition, the selection of the eigenvectors to use 
for filtering may not transfer between geographical settings. For a detailed 
discussion on spatial filtering see Chapter B.5. 

Finally, focusing on prediction using spatial econometric models does 
concentrate attention on assumptions about spatial homogeneity, including 
stationarity, support, multi-scale issues, and edge effects. Approaching modern 
statistical techniques as it were from the other side, we find work on 
geographically weighted regression (Brunsdon et al. 1996) and geographically 
weighted summary statistics (Brunsdon et al. 2002), in which many of these 
assumptions are addressed directly. In this context, it would be worthwhile to be 
able to test a geographically weighted regression fit against say a spatial error 
model fit, for instance by implementing a model comparison function like  
anova(gwr.fit,sarlm.fit). But it is the flexibility of a language 
environment such as R, and the fruitfulness of class and method formalisms, that 
give rise to such projects for future research and implementation. 
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A.4 GeoDa:  An Introduction to Spatial Data 
Analysis 

Luc Anselin, Ibnu Syabri and Youngihn Kho 

A.4.1  Introduction 

The development of specialized software for spatial data analysis has seen rapid 
growth since the lack of such tools was lamented in the late 1980s by Haining 
(1989) and cited as a major impediment to the adoption and use of spatial statistics 
by GIS researchers. Initially, attention tended to focus on conceptual issues, such 
as how to integrate spatial statistical methods and a GIS environment (loosely vs. 
tightly coupled, embedded vs. modular, etc.), and which techniques would be most 
fruitfully included in such a framework. Familiar reviews of these issues are 
represented in, among others, Anselin and Getis (1992), Goodchild et al. (1992), 
Fischer and Nijkamp (1993), Fotheringham and Rogerson (1993, 1994), Fischer et 
al. (1996), and Fischer and Getis (1997). Today, the situation is quite different, 
and a fairly substantial collection of spatial data analysis software is readily 
available, ranging from niche programs, customized scripts and extensions for 
commercial statistical and GIS packages, to a burgeoning open source effort using 
software environments such as R, Java and Python. This is exemplified by the 
growing contents of the software tools clearing house maintained by the U.S.-
based Center for Spatially Integrated Social Science [CSISS] (see 
http://www.csiss.org/clearinghouse/). 

CSISS was established in 1999 as a research infrastructure project funded by 
the U.S. National Science Foundation in order to promote a spatial analytical 
perspective in the social sciences (Goodchild et al. 2000). It was readily 
recognized that a major instrument in disseminating and facilitating spatial data 
analysis would be an easy to use, visual and interactive software package, aimed 
at the non-GIS user and requiring as little as possible in terms of other software 
(such as GIS or statistical packages). GeoDa is the outcome of this effort. It is 
envisaged as an ‘introduction to spatial data analysis’ where the latter is taken to 
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consist of visualization, exploration and explanation of interesting patterns in 
geographic data. 

The main objective of the software is to provide the user with a natural path 
through an empirical spatial data analysis exercise, starting with simple mapping 
and geovisualization, moving on to exploration, spatial autocorrelation analysis, 
and ending up with spatial regression. In many respects, GeoDa is a reinvention of 
the original SpaceStat package (Anselin 1992), which by now has become quite 
dated, with only a rudimentary user interface, an antiquated architecture and 
performance constraints for medium and large data sets. The software was 
redesigned and rewritten from scratch, around the central concept of dynamically 
linked graphics. This means that different ‘views’ of the data are represented as 
graphs, maps or tables with selected observations in one highlighted in all. In that 
respect, GeoDa is similar to a number of other modern spatial data analysis 
software tools, although it is quite distinct in its combination of user friendliness 
with an extensive range of incorporated methods. A few illustrative comparisons 
will help clarify its position in the current spatial analysis software landscape. 

In terms of the range of spatial statistical techniques included, GeoDa is most 
alike to the collection of functions developed in the open source R environment. 
For example, descriptive spatial autocorrelation measures, rate smoothing and 
spatial regression are included in the spdep package, as described by Bivand and 
Gebhardt (2000), Bivand (2002a, b), and Bivand and Portnov (2004). In contrast 
to R, GeoDa is completely driven by a point and click interface and does not 
require any programming. It also has more extensive mapping capability (still 
somewhat experimental in R) and full linking and brushing in dynamic graphics, 
which is currently not possible in R due to limitations in its architecture. On the 
other hand, GeoDa is not (yet) customizable or extensible by the user, which is 
one of the strengths of the R environment. In that sense, the two are seen as highly 
complementary, ideally with more sophisticated users ‘graduating’ to R after 
being introduced to the techniques in GeoDa.1 

The use of dynamic linking and brushing as a central organizing technique for 
data visualization has a strong tradition in exploratory data analysis (EDA), going 
back to the notion of linked scatterplot brushing (Stuetzle 1987), and various 
methods for dynamic graphics outlined in Cleveland and McGill (1988). In 
geographical analysis, the concept of ‘geographic brushing’ was introduced by 
Monmonier (1989) and made operational in the Spider/Regard toolboxes of 
Haslett, Unwin and associates (Haslett et al. 1990; Unwin 1994). Several modern 
toolkits for exploratory spatial data analysis (ESDA) also incorporate dynamic 
linking, and, to a lesser extent, brushing. Some of these rely on interaction with a 
GIS for the map component, such as the linked frameworks combining XGobi or 
XploRe with ArcView (Cook et al. 1996, 1997; Symanzik et al. 2000), the SAGE 

                                                           
1  Note that the CSISS spatial tools project is an active participant in the development of 

spatial data analysis methods in R, see, for example, http://sal.agecon.uiuc.edu/ 
csiss/Rgeo/ 
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toolbox, which uses ArcInfo (Wise et al. 2001), and the DynESDA extension for 
ArcView (Anselin 2000), GeoDa’s immediate predecessor. Linking in these 
implementations is constrained by the architecture of the GIS, which limits the 
linking process to a single map (in GeoDa, there is no limit on the number of 
linked maps). In this respect, GeoDa is similar to other freestanding modern 
implementations of ESDA, such as the cartographic data visualizer, or cdv (Dykes 
1997), GeoVISTA Studio (Takatsuka and Gahegan 2002) and STARS (Rey and 
Janikas 2006). These all include functionality for dynamic linking, and to a lesser 
extent, brushing. They are built in open source programming environments, such 
as Tkl/Tk (cdv), Java (GeoVISTA Studio) or Python (STARS) and thus easily 
extensible and customizable. In contrast, GeoDa is (still) a closed box, but of these 
packages it provides the most extensive and flexible form of dynamic linking and 
brushing for both graphs and maps. 

Common spatial autocorrelation statistics, such as Moran's I and even the 
local Moran are increasingly part of spatial analysis software, ranging from 
CrimeStat (Levine 2006), to the spdep and DCluster packages available on the 
open source Comprehensive R Archive Network (CRAN),2 as well as commercial 
packages, such as the spatial statistics toolbox of the forthcoming release of 
ArcGIS 9.0 (ESRI 2004). However, at this point in time, none of these include the 
range and ease of construction of spatial weights, or the capacity to carry out 
sensitivity analysis and visualization of these statistics contained in GeoDa. Apart 
from the R spdep package, GeoDa is the only one to contain functionality for 
spatial regression modeling among the software mentioned here. 

A prototype version of the software (known as DynESDA) has been in limited 
circulation since early 2001 (Anselin et al. 2002a, b), but the first official release 
of a beta version of GeoDa occurred on February 5, 2002. The program is 
available for free and can be downloaded from the CSISS software tools Web site 
(http://sal.agecon.uiuc.edu/geoda_main.php). The most recent version, 0.9.5-i, was 
released in January 2003. The software has been well received for both teaching 
and research use and has a rapidly growing body of users. For example, after 
slightly more than a year since the initial release (i.e., as of the end of April 2004), 
the number of registered users exceeds 1,800, while increasing at a rate of about 
150 new users per month. 

In the remainder of the chapter, we first outline the design and briefly review 
the overall functionality of GeoDa. This is followed by a series of illustrative 
examples, highlighting features of the mapping and geovisualization capabilities, 
exploration in multivariate EDA, spatial autocorrelation analysis, and spatial 
regression. The chapter closes with some comments regarding future directions in 
the development of the software. 

                                                           
2  http://cran.r-project.org/ 
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A.4.2   Design and functionality 

The design of GeoDa consists of an interactive environment that combines maps 
with statistical graphs, using the technology of dynamically linked windows. It is 
geared to the analysis of discrete geospatial data, i.e., objects characterized by 
their location in space either as points (point coordinates) or polygons (polygon 
boundary coordinates). The current version adheres to ESRI's shape file as the 
standard for storing spatial information. It contains functionality to read and write 
such files, as well as to convert ascii text input files for point coordinates or 
boundary file coordinates to the shape file format. It uses ESRI's MapObjects LT2 
technology for spatial data access, mapping and querying. The analytical 
functionality is implemented in a modular fashion, as a collection of C++ classes 
with associated methods. In broad terms, the functionality can be classified into 
six categories: 

• spatial data manipulation and utilities: data input, output, and conversion  
• data transformation: variable transformations and creation of new variables  
• mapping: choropleth maps, cartogram and map animation  
• EDA: statistical graphics  
• spatial autocorrelation: global and local spatial autocorrelation statistics, with 

inference and visualization 
• spatial regression: diagnostics and maximum likelihood estimation of linear 

spatial regression models.  

The full set of functions is listed in Table A.4.1 and is documented in detail in the 
GeoDa User's Guides (Anselin 2003, 2004).3   

The software implementation consists of two important components: the user 
interface and graphics windows on the one hand, and the computational engine on 
the other hand. In the current version, all graphic windows are based on Microsoft 
Foundation Classes (MFC) and thus are limited to MS Windows platforms.4 In 
contrast, the computational engine (including statistical operations, randomization, 
and spatial regression) is pure C++ code and largely cross platform. 

The bulk of the graphical interface implements five basic classes of windows: 
histogram, box plot, scatter plot (including the Moran scatter plot), map and grid 
(for the table selection and calculations). The choropleth maps, including the 
significance and cluster maps for the local indicators of spatial autocorrelation 
(LISA) are derived from MapObjects classes. Three additional types of maps were 
developed  from   scratch   and   do   not  use  MapObjects:  the  map  movie  (map 
animation), the cartogram, and the conditional maps. The three dimensional 
scatter plot is implemented with the OpenGL library.  
                                                           
3  A Quicktime movie with a demonstration of the main features can be found at 

http://sal.agecon.uiuc.edu/movies/GeoDaDemo.mov. 

4  Ongoing development concerns the porting of all MFC based classes to a cross-platform 
architecture, using wxWidgets. See also Section A.4.7. 
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Table A.4.1. GeoDa functionality overview 

Category  Functions  
Spatial data Data input from shape file (point, polygon) 
 Data input from text (to point or polygon shape) 
 Data output to text (data or shape file)  
 Create grid polygon shape file from text input 
 Centroid computation  
 Thiessen polygons  

Data transformation  Variable transformation (log, exp, etc.)  
 Queries, dummy variables (regime variables) 
 Variable algebra (addition, multiplication, etc.)  
 Spatial lag variable construction  
 Rate calculation and rate smoothing  
 Data table join  

Mapping  Generic quantile choropleth map  
 Standard deviational map  
 Percentile map  
 Outlier map (box map)  
 Circular cartogram  
 Map movie  
 Conditional maps  
 Smoothed rate map (EB, spatial smoother)  
 Excess rate map (standardized mortality rate, SMR)  

EDA  Histogram  
 Box plot  
 Scatter plot  
 Parallel coordinate plot  
 Three-dimensional scatter plot  
 Conditional plot (histogram, box plot, scatter plot) 

Spatial autocorrelation  Spatial weights creation (Rook, Queen, distance, k-nearest) 
 Higher order spatial weights  
 Spatial weights characteristics (connectedness histogram)  
 Moran scatterplot with inference 
 Bivariate Moran scatterplot with inference  
 Moran scatterplot for rates (EB standardization)  
 Local Moran significance map  
 Local Moran cluster map  
 Bivariate local Moran  
 Local Moran for rates (EB standardization)  

Spatial regression  OLS with diagnostics (e.g., LM test, Moran's I)  
 Maximum likelihood spatial lag model  
 Maximum likelihood spatial error model  
 Predicted value map  
 Residual map  

 
 
The functionality of GeoDa is invoked either through menu items or directly by 
clicking toolbar buttons, as illustrated in Fig. A.4.1. A number of specific 
applications are highlighted in the following sections, focusing on some 
distinctive features of the software. 
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Fig. A.4.1. The opening screen with menu items and toolbar buttons 

A.4.3  Mapping and geovisualization 

The bulk of the mapping and geovisualization functionality consists of a collection 
of specialized choropleth maps, focused on highlighting outliers in the data, so-
called box maps (Anselin 1999). In addition, considerable capability is included to 
deal with the intrinsic variance instability of rates, in the form of empirical Bayes 
(EB) or spatial smoothers.5 As mentioned in Section A.2.2, the mapping 
operations use the classes contained in ESRI's MapObjects, extended with the 
capability for linking and brushing. GeoDa also includes a circular cartogram,6 
map animation in the form of a map movie, and conditional maps. The latter are 
nine micro choropleth maps constructed by conditioning on three intervals for two 
conditioning variables, using the principles outlined in Becker et al. (1996), and 
Carr et al. (2002).7 In contrast to the traditional choropleth maps, the cartogram, 
map movie and conditional maps do not use MapObjects classes, and were 
developed from scratch. 
                                                           
5  The EB procedure is due to Clayton and Kaldor (1987), see also Marshall (1991) and 

Bailey and Gatrell (1995, pp. 303-308). For an alternative recent software implementa-
tion, see Anselin et al. (2004). Spatial smoothing is discussed at length in Kafadar 
(1996). 

6  The cartogram is constructed using the non-linear cellular automata algorithm due to 
Dorling (1996). 

7  The conditional maps are part of a larger set of conditional plots, which includes histo-
grams, box plots and scatter plots. 
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We illustrate the rate smoothing procedure, outlier maps and linking operations. 
The objective in this analysis is to identify locations that have elevated mortality 
rates and to assess the sensitivity of the designation as outlier to the effect of rate 
smoothing. Using data on prostate cancer mortality in 156 counties contained in 
the Appalachian Cancer Network (ACN), for the period 1993-97, we construct a 
box map by specifying the number of deaths as the numerator and the population 
as the denominator.8 The resulting map for the crude rates (that is, without any 
adjustments for differing age distributions or other relevant factors) is shown as 
the upper-left panel in Fig. A.4.2. Three counties are identified as outliers and 
shown in dark grey.9 These match the outliers selected in the box plot in the 
lower-left panel of the figure. The linking of all maps and graphs results in those 
counties also being cross-hatched on the maps. 
 
 

 

Fig. A.4.2. Linked box maps, box plot and cartogram, raw and smoothed prostate cancer 
mortality rates 

The upper-right panel in the figure represents a smoothed rate map, where the 
rates were transformed by means of an Empirical Bayes procedure to remove the 
effect of the varying population at risk. As a result, the original outliers are no 
longer, but a different county is identified as having elevated risk. Also, a lower 

                                                           
8  Data obtained from the National Cancer Institute SEER site (Surveillance, Epidemiology 

and End Results), http://seer.cancer.gov/seerstat/. 
9  The respective counties are Cumberland [KY], Pocahontas [WV], and Forest [PA]. 
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outlier is found as well, shown as black in the box map.10 Note that the upper 
outlier is barely distinguishable, due to the small area of the county in question. 
This is a common problem when working with admininistrative units. In order to 
remove the potentially misleading effect of area on the perception of interesting 
patterns, a circular cartogram is shown in the lower-right panel of Fig. A.4.2, 
where the area of the circles is proportional to the value of the EB smoothed rate. 
The upper outlier is shown as a light grey circle, the lower outlier as a black circle. 
The white circles are the counties that were outliers in the crude rate map, 
highlighted here as a result of linking with the other maps and graphs.11  

A.4.4   Multivariate EDA 

Multivariate exploratory data analysis is implemented in GeoDa through linking 
and brushing between a collection of statistical graphs. These include the usual 
histogram, box plot and scatter plot, but also a parallel coordinate plot (PCP) and 
three-dimensional scatter plot, as well as conditional plots (conditional histogram, 
box plot and scatter plot). 

We illustrate some of this functionality with an exploration of the 
relationships between economic growth and initial development, typical of the 
recent “spatial” regional convergence literature (for an overview, see Rey 2004). 
We use economic data over the period 1980-1999 for 145 European regions, most 
of them at the NUTS-2 level of spatial aggregation, except for a few at the NUTS-
1 level (for Luxembourg and the United Kingdom).12  

Figure A.4.3 illustrates the various linked plots and map. The left-hand panel 
contains a simple percentile map (GDP per capital in 1989), and a three-
dimensional scatter plot (for the percent agricultural and manufacturing 
employment in 1989 as well as the GDP growth rate over the period 1980-99). In 
the top right-hand panel is a PCP for the growth rates in the two periods of interest 
(1980-89 and 1989-99) and the GDP per capita in the base year, the typical 
components of a convergence regression. In the bottom of the right-hand panel is a 

                                                           
10  The new upper outlier is Ohio county [WV], the lower outlier is Centre county [PA]. 
11  Note that the outliers identified may be misleading since the rate analyzed is not ad-

justed for differences in age distribution. In other words, the outliers shown may simply 
be counties with a larger proportion of older males. A much more detailed analysis is 
necessary before any policy conclusions may be drawn. 

12  The data are from the most recent version of the NewCronos Regio database by Euro-
stat. NUTS stands for ‘Nomenclature of Territorial Units for Statistics’ and contains the 
definition of administrative regions in the EU member states. NUTS-2 level regions are 
roughly comparable to counties in the U.S. context and are available for all but two 
countries. Luxembourg constitutes only a single region. For the United Kingdom, data is 
not available at the NUTS-2 level, since these regions do not correspond to local gov-
ernmental units. 
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simple scatter plot of the growth rate in the full period (1980-99) on the base year 
GDP. 

Both plots on the right hand side illustrate the typical empirical phenomenon 
that higher GDP at the start of the period is associated with a lower growth rate. 
However, as demonstrated in the PCP (some of the lines suggest a positive 
relation between GDP and growth rate), the pattern is not uniform and there is a 
suggestion of heterogeneity. A further exploration of this heterogeneity can be 
carried out by brushing any one of these graphs. For example, in Fig. A.4.3, a 
selection box in the three-dimensional scatter plot is moved around (brushing) 
which highlights the selected observations in the map (cross-hatched) and in the 
PCP, clearly showing opposite patterns in subsets of the selection. Furthermore, in 
the scatter plot, the slope of the regression line can be recalculated for a subset of 
the data without the selected locations, to assess the sensitivity of the slope to 
those observations. In the example shown here, the effect on convergence over the 
whole period is minimal (–0.147 vs. –0.144), but other selections show a more 
pronounced effect. Further exploration of these patterns does suggest a degree of 
spatial heterogeneity in the convergence results (for a detailed investigation, see 
LeGallo and Dall’erba 2003). 

 

   
Fig. A.4.3. Multivariate exploratory data analysis with linking and brushing 
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A.4.5   Spatial autocorrelation analysis 

Spatial autocorrelation analysis includes tests and visualization of both global (test 
for clustering) and local (test for clusters) Moran's I statistic. The global test is 
visualized by means of a Moran scatterplot (Anselin 1996), in which the slope of 
the regression line corresponds to Moran's I. Significance is based on a 
permutation test. The traditional univariate Moran scatterplot has been extended to 
depict bivariate spatial autocorrelation as well, that is, the correlation between one 
variable at a location, and a different variable at the neighboring locations 
(Anselin et al. 2002a). In addition, there also is an option to standardize rates for 
the potentially biasing effect of variance instability (see Assunção and Reis 1999). 

Local analysis is based on the local Moran statistic (Anselin 1995), visualized 
in the form of significance and cluster maps. It also includes several options for 
sensitivity analysis, such as changing the number of permutations (to as many as 
9,999), re-running the permutations several times, and changing the significance 
cut off value. This provides an ad hoc approach to assess the sensitivity of the 
results to problems due to multiple comparisons (that is, how stable is the 
indication of clusters or outliers when the significance barrier is lowered). 

The maps depict the locations with significant local Moran statistics (LISA 
significance maps) and classify those locations by type of association (LISA 
cluster maps). Both types of maps are available for brushing and linking. In 
addition to these two maps, the standard output of a LISA analysis includes a 
Moran scatter plot and a box plot depicting the distribution of the local statistic. 
Similar to the Moran scatter plot, the LISA concept has also been extended to a 
bivariate setup and includes an option to standardize for variance instability of 
rates. 

The functionality for spatial autocorrelation analysis is rounded out by a range 
of operations to construct spatial weights, using either boundary files (contiguity 
based) or point locations (distance based). A connectivity histogram helps in 
identifying potential problems with the neighbor structure, such as ‘islands’ 
(locations without neighbors). 

We illustrate spatial autocorrelation analysis with a study of the spatial 
distribution of 692 house sales prices for 1997 in Seattle, WA. This is part of a 
broader  investigation  into  the  effect  of  subsidized  housing  on  the  real  estate 
market.13 For the purposes of this example, we only focus on the univariate spatial 
distribution, and the location of any significant clusters or spatial outliers in the 
data. 

The original house sales data are for point locations, which, for the purposes 
of this analysis are converted to Thiessen polygons. This allows a definition of 
‘neighbor’ based on common boundaries between the Thiessen polygons. On the 
left hand panel of Fig. A.4.4, two LISA cluster maps are shown, depicting the 
locations  of significant  local  Moran's  I  statistics,  classified  by  type  of  spatial 

                                                           
13  The data are from the King County (Washington State) Department of Assessments. 
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Fig. A.4.4. LISA cluster maps and significance maps 

association. The dark grey locations are indications of spatial clusters 
(respectively, high surrounded by high, and low surrounded by low).14 In contrast, 
the light grey are indications of spatial outliers (respectively, high surrounded by 
low, and low surrounded by high). The bottom map uses the default significance 
of p = 0.05, whereas the top map is based on p = 0.01 (after carrying out 9,999 
permutations). The matching significance map is in the top right hand panel of 
Fig. A.4.4. Significance is indicated by darker shades of grey, with the darkest 
corresponding to p = 0.0001. Note how the tighter significance criterion 
eleminates some (but not that many) locations from the map. In the bottom right 
hand panel of the  figure, the corresponding  Moran scatterplot is shown, with the 
most extreme ‘high-high’ locations selected. These are shown as cross-hatched 
polygons in the maps, and almost all obtain highly significant (at  p = 0.0001) 
local Moran's I statistics. 

The overall pattern depicts a cluster of high priced houses on the East side, 
with a cluster of low priced houses following an axis through the center. Put in 
context, this is not surprising, since the East side represents houses with a lake 
view, while the center cluster follows a highway axis and generally corresponds 
with a lower income neighborhood. Interestingly, the pattern is not uniform, and 

                                                           
14  More precisely, the locations highlighted show the ‘core’ of a cluster. The cluster itself 

can be thought of as consisting of the core as well as the neighbors. Clearly some of 
these clusters are overlapping. 
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several spatial outliers can be distinguished. Further investigation of these patterns 
would require a full hedonic regression analysis. 

A.4.6   Spatial regression 

As of version 0.9.5-i, GeoDa also includes a limited degree of spatial regression 
functionality. The basic diagnostics for spatial autocorrelation, heteroskedasticity 
and non-normality are implemented for the standard ordinary least squares 
regression. Estimation of the spatial lag and spatial error models is supported by 
means of the Maximum Likelihood (ML) method (see Anselin and Bera 1998, for 
a review of the technical issues). In addition to the estimation itself, predicted 
values and residuals are calculated and made available for mapping. 

The ML estimation in GeoDa distinguishes itself by the use of extremely 
efficient algorithms, that allow the estimation of models for very large data sets. 
The standard eigenvalue simplification is used (Ord 1975) for data sets up to 1,000 
observations. Beyond that, the sparse algorithm of Smirnov and Anselin (2001) is 
used, which exploits the characteristic polynomial associated with the spatial 
weights matrix. This algorithm allows estimation of very large data sets in 
reasonable time. In addition, GeoDa implements the recent algorithm of Smirnov 
(2003) to compute the asymptotic variance matrix for all the model coefficients 
(that is, including both the spatial and non-spatial coefficients). This involves the 
inversion of a matrix of the dimensions of the data sets. To date, GeoDa is the 
only software that provides such estimates for large data sets. 

All estimation methods employ sparse spatial weights, but they are currently 
constrained to weights that are intrinsically symmetric (e.g., excluding k-nearest 
neighbor weights). The regression routines have been successfully applied to real 
data sets of more than 300,000 observations (with estimation and inference 
completed in a few minutes). By comparison, a spatial regression for the 3000+ 
U.S. counties takes a few seconds.  

We illustrate the spatial regression capabilities with a partial replication and 
extension of the homicide model used in Baller et al. (2001) and Messner and 
Anselin (2004). These studies assessed the extent to which a classic regression 
specification, well-known in the ciminology literature, is robust to the explicit 
consideration of spatial effects. The model relates county homicide rates to a 
number of socio-economic explanatory variables. In the original study, a full ML 
analysis of all U.S. continental counties was precluded by the constraints on the 
eigenvalue-based SpaceStat routines. Instead, attention focused on two subsets of 
the data containing 1,412 counties in the U.S. South and 1,673 counties in the non-
South. 

In Fig. A.4.5, we show the result of the ML estimation of a spatial error model 
of county homicide rates for the complete set of 3,085 continental U.S. counties in 
1980. The explanatory variables are the same as before: a Southern dummy 
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variable, a resource deprivation index, a population structure indicator, unemploy-
ment rate, divorce rate and median age.15 

The results confirm a strong positive and significant spatial autoregressive 
coefficient )29.0ˆ( =λ . Relative to the OLS results (for example, Messner and 
Anselin 2004, Table 7.1, p.137), the coefficient for unemployment has become 
insignificant, illustrating the misleading effect spatial error autocorrelation may 
have on inference using OLS estimates. The model diagnostics also suggest a 
continued presence of problems with heteroskedasticity. However, GeoDa 
currently does not include functionality to deal with this. 
 

 

Fig. A.4.5. Maximum Likelihood estimation of the spatial error model 

                                                           
15  See the original papers for technical details and data sources. In Baller et al. (2001), a 

different set of spatial weights was used than in this example, but the conclusions of the 
specification tests are the same. Specifically, using the county contiguity, the robust La-
grange multiplier tests are 1.24 for the Lag alternative, and 24.88 for the Error alterna-
tive, strongly suggesting the latter as the proper alternative. 
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A.4.7   Future directions 

GeoDa is a work in progress and still under active development. This 
development proceeds along three fronts. First and foremost is an effort to make 
the code cross-platform and open source. This requires considerable change in the 
graphical interface, moving from the Microsoft Foundation Classes (MFC) that 
are standard in the various MS Windows flavors, to a cross-platform alternative. 
The current efforts use wxWidgets,16 which operates on the same code base with a 
native GUI flavor in Windows, MacOS X and Linux/Unix. Making the code open 
source is currently precluded by the reliance on proprietary code in ESRI's 
MapObjects. Moreover, this involves more than simply making the source code 
available, but entails considerable reorganization and streamlining of code 
(refactoring), to make it possible for the community to effectively participate in 
the development process. 

A second strand of development concerns the spatial regression functionality. 
While currently still fairly rudimentary, the inclusion of estimators other than ML 
and the extension to models for spatial panel data are in progress. Finally, the 
functionality for ESDA itself is being extended to data models other than the 
discrete locations in the ‘lattice’ case. Specifically, exploratory variography is 
being added, as well as the exploration of patterns in flow data. 

Given its initial rate of adoption, there is a strong indication that GeoDa is 
indeed providing the ‘introduction to spatial data analysis’ that makes it possible 
for growing numbers of social scientists to be exposed to an explicit spatial 
perspective. Future development of the software should enhance this capability 
and it is hoped that the move to an open source environment will involve an 
international community of like minded developers in this venture. 
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A.5  STARS: Space-Time Analysis of Regional 
Systems  

Sergio J. Rey and Mark V. Janikas 

A.5.1  Introduction 

One of the active areas in the field of Geographic Information Sciences (GIS) is 
the development of new methods of exploratory spatial data analysis. A number of 
impressive efforts have recently appeared to provide researchers with powerful 
tools for both geospatial statistical analysis, data mining, as well as geovisualiza-
tion. Well known  efforts include  the GeoDa environment (Anselin 2003), the 
GeoVista Studio (Takatsuka and Gahegan 2002), Cartographic Data Visualizer 
(Dykes 1995), SAGE (Wise et al. 2001) and the ArcView-XGobi project (Syman-
zik et al. 1998).  

A new addition to this field is the package STARS: Space-Time Analysis of 
Regional Systems. STARS is an open source environment written in Python that 
supports exploratory dynamic spatial data analysis. Dynamic takes on two mean-
ings in STARS. The first reflects a strong emphasis on the incorporation of time 
into the exploratory analysis of space-time data. To do so, STARS combines two 
sets of modules, visualization and computation. The visualization module consists 
of a family of geographical, temporal and statistical views that are interactive and 
interdependent. That is, they allow the user to explore patterns through various in-
terfaces and the views are dynamically integrated with one another, giving rise to 
the second meaning of dynamic spatial data analysis. On the computational front, 
STARS contains a set of exploratory spatial data analysis modules, together with 
several newly developed measures for space-time analysis.  

This chapter provides a detailed introduction to STARS and is organized as 
follows. The motivation giving rise to the creation of STARS is discussed in the 
following section. A detailed overview of the analytical components of the pack-
age are presented in Section A.5.3. The capabilities of  these  components are then 
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illustrated in a series of examples drawing from the study of regional income dy-
namics in Section A.5.4. The chapter closes with an outline of future plans for the 
continued development of STARS.  

A.5.2   Motivation 

As is common with many open source packages, STARS was born out of a need 
to scratch an itch. In this instance the itch was the lack of an integrated statistical 
toolkit that supported the analysis of both the spatial and temporal dimensions of 
regional income growth and convergence. Regional convergence or divergence 
has both temporal and spatial dimensions, and in studying these processes re-
searchers have relied on either spatial analysis (Rey and Montouri 1999) or time 
series methods (Carlino and Mills 1993).1  

To consider both dimensions jointly requires the use of two different sets of 
methods, yet with the existing software this meant having to switch between soft-
ware packages. This turns out to be a rather awkward way to do exploratory data 
analysis. It is clear that new tools are needed for an EDA toolkit that truly inte-
grates space and time. While the question of time in GIS has attracted much con-
ceptual attention (Peuquet 2002; Egenhofer and Golledge 1997), operational sys-
tems implementing both geocomputational and geovisualization components that 
also incorporate time are few in number.2 STARS is an attempt to fill this niche. 
Although the initial motivation for STARS was the study of regional income dy-
namics, the methods and tools it contains can be applied to a wide set of socioeco-
nomic or physical processes with data measured for areal units over multiple time 
periods.  

A.5.3   Components and design 

It was decided in the genesis of the STARS project that the exploratory geocom-
putational methods and the visualization techniques used to express them be de-
veloped separately. This facilitated the development of the STARS package in a 
modular fashion which has enabled users to interact with the program in a number 
of ways. First, the geocomputational and visualization modules can be linked to 
together in a user friendly interactive graphical interface. Second, the individual 
modules can be used as a library and combined with scripts written in Python (or 
other scripting languages). The modularity also permits easy extension of STARS 
through the development of specialized modules. We return to this issue later on. 
Next we discuss the two core modules of STARS, geocomputation and visualiza-
tion.  
                                                           
1  For a recent overview of the empirical literature on spatial convergence see Rey and Jani-

kas (2005). 
2  For an example of such a system focusing on geophysical data see Christakos et al. 

(2001). 
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Geocomputation. The methods used to explore the dynamics of space-time data 
have been broken into distinct categories, which are outlined in Table A.5.1. 
While STARS has many of the standard summary statistic capabilities that one 
would find in any number of data analysis packages, it is its inherent ability to 
identify and analyze the space-time characteristics of the data that makes it a 
unique environment.  

Table A.5.1. Geocomputational methods contained in STARS 
Category  Description  

Descriptive statistics  Distribution and summary measures for variables by cross-section, 
time period, or pooled  

Exploratory spatial data 
analysis  

Various methods specifically designed to analyze spatial depend-
ence. Global and local versions of Moran’s I, Geary’s c and the G 
statistic are provided 

Inequality  Techniques that quantify and decompose inequality over time and 
space. Includes classic and spatial Gini coefficients as well as Theil 
decomposition 

Mobility  Recent advances in internal mobility dynamics are presented 
through the τ and θ  statistics 

Markov analysis  Transitional dynamics of distributional attributes are examined 
through the use of classic Markov and spatial Markov techniques 

 
 

STARS has focused on incorporating recent advances in the analysis of spatial de-
pendence. Global measures of spatial autocorrelation are included for the analysis 
of dependence over a region. The program also contains Local Indicators of Spa-
tial Autocorrelation (LISA’s) which give a more disaggregated view at the nature 
of dependence (Anselin 1995). These have been extended to a dynamic context in 
a number of new empirical measures such as spatial Markov matrices, LISA 
Markov matrices, and indicators of spatial cohesion and flux introduced by Rey 
(2001).  

A series of alternative computational categories that deal with inter/intra dis-
tributional dynamics are also contained in STARS. Measures such as Theil’s T 
(Theil 1996) can be used to evaluate and decompose inequality over time and 
space (see Rey 2004a for an illustration). STARS also incorporates enhanced 
methods that identify various aspects of mobility within a distribution. These in-
clude spatially explicit rank correlation measures and regime based mobility de-
compositions introduced by Rey (2004b), as well as spatialized Gini coefficients. 
All these new measures provide insights as to the role of spatial context in the 
evolution of variable distributions over time and space.  

STARS also provides a host of data and matrix utility functions. These can be 
used to create new or transform existing variables as well as to construct alterna-
tive forms of spatial weight matrices, network representations of spatial structure 
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and temporal covariance matrices. The latter allow for detailed investigation and 
comparison of the implied relationships between spatial observations as reflected 
in various spatial weight matrices and those revealed from the temporal co-
movement of variables for different cross-sectional units.  

Vizualization. A list of the visualization capabilities of the STARS module is 
presented in Table A.5.2. STARS contains some views that are standard to an ex-
ploratory data package, however, the dynamic linking mechanisms enhance the 
users ability to analyze data over various dimensions (see Section A.5.4 for exam-
ples). Some of the views are multidimensional by nature. The conditional scatter 
plot can provide an additional facet to its traditional counterpart through a color 
weighting scheme based on a requisite variable. This supports the use of categori-
cal variables for regime based analysis and a simple time variable which can iden-
tify hidden evolutions.  

Table A.5.2. Visualization capabilities in STARS 
Category  Description  
Map  A variety of sequential, categorical and user-defined choropleth maps 

Scatter plot  A basic two-dimensional view, the scatter plot can be used to analyze 
cross-sectional, time period or bivariate correspondence in X-Y space 

Conditional scatter plot  Extends the traditional scatter plot to three dimensions by conditioning 
the color of the data points by the level of a third variable 

Parallel coordinate plot  Allows the user to view multivariate relationships over space and time 

Time series plot  Plots the evolution of a variable for a given spatial unit 

Time path plot  Demonstrates the co-movement of a variable for two spatial units over 
time 

Histogram  Creates a basic partitioning of a variable into respective bins.   

Density  Contains empirical kernel density estimation for the analysis of disper-
sion, modality, and skewness 

Box plots  Another distributional view with an added focus on quantiles and out-
liers 

The time path plot illustrates the pair-wise movement of two variables and/or ob-
servations over time. This view is helpful in identifying levels of stability across a 
given structural process. Individual aspects of the co-movement progression can 
be dissected by interval gaps and distinct directional movements.  

STARS also contains a series of maps which can be created and altered 
through the use of various commands. One example involves the visualization of 
covariance matrices over space. The covariance structure of a variable is portrayed 
as a series of links between the centroids of each polygon. Positive  correlations  
are coloured differently than negative ones to more distinctly identify cross-
sectional relationships. Threshold capabilities assures that the user can map co-
variance links based on specified criterion. These are illustrated later in the chap-
ter.  
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Design. As mentioned previously, STARS is written entirely in the Python lan-
guage. Python is an object-oriented scripting language gaining widespread accep-
tance as a language for scientific computing (Langtangen 2004; Saenz et al. 2002; 
Hinsen 2000; Schliep et al. 2001). As Python is open source and cross platform, 
researchers interested in using STARS are not limited in their choice of operating 
system or hardware platform. Moreover, Python has a clean and simple syntax 
which facilitates collaboration by researchers wanting to add extensions to 
STARS.  

 
 

 

Fig. A.5.1. STARS in GUI mode 

STARS is designed from the ground up as an object oriented system. This has a 
number of advantages. First, the internal architecture is accessible at a high-level, 
supporting  the  relatively  easy enhancement of  STARS via new specialized 
modules. Second, from an end-user’s perspective, models, variables, matrices and 
other core elements of the system are all objects (for example,  instances of classes 
in Python parlance), and thus are closer to the user’s problem domain than is the 
case in a system designed around procedural programming.  

In addition to being object oriented in design, STARS is also highly modular-
ized. The geocomputational and visualization modules are orthogonal, that is, they 
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can be used independently of one another, or they can be combined depending on 
the requirements of a particular project. This modularity permits the use of 
STARS in three different modes. The first is the GUI mode, where the two sets of 
modules are tightly integrated. Here the user accesses the analytical capabilities 
from a series of menu items as displayed in Fig. A.5.1. This mode is well suited to 
researchers wanting to apply exploratory space-time data analysis to a substantive 
problem.  

 

Fig. A.5.2. STARS in command line interface mode 
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The second mode uses a command line interface (CLI) in which the computational 
module can be called directly from the Python interpreter. An example of such use 
is seen in Fig. A.5.2. This supports very efficient interactive computation, similar 
to that found in other data analysis environments such as R (R Development Core 
Team 2004). This mode also supports the wrapping of STARS modules inside lar-
ger Python scripts to implement simulation programs through batch processing.3  

STARS can also be used in a combined CLI+GUI mode as shown in Fig. 
A.5.3. In this mode the user has access to the Python interpreter via the terminal 
window (upper left) and can create views either from that interpreter, or from the 
GUI (upper right). Results of interactive commands entered in the shell are re-
ported in the text area of the GUI.  

 

 

 

Fig. A.5.3. STARS in CLI+GUI mode 

                                                           
3  An example of such an application is reported in Rey (2004a). 
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A.5.4    Illustrations 

In this section a subset of the graphical and analytical capabilities of STARS are 
highlighted drawing on examples from regional income convergence studies. 
STARS stresses the need to study multiple dimensions underlying the data used in 
exploratory analysis. An illustration of this is provided in Fig. A.5.4 which con-
tains four different views of data on U.S. regional incomes for the lower 48 states. 
The upper left view is a quintile map for incomes in 1929. Next to this is the 
Moran scatter plot (Anselin 1995), indicating strong positive spatial autocorrela-
tion. Below the scatter plot, a histogram provides an a-spatial view of the income 
distribution, while the view to the left of the histogram portrays the time series for 
the global Moran statistic for the years 1929-2000. The latter figure reveals that 
the level of spatial clustering fluctuates substantially over time.  
 
 
 
 

 

Fig. A.5.4. Multiple views of U.S. per capita income data 
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Linking and brushing views. In addition to providing views of the different dimen-
sions (time, space, distribution), the views in STARS are also interactive. Interac-
tivity can take on multiple forms. The first is linking in which the selection of ob-
servations in an origin view leads to the highlighting of associated observations in 
other destination views. An example of this can be seen in Fig. A.5.5, where the 
selection occurs on the origin view (map) using a rectangle created and sized with 
the mouse. When the user releases the mouse button, the polygons underneath the 
selection rectangle are selected and observations associated with these selected 
polygons are then highlighted in the three destination views.4  
 
 
 
 

 

Fig. A.5.5. Linking multiple views 

 

                                                           
4  The selection rectangle is not seen in Fig. A.5.5 as it is erased upon completion of the se-

lection. 



100      Sergio J. Rey and Mark V. Janikas 

The second form of interaction is brushing which is illustrated in Fig. A.5.6. Here 
observations are selected in the same fashion as with linking, however the impact 
of the selected  set is different, and   results in  a re-fitting  of the global autocorre-
lation trend in the scatter plot to omit the states selected on the map. This provides 
insights as to the leverage of the selected states on the level of spatial clustering 
for that time period.  

 
 

 
 

Fig. A.5.6. Brushing multiple views 

 
Space-time traveling and roaming. Linking and brushing can also be combined 
with a third form of interaction referred to as roaming. When roaming, the selec-
tion rectangle remains on the screen and the user can move it around the origin 
view, as is reflected in Fig. A.5.7. Movement of the selection rectangle creates a 
new selection set of observations on the origin view to trigger the corresponding 
interaction signal (brushing or linking) on the destination views.  
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Fig. A.5.7. Roaming a map with brushing 

 
Similar to roaming, linking and brushing can also be combined with traveling. 
Traveling on an origin view selects observations in a sorted order and triggers 
linking or brushing on the destination views. The traveling is done automatically 
over the entire set of observations on the origin view, giving the user a full depic-
tion of the particular type of interaction (linking or brushing). An example of this 
is shown in Fig. A.5.8, which combines cumulative brushing on the scatter plot 
and box plot resulting from spatial traveling on the map.  
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Fig. A.5.8.  Spatial traveling with brushing 

 
Traveling can also be done on a time series view to trigger temporal updating of 
destination views. The traveling proceeds from earliest period to the latest period 
given the user views of all destination views for each time period in the sample. 
Alternatively, the user can control the temporal updating by switching to roaming 
on a time series view. This is illustrated in Fig. A.5.9, where the vertical selector 
has been moved over the year 1990. Again the three destination views (scatter 
plot, map and box plot) are updated to this year, which reveals an outlier in the 
box plot. The user then selects that outlier observation on the box plot to trigger 
linking on the destination views (map, time series, scatter plot) to reveal that the 
outlier observation is Connecticut.  
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Fig. A.5.9.  Time roaming 

 
The combination of linking and brushing with either space-time roaming or travel-
ing provides a powerful approach to exploratory visualization that can reveal pat-
terns that otherwise would be very difficult to detect. An example of this can be 
seen in  Fig. A.5.10  where  a conditional  scatter  plot in  the lower right corner is 
used to combine the Moran scatter plots from each year in a single view. The ob-
servations on each state’s income and that of its spatial lag are then conditioned on 
a third variable, in this case Time, and the conditioning uses color depth to indi-
cate early (light color) versus more recent (dark color) observations. The condi-
tioning reveals that the dispersion in state incomes has declined substantially over 
time. The figure also reflects the result of the user selecting Illinois on the map to 
trigger linking in the destination views. The own-lag pairs for all time periods for 
Illinois are then highlighted in the conditional scatter plot to reveal that the spatial 
dynamics between Illinois and its neighbors have been qualitatively and quantita-
tively different from the overall space-time dynamics in the U.S. space economy. 
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Fig. A.5.10. Space-time instabilities 

 
View-generated-views. The view interactivity can be exploited to more fully ex-
plore these space-time instabilities depicted in the conditional scatter plot. While 
the latter shows that Illinois and its geographical neighbors have income dynamics 
moving in different directions, additional insights on these dynamics can be ob-
tained by the user combining a key press (control) with a mouse-click on the Illi-
nois specific observation in the Moran scatter plot which generates a new view 
called a time path as shown in the upper left of Fig. A.5.11. The time path shows  
the  co-movement  of Illinois per capita income and its spatial lag of per capita in-
come for all time periods with subsequent time periods linked together.  
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Fig. A.5.11.  Scatter plot generated time path 

 
The ability to generate new views through user actions on existing views offers a 
powerful exploratory device. View-generated-views can also be obtained from a 
map origin view as seen in Fig. A.5.12, where the user has issued the same selec-
tion event on Illinois in the map to generate the time series view of relative in-
come for Illinois. This isolates the dynamics of Illinois income from the co-
movement dynamics in the time path, in a similar manner to the way the co-
movement dynamics for Illinois were isolated in the time path from the full set of 
state-lag co-movement dynamics depicted in the conditional scatter plot.  

 
 
 
 
 
 
 



106      Sergio J. Rey and Mark V. Janikas 

 

 

Fig. A.5.12.  Map generated time series 

 
Distribution dynamics. In addition to exploring spatial and temporal dimensions 
via view interactivity, the distributional dynamics can also be examined. One ap-
proach is displayed in Fig. A.5.13 in which two densities for state relative per cap-
ita incomes are displayed, one for the beginning of the period (1929) one for the 
last year of the sample (2000).   To explore the  movement  of  individual  econo-
mies  within  the  income distribution the user can trigger spatial traveling on the 
map serving as the origin view. This then highlights each state (from lowest in-
come to highest income) on the map and identifies the positions of that state in the 
initial and terminal income densities. As the traveling is done automatically for the 
entire set of spatial units, the user sees  the full  extent of distributional dynamics.  
Following the automated traveling, the user can then select individual states on the 
map to isolate on their mobility characteristics. This is shown for Virginia which 
initially was a relatively poor economy but has shown substantial upward move-
ment in the income distribution. 
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Fig. A.5.13.  Distributional mixing 

 
Spatial and temporal dependencies. In addition to providing dimension specific 
views, such as a time path, or box plot or quintile map, STARS enables the depic-
tion of multiple dimensions on a single view. This is illustrated in Fig. A.5.14 
which contrasts two forms of covariance in a graph representation. The linkages 
reflected in a spatial weight matrix based on contiguity are recorded as edges be-
tween polygon centroids for each state. These linkages are then conditioned on the 
strength of the temporal covariance between each pair of contiguous states, with 
light grey lines indicating strong temporal linkages.  
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Fig. A.5.14. Spatial and temporal covariance networks 

 
The nature of the specific temporal covariances between a state and the rest of the 
system can then be explored using the spider graph depicted in Fig. A.5.15. Here 
the user can step through each state to determine which other states it has the 
strongest temporal co-movements with. In this case the spider graph reveals that 
California income dynamics have not only been similar to some of its geographi-
cal neighbors, but also in sync with the northeast states. This type of interaction is 
useful for uncovering covariance relations that may not be obvious with traditional 
ESDA techniques.  
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Fig. A.5.15.  Spider graph of temporal networks 

A.5.5   Concluding remarks 

STARS has evolved quickly from its origins as specialized program to support re-
search on regional income dynamics to now being used by researchers, outside of 
the development team, to examine such issues as spatial dynamics of fertility, land 
use cover change, segregation dynamics, migration, commodity flow patterns and 
housing market dynamics, among others. Each new application raises new de-
mands for increased functionality and enhancement of STARS. Currently there are 
a number of such enhancement that are major priorities for the development team.  
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The first enhancement is the creation of a new type of map view to visualize sub-
stantive flows between cross-sectional observations.5 There has been a growing 
interest in the extension of flow maps to include temporal-spatial dynamics which 
we believe STARS is quite posed to introduce. In short, the goal of this extension 
is to demonstrate how flows between cross-sectional units evolve over time. Al-
though often used to study migration, the notion of flows is by no means confined 
to the movement of people. Flows of commodities, for example, could be con-
sidered a driver for many socioeconomic processes, and the inclusion of which 
could present some interesting research avenues; such as the covariation between 
these flows and economic growth, and the construction of hybrid weight matrices 
based on spatial constructs coupled with a-spatial flow linkages.  

Another analytical front for the STARS module is cluster analysis. Although 
some basic forms of spatial clustering are identifiable by a number of graphs and 
maps produced  in the current  version of  STARS,  more analytical features on a-
spatial cluster analysis seem a fruitful avenue for future work. The research team 
has an extensive body of code implementing agglomerative, partitive and medoid 
clustering methods written in variety of languages (R, Octave, Python) in support 
of on-going research on industrial cluster analysis (Rey and Mattheis 2000; Rey 
2000a, b, c, d, e, 2002). The integration of these methods in STARS is currently 
underway.  

We are also exploring new approaches towards recasting conventional meas-
ures of distributional dynamics, such as the so called σ-convergence measure, to 
incorporate spatially explicit dimensions (Rey and Dev 2004). Coupled with this is 
work on developing inferential methods for new space-time empirics based on 
both analytical distributions as well as computationally based approaches.  

STARS is a powerful environment for exploring data that has both temporal 
and spatial dimensions. The interactivity of the various views helps to identify de-
pendencies across various dimensions that may otherwise go unnoticed. These 
views are also tied to a suite of recently developed advanced methods for ESDA 
and ESTDA. Moreover, STARS has been designed for users with a wide range of 
demands and skill-sets. Researchers looking for a user-friendly GUI environment 
for exploratory space-time analysis should feel at home with STARS. Others who 
are developing new methods for exploratory analysis can easily integrate these 
into the modular framework underlying STARS. In between these two groups are 
researchers comfortable with writing simple macro type scripts (in Python) to use 
STARS for simulation experiments as well as for linkages with other model sys-
tems and statistical packages. We hope this design together with the commitment 
to the open source development model will attract researchers to collaborate on 
the enhancement and future development path of STARS.   

 

                                                           
5  See Tobler’s Flow Mapper at http://csiss.ncgia.ucsb.edu/clearinghouse/FlowMapper/ for 

a program designed for the sole purpose of studying flows. 
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A.6 Space-Time Intelligence System Software 
for the Analysis of Complex Systems  

Geoffrey M. Jacquez 

A.6.1  Introduction 

The representation of geographies (e.g. census units), demographics and popula-
tions as unchanging rather than dynamic is due in part to the static world-view of 
GIS software, which has been criticized as not fully capable of representing tem-
poral change and better suited to ‘snapshots’ of static systems (Goodchild 2000; 
Hornsby and Egenhofer 2002; Jacquez et al. 2005). This static view hinders the 
mapping, representation, and analysis of dynamic health, socioeconomic, and en-
vironmental information for populations that are dispersed and mobile – a key 
characteristic of the human condition (Schaerstrom 2003).  

Several approaches to modifying GIS to better handle the temporal dimension 
have been proposed. Yearsley and Worboys (1995) proposed a space time object 
model that integrates abstract spatial data types with a geometric layer to construct 
a higher-level topological data model,  Raper and Livingstone (1993) used an ob-
ject oriented approach to represent dynamic spatial processes as spatio-temporal 
aggregations of point objects, and Peuquet and Duan (1993) formulated an event-
based spatio-temporal data model (ESTDM) that maintains spatio-temporal data 
as a sequence of temporal events associated with a spatial object.  See Miller 
(2005b) for a review of alternative data models. 

Hägerstrand’s (1970) seminal work in time geography has led to geometric 
and mathematical constructs for quantifying human mobility including geospatial 
lifelines, space-time prisms, and techniques for propagating location uncertainty 
through time (Miller 1991; Kwan 2003; Han et al. 2005; Miller 2005a).  These, in 
turn, have provided a quantitative basis for the development of statistics and mod-
eling approaches suited to the analysis of temporally dynamic systems.  For ex-
ample, Sinha and Mark (2005) proposed a Minkowski metric to quantify dissimi-
larity between geospatial lifelines; Han et al. (2005) present a K function 
calculated from the spatial pattern of place of residence at specific time slices;    
Q-statistics  assess case-control  clustering (Jacquez and Meliker 2008) and space- 
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Table A.6.1.  Summary of STIS functionality 

Category Functionality Characteristics 
Data types Points Both static (e.g. space only) and temporally dynamic when

points move through time 
 Lines Both static and temporally dynamic 
 Polygons Both static and dynamic such that polygons change shape 

(e.g. morph) and location 
 Mobility histories For representing geospatial lifelines and activity spaces 
 Rasters Both static and temporally dynamic for representing space-

time fields 
Visualization Linked windows Cartographic and statistical brushing with time-enabled 

spatial objects; time synchronization of maps and graphs 
Tables Tables Attribute values can change through time 
Maps Maps Of point, vector, polygons, mobility histories, raster data, 

spatial weights 
 Cluster maps Display locations of spatial outliers and clusters of low and 

high values and how they change through time 
 Change maps Also called difference maps, show absolute and relative 

change between time periods 
 Disparity maps Show where and when a target population differs signifi-

cantly from a reference population (e.g. health disparities) 
 Animations Display movies of time-dynamic spatial data 
Statistical  
graphics 

Box plots All statistical graphics except the time series plot are time 
enabled, displaying data relationships through time 

 Histograms  
 Scattergrams  
 Principal coordinate 

plots 
 

 Time series plots Show how attribute values for space-time objects change 
through time 

 Variogram clouds Visualize spatial variance at different spatial lags and
through time 

Weight sets Spatial weights Nearest neighbor, adjacency, distance, and inverse dis-
tance weights are time-dynamic when geography (for ex-
ample, locations of points) changes through time 

Smoothing Empirical Bayesian Bayesian smoother using user-specified spatial weights 
 Poisson Poisson smoother for point/rare event data 
Pattern recogni-
tion methods 

Local Moran Univariate and bivariate, with or without temporal lags, for 
points or polygons 

 Global Moran Provided automatically with local Moran 
 Local G and G* For points or polygons 
 Besag and Newell For case and population at risk, using points or polygons 
 Turnbull For case and population at risk data, points or polygons. 
 Disparity statistics For reference and target populations using rates and popu-

lation sizes   
 Variogram analysis Isotropic, anisotropic, automated fitting, time dynamic 
Modeling  
(all time-
dynamic) 

A-spatial regression Linear, logistic and Poisson regression, using full model, 
best subset, forward or backward stepwise selection. 
Model is fitted through time. 

 Geographically 
weighted regression 

Linear, logistic and Poisson regression, using user-
specified or automatically optimized bandwidth 

 Kriging Using traditional, standardized, residuals, weighted and 
Poisson estimators; includes simple, ordinary, kriging with 
a trend and Poisson kriging 



A.6    Space-time intelligence system software      115 

time interaction in case data (Jacquez et al. 2007) that account for human mobility; 
and kernel functions weighted by duration at specific locations have been used to 
estimate risk functions in temporally dynamic systems (Sabel et al. 2000; Sabel et 
al. 2003). 

Recent technological advances have resulted in Space Time Intelligence Sys-
tems (STIS) that implement constructs for representing temporal change 
(AvRuskin et al. 2004; Greiling et al. 2005; Jacquez et al. 2005; Meliker et al. 
2005). The STIS technology has several advantages. First, it is founded on space-
time data structures, enabling complex space-time queries not possible in conven-
tional ‘spatial only’ GIS. Second, it incorporates statistical tests for space-time 
pattern such as univariate and bivariate local indicators of spatial autocorrelation 
and clustering that are automatically calculated through time, resulting in cluster 
animations that capture space-time change. Third, it employs dynamic linked win-
dows that enable both cartographic and statistical brushing through time. Fourth, it 
calculates weight matrices for dynamic systems where points can move through 
time, and where polygons can morph, merge and divide such that pattern recogni-
tion and modeling readily account for dynamic and complex time geographies.  
Fifth, it constructs spatio-temporal statistical models including linear, Poisson and 
logistic regression, geographically weighted regression, variogram models, and 
kriging. Finally, it displays animated ‘movies’ for exploring how variables (for 
example, health outcomes such as maps of incidence, mortality, case counts and 
expectations, and clusters themselves) change through space and time. Develop-
ment of the STIS software was funded by grants from the National Institutes of 
Environmental Health Sciences and the National Cancer Institute. This technology 
is well suited to the representation, visualization, modeling and simulation of dy-
namic patterns and processes, and its functionality (see Table A.6.1) is the topic of 
the balance of this Chapter. 

A.6.2    An approach to the analysis of complex systems  

Geographic systems typically are large, dynamic and complex.  Our approach to 
analyzing complex systems in STIS consists of three stages: development of cog-
nitive models, exploratory space-time data analysis, and modeling; with each stage 
informing the others.  

Cognitive and ontological models have to do with the mental representation of 
the underlying causal mechanisms that drive the relationships observed in a com-
plex system. These usually are based on speculation, an understanding of prior re-
search findings, and by one’s experience with similar systems. They guide ex-
ploratory data analysis, and form the basis on which more detailed data-based and 
process-based models are constructed. They are developed by visualizing and in-
teracting with the data, and are continually refined through data analysis and mod-
eling.   
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Exploratory Data Analysis (EDA) is founded on exploratory methods for quickly 
producing and visualizing simple summaries of data sets to reveal relationships 
and insights that often cause one to refine the cognitive model (Tukey 1977). Ex-
ploratory Space-Time Data Analysis (ESTDA) is made possible by software sys-
tems that incorporate spatial and temporal data, dynamic linked windows, statisti-
cal and cartographic brushing, and can generate hypotheses to be evaluated using 
clustering, inferential statistics and models.  The objective of exploratory tech-
niques is to illuminate and quantify relationships in order to increase the analyst’s 
knowledge of the complex system, giving rise to testable hypotheses and to rela-
tionships that can be modeled. 

Models of data include statistical tools such as ANOVA, regression and corre-
lation, and are used to quantify relationships among variables, to test statistical 
hypotheses, and to identify factors that drive variability in the experimental sys-
tem. These models require data of sufficient quality to estimate model coefficients 
(for example, regression intercept), and that the researcher has sufficient knowl-
edge to be able to identify dependent and independent variables, and their relevant 
parameters. Models of data are often used for interpolation and for prediction but 
do not necessarily convey information regarding underlying causal mechanisms. 

Models of process require a detailed understanding of the mechanics of the 
system being studied, and incorporate this understanding directly into the model 
itself.  Examples of process models include infection transmission systems in 
which the population is structured into susceptible, infectious, and immune sub-
groups, and in which the model parameters describe mechanistic processes such as 
infection transmission to susceptible individuals (Koopman et al. 2001). 

STIS provides a platform for analyzing complex space-time systems, from vi-
sualization, the quantification of geographic relationships using weight matrices 
that change through time, the identification of space-time pattern to generate hy-
potheses, to models that may be used for estimation and prediction, as described 
below. 

A.6.3   Visualization 

The first step is to enter data into STIS and to then create maps, animations, and 
statistical graphics to explore relationships in the data. Supported data types in-
clude points, mobility histories, lines and polygons. STIS reads ESRI shape files, 
excel, dbf and text files, using time series or time slice formats. A time slice 
means all objects in the geography change attribute values simultaneously, so that 
one may assign a time stamp defining an interval that applies to all objects in a da-
ta set.  An example would be lung cancer mortality rates for white males in U.S. 
counties from 1950 to 1955. Time series data arise when the values of  the attrib-
utes change asynchronously among different spatial objects.  For example, one lo-
cation may be sampled at hourly intervals, while another is sampled daily. 
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Fig. A.6.1. Visualization and exploration of space-time patterns in daily beer sales at Do-
minick’s stores in the greater Chicago area in 1990.  The user is brushing on the time plot 
(top) to identify the spike in sales that occurred at one store in central Chicago (map, lower 
left) on Sept 23, 1990.  Notice the strong periodicity caused by increased beer sales on 
weekends 

After the data are entered one next creates maps, and then animates them to obtain 
an initial impression of space-time patterns.  Time series plots are used to explore 
how variable values change through time.  Linked brushing on the maps, statistical 
graphics and tables, along with time animation, supports rapid identification of re-
levant space-time patterns (see Fig. A.6.1). 

A.6.4    Exploratory space-time analysis 

Dynamic spatial weights:  Cluster analysis, autocorrelation analysis, spatial re-
gression, geostatistics and other techniques in STIS rely on weights to model geo-
graphic relationships among the objects. STIS automatically calculates spatial 
weight matrices needed for cluster analyses, and prompts the user when more  de-
tailed weights or kernels are required for methods such as geographically 
weighted regression  and  geostatistics.  In  Fig.  A.6.2  the  user  is  exploring  the 
spatial weight connections in counties in the Northeastern United States using cen-



118      Geoffrey M. Jacquez 

troids with five nearest neighbors (left) and polygon adjacencies (right). The use 
of centroid locations to represent geographic relationships among area-based data 
such as counties can produce misleading results since the spatial support (for ex-
ample, area and configuration of the counties) is ignored (Jacquez and Greiling 
2003). 

The spatial weights in STIS are dynamic, so that changing geographies are 
modeled in a realistic fashion.  Examples include census geography; zip-code ge-
ographies; area-codes; land parcel data; and land use maps, all of which change 
through time.  Dynamic spatial weights are used by cluster analysis and modeling 
techniques (including geographically weighted regression, variogram models, and 
kriging) so that temporal change in both geographic relationships and attribute 
values are fully accounted for. 

 

Fig. A.6.2. STIS visualizes spatial weights by outlining the selected location (centroid or 
polygon) in gold, and the localities to which it is connected in blue.  The five nearest 
neighbors using centroids (left) differ from border adjacencies (right).  The spatial weights 
for queried locations are written to the log view (not shown) for validation 

 
Pattern recognition:  STIS provides cluster tests for both point data and polygon 
data, including the local Moran (Anselin 1995), G statistics (Getis and Ord 1992; 
Ord and Getis 1995), Besag and Newell (1991) and Turnbull’s (Turnbull et al. 
1990) tests.  Both absolute and relative disparity statistics identify significant dif-
ferences in outcomes (for example,  disease incidence  and mortality, tumor sta 
ging, health screening utilization) through space and time (Goovaerts 2005).  Spa-
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tial pattern recognition may also be accomplished using variogram analysis, the 
point of  departure for which is  the variogram cloud.  STIS provides automatic 
variogram fitting and both the variogram cloud and  variogram models are time-
dynamic.  Basic variogram models include spherical, exponential, cubic, Gaussian 
and power models (Fig. A.6.3).  Automatic variogram fitting selects from among 
these models to find that model which provides the best fit, along with the corre-
sponding parameter estimates.  

Outlier detection:  An important step in exploratory space-time data analysis is 
the identification of outliers – observations whose values are unusual when con-
sidered in the context of the sample.  Outlier analysis methods in STIS include the 
box plot, anomaly detection using local indicators of spatial autocorrelation, detec-
tion of geostatistical outliers via statistical brushing on the variogram cloud, and 
the exploration of deviations from model predictions using these techniques ap-
plied to model residuals.   

 

Fig. A.6.3. Automatic variogram model fitting of soil Cadmium concentrations in the Jura 
mountains, France.  Notice the ‘Calculate best fit’ button in the variogram model window 
(left).  Variogram estimators in STIS include traditional, standardized, residuals, weighted 
and Poisson.  Here, an isotropic variogram model modeled a directional spatial pattern, and 
was then used to predict soil cadmium concentrations using kriging (raster map, right cen-
ter). Data courtesy Pierre Goovaerts 

A.6.5    Analysis and modeling 

STIS provides advanced modeling techniques including a-spatial regression, geo-
graphically weighted regression, and geostatistics, as summarized below.  All of 
these are time-enabled and automatically model changes in geography (for exam-
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ple, morphing polygons and moving points) as well as attributes (for example,  
how the value associated with a spatial object changes) through time.    

A-spatial regression:  Exploratory space-time data analysis using visualization 
and pattern recognition methods often generates hypotheses regarding dependen-
cies and associations among the variables.   Before invoking spatial modeling ap-
proaches a researcher may first choose to employ a-spatial models, and then 
evaluate pattern in the model residuals to determine whether more detailed space-
time models are warranted.  The rationale is one of parsimony – if an a-spatial 
model adequately explains the observed variability then a more complex spatial 
model may not be warranted.   

STIS provides linear, logistic and Poisson regression, and for complex models 
with several variables evaluates the fit of subsets of the independent variables us-
ing the full model (all variables), forward stepwise, backward stepwise, and best 
subset.  The criterion for finding the best subset – that combination of independent 
variables that does the best job of explaining variability in the dependent variable 
– for linear models include R-squared, adjusted R-squared, C(p), and AIC. R-
squared selects the model with the largest reduction in residual sum of squares, 
and thus favors complex model with the largest number of terms. The adjusted R-
squared criterion punishes models with too many terms. The smallest AIC (Akaike 
information criterion) trades off model fit and model complexity using, for linear 
regression, the residual sum of squares (RSS) penalized by two times the number 
of regression term degrees of freedom (k = the number of regression parameters).  
Finally, the smallest Mallows C(p) is another way of penalizing models with many  
independent variables.  It is the residual sum of squares for the subset model being 
considered, divided by the error variance for the full model plus twice the number 
of regression degrees of freedom minus the total number of observations. Similar 
C(p) values similar to the one for the full model are considered an indication of 
good candidate models.  Appropriate model selection criteria are also provided for 
Poisson and logistic regression. 

Geographically weighted regression (GWR):  Most of the functionality and 
modeling approaches for a-spatial regression are available as well in GWR (see 
Chapter C.5 for more details). Whereas a-spatial regression makes strong assump-
tions regarding stationarity of the regression coefficients, GWR allows the regres-
sion coefficients to vary through geographic space and through time, and fits spa-
tially and temporally local regression, with local estimates of model fit (for 
example, R2, the regression coefficients and model residuals, correlations and oth-
er statistics). GWR has been pioneered by A. Stewart Fotheringham and Martin 
Charlton (currently at the National Center for Geocomputation, National Univer-
sity of Ireland), and Chris Brunsdon (University of Glamorgen, UK).  Our imple-
mentation of this tool is based primarily upon their book on the topic (Fothering-
ham et al. 2002), but we have made some changes, which follow from the way in 
which many in the public health and environmental science fields are likely to use 
these tools. Our approach to GWR uses an unified framework   for  including both 
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Fig. A.6.4.  A-spatial regression analysis of breast cancer in the northeastern United States.  
The user has conducted a linear regression modeling breast cancer mortality in white fe-
males as a function of xylene and availability of physicians (MD ratio), with poverty and 
median age as interaction terms. The regression residuals have been mapped (circles) with 
the breast cancer mortality in white females (left). A local Moran analysis found significant 
clusters of high and low residuals (map top center) and a global Moran’s I of 0.18 (p < 
0.001).   The presence of significant spatial autocorrelation in the residuals suggests an im-
portant predictor is missing and/or that a more detailed spatial model is needed 

geographical weighting, and an extra non-geographical weight dataset that allows 
for user-supplied knowledge of the ratio variances at each source point.  One ex-
ample of this type of weight is the use of population data as a weight set for mor-
tality rates, which has the effect of assigning higher ‘confidence’ to mortality rates 
derived from areas with higher populations.  Our goal is to treat this type of 
weighting together with geographic weighting within  a  unified  framework. As a 
result, STIS uses a maximum weighted likelihood approach to calculate the re-
gression parameters, parameter variances, parameter R-square, expected y-values, 
residuals and y-standard errors as well as the ‘local model’  R-square. This ap-
proach boils down to treating geographically weighted regression as a local exten-
sion of weighted a-spatial regression. As a consequence GWR can be straightfor-
wardly extended to non-linear regression procedures such as logistic and Poisson 
regression with parameter values and parameter variances calculated from a 
weighted log-likelihood formulation. 

A key question when using GWR is the construction of the local kernel used 
to identify those observations to use when fitting a local regression. For kernels of 
fixed size STIS uses either a number of nearest neighbors or a range (distance) 
from the central observation, and allows weights to be assigned to the observa-
tions based on proximity to the center (for example, using Gaussian and bi-square 
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decay functions). Researchers may also choose to use adaptive kernels that deter-
mine the kernel bandwidth by an iterative estimation procedure that minimizes the 
sum of the differences between the observed value of the dependent variable and 
the model’s estimate of that value.  This effectively results in a bandwidth specifi-
cation that results in the best model ‘fit’ over the range of bandwidths specified by 
the researcher. We have found GWR to be particularly useful when concerned 
with prediction, since it typically results in mean local R2 values that exceed the R2 
from the corresponding a-spatial regression. In the course of an analysis it is im-
portant to first derive a reasonable regression model using a-spatial techniques be-
fore proceeding to GWR. 

Geostatistics:  Geostatistics provides powerful techniques for prediction, in-
terpolation and simulation (see Chapter A.7 for information on geostatistical soft-
ware).  As noted earlier, STIS provides automated variogram estimation methods 
for modeling spatial relationships through time (see Chapter B.6 for more details 
on the variogram and kriging).  The variogram may then be used in kriging to de-
velop models of how variable values change through space and time.  The current 
release of STIS provides kriging of continuous attributes with or without secon-
dary information. It supports simple kriging, ordinary kriging, kriging with a 
trend, factorial kriging and Poisson kriging. Underlying variogram models may 
account for directional components, and the search strategies for fitting the local 
kriging equations may be anisotropic as well. When the data are time-dynamic one 
can estimate the variogram model through time, or alternatively can specify one 
variogram model and then apply it over the entire time interval.    

A.6.6    Concluding remarks 

This chapter has provided a quick overview of some of the methods and function-
ality that are now available in the Space-Time Intelligence System software.  The 
development of this software has been motivated by a desire to break the bonds of 
what has been called ‘technological determinism’. This arises when tools and me-
thods dictate the approaches that are used to solve problems, as summarized in the 
aphorism ‘When one has a hammer everything starts to look like a nail’.  In spatial 
analysis two factors lead to technological determinism.  First, there still is a strong 
tradition of using static data models as the basis for developing statistical ap-
proaches for spatial data.  One still often sees observations subscripted to identify 
their location, but we less often see a subscript denoting time – when that observa-
tion was observed.  This is an oversimplification when data in reality are time-
dynamic, and results in the application of statistical methods that assume static da-
ta to systems that are in fact highly time-dynamic. Second, many of the software 
tools, such as Geographical Information Systems, were originally founded on a 
‘static world view’ that may be appropriate for geology and other fields where 
system change is slow, but is less appropriate in economic geography, medical ge-
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ography and other fields where the systems under scrutiny are highly dynamic. It 
is unusual, for example, to find software in which the underlying assumption is 
that the location, extent and attributes associated with an object may change 
through time.  The STIS software is a solution to this problem, and the assumption 
of dynamic objects leads naturally to time-enabled data views, tables, maps, statis-
tical graphics, and analysis methods, including clustering, regression, geographi-
cally weighted regression, variogram analysis and kriging.   In the near future we 
expect to include Q-statistics – methods for the analysis of case-control data that 
account for residential mobility, covariates and risk factors (Jacquez et al. 2006; 
Jacquez and Meliker 2009).  STIS was created by BioMedware, and is being dis-
tributed by TerraSeer, Inc.  Details on the methods are available on the TerraSeer 
website, www.Terraseer.com.   
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A.7  Geostatistical Software 

Pierre Goovaerts 

A.7.1   Introduction 

Geostatistical spatio-temporal models provide a probabilistic framework for data 
analysis and predictions that build on the joint spatial and temporal dependence 
between observations. Since its original development in the mining industry in the 
late 1950s and early 1960s, the geostatistical approach has been adopted in many 
disciplines, such as environmental sciences (remote sensing, characterization of 
contaminated sediments, estimation of fish abundance), meteorology (space-time 
distribution of temperature and rainfall), hydrology (modeling of subsurface hy-
draulic conductivity), ecology (characterization of population dynamics), agricul-
ture (maps of soil properties and crop yields), and health (patterns of diseases and 
exposure to pollutants). Following the increasing popularity of geostatistics, the 
software market has expanded substantially since the late 1980s when it was re-
stricted more or less to two public-domain applications running under DOS: Geo-
EAS (Geostatistical Environmental Assessment Software, Englund and Sparks 
1988) and the Geostatistical Toolbox (Froidevaux 1990). Nowadays geostatistical 
software encompasses a wide range of products in terms of price, operating sys-
tems, user-friendliness, functionalities, graphical and visualization capabilities. 
Several organizations, such as AI-GEOSTATS (www.aigeostats.org) or the Pe-
dometrics commission of the International Union of Soil Sciences 
(www.pedometrics.org), provide a fairly complete list of geostatistical freeware 
and commercial packages on their website; the long list could intimidate any new-
comer to the field and it is summarized in Table A.7.1. The following considera-
tions should be taken into account when choosing a geostatistical package: 

(i) Does the user need to have access to the source code (i.e. graduate student 
who plans to implement a new approach that is a variant of existing algo-
rithms) or is (s)he content with a black-box product? 

(ii) What are the characteristics of the data? Are the observations collected in 2D 
or 3D? Does the sampling domain span both space and time? Are the obser-
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vations available at a limited number of discrete locations or over a large 
raster, such as DEM or satellite imagery? 

(iii) What type of analysis is envisioned? A simple description of the major spa-
tial pattern? Straightforward prediction (i.e. univariate kriging) at unsampled 
locations or more complex incorporation of secondary information? A mod-
eling of local or spatial uncertainty? 

(iv) What is the level of geostatistical expertise of the user? Does user-
friendliness prevail over flexibility? Is the analysis restricted to geostatistics 
or does it involve several steps (for example sampling design) that require 
additional pieces of software? Would the user favor a completely automated 
approach where variogram modeling is done behind the scene? 

Table A.7.1. List of main geostatistical software with the corresponding reference 

Name Code Costa Reference 
Agromet C++ F Bogaert et al. (1995) 

AUTO-IK Fortran F Goovaerts (2009) 

BMELib Matlab F Christakos et al. (2002) 

COSIM Fortran F ai-geostats website 

EVS (C-Tech)  H C Tech Development Corporation 

GCOSIM3D/ISIM3D C F Gomez-Hernandez and Srivastava (1990) 

Genstat  F,L Payne et al. (2008) 

GEO-EAS Fortran F Englund and Sparks (1988) 

GeoR R F Ribeiro and Diggle (2001) 

Geostat Analyst    H Extension for ArcGIS 

Geostatistical Toolbox  F Froidevaux (1990) 

Geostokos Toolkit  H ai-geostats website 

GS+   M Robertson (2008) 

GSLIB Fortran F Deutsch and Journel (1998) 

Gstat C,R F Pebesma and Wesseling (1998) 

ISATIS (Geovariances)  H www.geovariances.com 

MGstat Matlab F ai-geostats website 

SADA (UT Knoxville)  F Spatial analysis and decision assistance 

SAGE 2001  M Isaaks (1999) 

SAS/STAT  H SAS Institute Inc. (1989) 

S-GeMS C++ F Remy et al. (2008) 

SPRING  F Camara et al. (1996) 

Space-time routines Fortran F De Cesare et al. (2002) 

STIS (TerraSeer)  M AvRuskin et al. (2004) 

Surfer   M Golden Software, Inc. 

Uncert C F Wingle et al. (1999) 

Variowin  F Pannatier (1996) 

VESPER  F Minasny et al. (2005) 

WinGslib Fortran L www.statios.com 

Notes: a Cost: H high, M moderate, L low, F free 
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Each issue is discussed briefly in this chapter and appropriate software, among the 
ones the author is familiar with, are suggested for the main types of situation.   

A.7.2    Open source code versus black-box software 

As the geostatistical community increases, more researchers, particularly in aca-
demia, start sharing source code that is either posted online or published in jour-
nals such as Computers and Geosciences. Table A.7.1 (column 2) lists the pro-
gramming language, such as Fortran or C++, whenever the source code is 
provided. While some programs require only the availability of a compiler, other 
routines necessitate more expensive packages, such as Matlab. Some software (for 
example, STIS, S-GeMS), also supports a plug-in mechanism to augment their 
functionalities, allowing for the addition of new geostatistical algorithms or add-
ing supports for new types of grids on which geostatistics could be performed 
(Remy et al. 2008).   

The Stanford Center for Reservoir Forecasting (SCRF) has been instrumental 
in the last 20 years in making source code for common, as well as advanced, geo-
statistical algorithms available to the academic community. The first attempt was 
the publication in 1992 of the Geostatistical Software LIBrary (GSLIB), a collec-
tion of Fortran 77 codes and executable files that cover variogram analysis, spatial 
interpolation and stochastic simulation (Deutsch and Journel 1998). The programs 
are well documented and the user manual provides both theoretical background 
and useful application tips. User-friendliness was greatly improved in the subse-
quent C++ product S-GeMS (Stanford Geostatistical Modeling Software) which 
offers a graphical user interface that enables interactive variogram modeling and 
facilitates the visualization of data and results in up to three dimensions.  

Users who are statistically and computer-literate can take advantage of the 
rich collection of classical and modem spatial techniques implemented in the open 
source statistical program R (Ripley 2001). In particular, Gstat offers a robust and 
flexible suite of univariate and multivariate geostatistical methods for estimation 
and simulation. Simulation comprises conditional or unconditional (multi-) Gaus-
sian sequential simulation of point values or block averages, or (multi-) indicator 
sequential simulation. The GeoR package implements model-based geostatistical 
methods but is limited to small (500 to 1,000 observations) univariate 2D datasets 
(Ribeiro et al. 2003).   

Although space-time geostatistical routines are rather limited, most of these 
programs are public-domain. The BMElib library is a Matlab numerical toolbox 
that implements space/time variography and estimation using the Bayesian Maxi-
mum Entropy (BME) theory. This library is fairly complete, but it requires a 
strong statistical background and the Matlab package. On the other hand, Cesare et 
al. (2002) modified some of the GSLIB Fortran 77 routines to estimate and model 
space-time variograms, as well as to accommodate the use of such models in tradi-
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tional kriging interpolation. Two general families of models are incorporated in 
the programs: the product model and the product-sum model, both based on the 
decomposition of the space-time covariance in terms of a spatial covariance and a 
temporal covariance. The commercial software STIS (Space-Time Information 
System) is one of the rare examples of GIS software where a time stamp is as-
signed to each piece of information, allowing the incorporation of time in the spa-
tial data analysis. The geostatistical treatment of space-time data in STIS is cur-
rently limited, however, to the repetition of a purely spatial analysis for each time 
step, prohibiting any prediction at unmonitored times.  

A.7.3    Main functionalities 

As a consequence of the wide variety of geostatistical applications and the con-
tinuous development of new algorithms, finding all the functionalities required by 
a specific application within a single product might become increasingly difficult. 
Most geostatistical studies, however, share a similar sequence of steps: explora-
tory data analysis to get familiar with the data, characterization and modeling of 
the pattern of spatial variation, interpolation to the nodes of a grid or over blocks 
(upscaling), and modeling of local and spatial uncertainty. 

Exploratory spatial data analysis. Except for a few products focusing on spe-
cific tasks, such as variography (for example, Variowin, SAGE 2001), estimation 
(for example, AUTO-IK, Vesper) or stochastic simulation (for example, COSIM, 
GCOSIM3D), most software in Table A.7.1 provides basic data mapping and ex-
ploratory tools, such as the histogram and scatterplots. These programs, however, 
differ in their ability to handle 3-dimensional and space-time databases, as well as 
dynamic exploration and visualization of the data. The S-GeMS and Uncert soft-
ware offer public-domain visualization tools for three-dimensional datasets, but 
they lack basic GIS capabilities, such as data queries or linked windows. Such fea-
tures are incorporated in the C-tech product EVS which is designed to integrate 
seamlessly with ESRI's ArcView® GIS and ArcGIS® or to operate in a stand-
alone mode. Licenses for this high-end software can be expensive, however. Ter-
raSeer STIS is less expensive and has excellent browsing and linking capability 
for exploratory analysis of space-time datasets in two dimensions. 

Variogram estimation and modeling. Quantifying and modeling the pattern of 
variation in the data is the cornerstone of any geostatistical analysis. A wide range 
of options is available at present: from fully automated computation and modeling 
of variograms to highly interactive programs that allow the detection and elimina-
tion of spatial outliers (for example, variogram cloud cleaning), the exploration of 
spatial anisotropy through variogram maps or surfaces, and the manual fits of 
variograms. One of the first interactive programs for variography was Variowin 
(Pannatier 1996) that is public-domain. It provides several variogram estimators, 
and computes both variogram map and variogram cloud in addition to the tradi-
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tional variogram plot. This program is limited to small 2D datasets, however, and 
does not include any interpolation or simulation procedure.  

GIS software, such as ArcView® Geostat Analyst or TerraSeer STIS, offer 
similar options with better visualization capabilities than Variowin and a series of 
kriging and simulation algorithms that can use the variogram model in subsequent 
analysis. In particular, the variogram cloud in STIS is linked with the location 
map, which facilitates greatly the detection of data pairs with undue influence on 
the computation of the variogram. Other unique features of this program are the 
flexibility in variogram modeling (for example model parameters can be estimated 
automatically under constraints on the nugget effect and type of basic models), the 
ability to compute variograms from areal data (for example counties) and to derive 
the point-support model accounting for the shape and size of these geographical 
units (deconvolution).  

Other programs, such as ArcView® Geostat Analyst or Surfer, also offer an 
automatic variogram modeling procedure but they either lack transparency, lead to 
unsatisfactory fits or do not allow anisotropic modeling. The SADA variogram 
module allows automatic variogram modeling as well and its exploration of ani-
sotropy through the rose diagram is very appealing. The general-purpose statistical 
package Genstat (Payne et al. 2008) offers a wide variety of variogram models and 
allows automatic modeling, but its command language and procedure library are 
challenging for all users who are not statistically and computer-literate. 

The SAGE 2001 software can be viewed as the 3D counterpart of the 2D 
stand-alone Variowin software. It is not free, but it has the capability of fitting 3D 
models automatically. Other commercial products, such as C-tech EVS and 
ISATIS, also provide an automatic 3D modeling procedure that is part of their 
kriging module. ISATIS is certainly the most flexible software since it allows 
identification of directions and scales of continuity through the unique 3D interac-
tive variogram map. Public-domain software S-GEMS and UNCERT can compute 
variograms in three directions but only visual fitting is implemented. To the au-
thor’s knowledge, there is currently no commercial software for the geostatistical 
treatment of space-time data, including the interpolation at unmonitored times and 
locations. Current public-domain software involves a lot of data manipulation and 
require expert knowledge in either the modeling of the variograms (De Cesare et 
al. 2002) or the use of the software itself (for example BMELib). 

Spatial interpolation. Basic univariate kriging variants (simple, ordinary and 
universal kriging) are typically covered by geostatistical software. Products differ 
in their ability to handle irregular interpolation grids or uneven prediction supports 
(i.e. change of support through block kriging), their flexibility to set up a search 
strategy (for example stratified search windows), or the possibility of comparing 
various implementation schemes by cross-validation or jack-knifing. S-GeMS is 
an improvement over GSLIB and GEO-EAS because it allows the specification of 
user-defined interpolation grids instead of the traditional regular grids in mining 
applications. Point measurement supports and rectangular prediction supports only 
are implemented, which is not adequate for applications, such as those in epidemi-
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ology or the social sciences, where the units of measurement are irregular poly-
gons. Such levels of complexity are handled in TerraSeer STIS where both meas-
urement and prediction supports can be either points, polygons or raster cells. In 
addition, it is the only commercial software that implements Poisson kriging, an 
interpolation procedure that is tailored to the analysis of rate data, such as crime or 
mortality rates.   

One of the key advantages of geostatistics over other spatial interpolation pro-
cedures is its ability to incorporate secondary information, which can be available 
at all locations where a prediction is sought (i.e. simple kriging with a local mean 
or external drift) or known at a limited number of locations (cokriging). All these 
algorithms are implemented in the public-domain GSLIB and in the commercial 
software ISATIS. Kriging with an external drift is lacking from S-GeMS, whereas 
cokriging is not implemented in STIS or C-tech EVS.  

Probability mapping. An important contribution of geostatistics is the assess-
ment of uncertainty about unsampled values, which usually takes the form of a 
map of the probability of exceeding critical values, such as regulatory thresholds. 
Such probabilities can be estimated using parametric (i.e. multi-Gaussian kriging) 
or non-parametric (i.e. indicator kriging) methods. Both sets of algorithms are 
available in S-GeMS as well as ISATIS. Indicator kriging is also implemented in 
SADA and the stand-alone AUTO-IK program (Goovaerts 2009).  

Stochastic simulation. Stochastic simulation has certainly been one of the 
most active areas of research in geostatistics for the last decade. The basic idea is 
to generate a set of equiprobable representations (realizations) of the spatial distri-
bution of attribute values and to use differences among simulated maps as a meas-
ure of uncertainty. Each simulated map looks more ‘realistic’ than the map of 
smooth kriging estimates because it reproduces the spatial variation modeled from 
the sample information. Simulation can be done using a growing variety of tech-
niques that differ in the underlying random function model (multi-Gaussian or 
non-parametric), the amount and type of information that can be accounted for and 
the computer requirements.  

S-GeMS implements the most common algorithms (i.e. sequential indicator 
and Gaussian simulations), as well as recent methods based on multiple point sta-
tistics. The most complete palette of simulation methods, covering both continu-
ous and categorical variables, is in ISATIS. These two software packages also 
have modules to post-process the set of realizations, creating maps of averaged 
simulated values, the probability of exceeding critical thresholds or measures of 
differences among realizations. Table A.7.2 lists other products that include sto-
chastic simulation, either as a stand-alone algorithm (COSIM, GCOSIM3D) or as 
part of the geostatistical module (STIS, Uncert). 
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Table A.7.2. List of functionalities for main geostatistical software (modified from the list 
on http://www.ai-geostats.org/) 

 Name Data V K CK IK MG S G 

Agromet 2D X X X     

AUTO-IK 2D X   X    

BMELib 3D, ST X X X   X  

COSIM 2D      X  

EVS (C-Tech) 3D X X  X   X 

GCOSIM3D/ISIM3D 3D      X  

Genstat 3D X X X     

GEO-EAS 2D X X      

GeoR 2D X X    X  

Geostat Analyst  2D X X X X X  X 

Geostatistical Toolbox 3D X X X     

Geostokos Toolkit 3D X X X X  X  

GS+ 2D X X X   X  

GSLIB 3D X X X X X X  

Gstat 3D X X X   X  

ISATIS 3D X X X X X X X 

MGstat 3D, ST X X      

SADA 3D X X  X   X 

SAGE2001 3D X       

SAS/STAT 2D X X      

S-GeMS 3D X X X X X X  

SPRING 2D X X  X  X X 

Space-time routines 2D, ST X X      

STIS (TerraSeer) 2D, ST X X   X X X 

Surfer 2D X X      

Uncert 3D X X    X  

Variowin 2D X       

VESPER 2D X X      

WinGslib 3D X X X X X X  

Notes: V variography, K kriging, CK cokriging, IK indicator kriging, MG multi-Gaussian kriging,  
S simulation, G GIS interface 

A.7.4    Affordability and user-friendliness 

A package can offer all geostatistical methods developed in the last 20 years, but it 
can scare away potential users by its price or design. In particular for academics, 
price and transparency typically drive the choice of geostatistical software. Con-
sulting companies and federal agencies are likely to favor products that do not re-
quire advanced statistical background and provide all necessary functionalities 
within a single package. To appeal to users that are more task-oriented than 
method-oriented, several products such as SADA or STIS have task managers to 
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guide the geostatistician through the sequence of steps required to accomplish the 
task at hand. For example, in SADA the task ‘Interpolate my data’ consists of 
eleven steps, starting with ‘See the data’ and ending at ‘Add to results gallery’. 
This public-domain software also offers integrated modules for using the results of 
the geostatistical analysis in human health risk assessment, ecological risk assess-
ment, cost/benefit analysis, sampling design, and decision analysis. On the other 
hand, STIS includes a complete regression module that is useful for calibrating the 
trend model used in multivariate kriging procedures. 

Another approach to improve user-friendliness is to automate some of the 
steps, in particular the variogram modeling procedure which is typically the stum-
bling block for the adoption of kriging over more traditional methods, such as in-
verse distance weighting. The key is to provide transparency and use reasonable 
default options; for example, the user should have access to the variogram model 
computed behind the scene and it is puzzling that the unrealistic linear model is 
still used as the default variogram in Surfer. For example, C-tech MVS/EVS uses 
expert systems to analyze the input data, construct a multidimensional variogram 
which is a best fit to the dataset being analyzed, and then perform kriging in the 
domain to be considered in the visualization. The user is provided with the option 
to specify values for parameters that control the variogram and kriging procedures, 
and the subsequent display and analysis of the data. A public-domain alternative 
for 2D interpolation is VESPER that allows the automatic computation and mod-
eling of local variograms, followed by spatial interpolation. Such a procedure 
capitalizes on high sampling density to adapt the process spatially to distinct local 
differences in the level of variation in the field. For non-parametric geostatistics, 
AUTO-IK is a free computer code that performs the following tasks automati-
cally: selection of thresholds for binary coding of continuous data, computation 
and modeling of indicator variograms, modeling of probability distributions at 
unmonitored locations (regular or irregular grids), and estimation of the mean and 
variance of these distributions. 

A.7.5    Concluding remarks 

Summarizing the pros and cons of the geostatistical software currently available 
on the market in a few pages is a daunting task given the large number and diver-
sity of these products. This brief chapter by no means pretends to provide a com-
plete overview of all software, but rather offers a few pointers to guide the choice 
of a suitable product based on the task at hand, the user’s expertise and financial 
resources. The main conclusion is that there is no such thing as a ‘best all-purpose 
software’. Creating a geostatistical model is rarely a goal per se, but rather a pre-
liminary step towards decision-making, such as design of a sampling or remedia-
tion scheme. The current trend is to have software that is tailored to the character-
istics of the data of interest (for example areal health data, 3D pollution data, 
space-time climatic data) as well as the type of decision-making envisioned (for 
example detection of cancer clusters, estimation of volume of contaminated sedi-
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ments, location of new monitoring stations). This customization of the products 
should improve their user-friendliness and expand their use while reducing com-
mon mistakes in the application of the geostatistical methodology. 
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A.8  GeoSurveillance: GIS-based Exploratory 
Spatial Analysis Tools for Monitoring 
Spatial Patterns and Clusters 

Gyoungju Lee, Ikuho Yamada and Peter Rogerson 

A.8.1  Introduction 

Spatial clusters are often formed by underlying non-random geographic processes 
generated from various factors (for example, a disease outbreak around a pollutant 
source). Spatial randomness is a theoretical baseline in comparison of which spa-
tial clustering is assessed in statistical frameworks dealing with spatial uncer-
tainty. Spatial statistical methods for investigating spatial clustering have been de-
veloped to reveal the locations of probable sources (for example, environmental 
factors) that may cause unusual concentrations of geographic events. Clustering 
tests assess the overall tendency for geographic events to concentrate in space, as 
well as measure the associated statistical significance, while clusters point to 
where geographic events are densely located in close proximity (Waller and Got-
way 2004). 

Three types of spatial statistical tests are categorized by Besag and Newell 
(1991). The categories are: (i) general tests, (ii) focused tests, and (iii) tests for the 
detection of clustering. General tests focus on identifying overall spatial pattern 
across an entire study region. These tests summarize the global spatial pattern us-
ing a single summary statistic (such as Moran’s I), while omitting details associ-
ated with local variation. Focused tests focus on one or more prespecified geo-
graphic locations to examine whether there are spatial clusters around those foci. 
Tests for the detection of clustering are used to explore the local concentration of 
geographic phenomena when no a priori location information is given, unlike fo-
cused tests.  

Global statistics fall into the category of general tests and are often used to test 
whether an overall spatial clustering propensity exists in a study region. Local sta-
tistics such as local Moran’s I and local G statistics, when employed for many lo-
cations throughout the study region, are considered as tests for the detection of 
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clustering, to detect the locations and sizes of geographic clusters which deviate 
from the null hypothesis of no clustering (Kim and O’Kelly 2008). The Geo-
graphical Analysis Machine (Openshaw et al. 1987), the Cluster Evaluation Per-
mutation Procedure (Turnbull et al. 1990), and the Spatial Scan Statistic (Kull-
dorff 1997) also belong to this category. While tests for the detection of clustering 
search the entire study region for geographic clusters, focused tests use prior in-
formation on the locations of factors that may cause clustering. Tests in this cate-
gory include the score statistic and Stone’s test (Lawson 1993; Waller and Lawson 
1995). 

Methods for spatial cluster detection can also be classified with respect to 
whether they are retrospective and prospective (Rogerson 1997). Retrospective 
analysis is concerned with spatial data analysis that is carried out at a particular 
point in time, using data from the past, while prospective analysis, on the other 
hand, is designed for repeated statistical analysis on time-series data that are up-
dated periodically. Most spatial statistical tests developed to date are retrospective 
in nature. Although they are effective in detecting static spatial patterns observed 
at a given time, they are insensitive to changes in spatial patterns, even when suc-
cessively applied to time-series datasets, due to the temporal autocorrelation be-
tween tests (Rogerson and Sun 2001). Recently, considerable effort has been de-
voted to devising prospective tests that both take into account their dynamic nature 
and attempt to quickly find significant changes in spatial patterns of disease, 
crime, etc. (Rogerson 1997, 2001a; Kulldorff 2001).  

Based on the powerful capability of GIS in dealing with spatial data, signifi-
cant progress has been made in spatial analysis software development, and this has 
promoted applications of spatial statistical methodologies in various fields (for ex-
ample, spatial epidemiology, crime analysis). This chapter introduces a GIS-based 
spatial analysis tool, GeoSurveillance1 that can make some contribution in this re-
gard. GeoSurveillance is stand-alone software designed to explore spatial patterns 
in both retrospective and prospective manners; the software and associated docu-
mentations are available from http://www.acsu.buffalo.edu/~rogerson/geosurv.htm. 
Other software, such as SaTScan and GeoDa, provides spatial statistical routines 
with other specific objectives or methodological foci for exploring spatial regimes 
in geographic phenomena.  

In GeoSurveillance, a set of retrospective and prospective statistical tests is 
implemented in the framework of GIS, where basic GIS functions are provided for 
data exploration, including mapping analysis results and linking them to tables, 
charts, etc. in real time. A useful property of GeoSurveillance is the capability of 
simultaneously linking diverse analysis tools (maps, tables, and charts) in a single 
window, so that the user can perform exploratory spatial analysis in an integrated 
platform. Additionally, GeoSurveillance provides functionality for conducting 

                                                           
1  This program was developed in Visual Basic 6.0 IDE. A simple GIS engine was devel-

oped for the task of mapping, zooming, panning, etc. Other third party GIS servers (for 
example, ESRI MapObjects) were not used. 
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cumulative sum (cusum) analysis, which is a type of prospective statistical proce-
dure that can avoid the multiple testing problems associated with temporally auto-
correlated tests. Although SaTScan allows prospective application of the spatial 
scan statistic to detect space-time clusters, the multiple testing problems are not 
accounted for explicitly. Details of the cusum statistic are discussed later in this 
chapter. 

This chapter consists of five sections including this introductory one. Section 
A.8.2 describes the structure of GeoSurveillance, and Section A.8.3 provides a 
theoretical overview of retrospective and prospective tests implemented in Geo-
Surveillance. Section A.8.4 demonstrates spatial statistical analysis in GeoSurveil-
lance using sample datasets included in the GeoSurveillance setup package. Sec-
tion A.8.5 provides concluding remarks. 

A.8.2   Structure of GeoSurveillance 

In GeoSurveillance, two retrospective tests and one prospective test are imple-
mented. The score statistic and the maximum local statistic (the M test) are avail-
able as retrospective tests, while the cumulative sum statistic for normal univariate 
variables is implemented as a prospective test. Also provided are some auxiliary 
tools that help users produce additional information relevant to these tests.  Figure 
A.8.1 shows the overall software structure and Fig. A.8.2 illustrates the general 
procedure for performing statistical analysis in GeoSurveillance. Functional de-
tails of GeoSurveillance can be found in the user’s manual from the website men-
tioned previously. 

 

 

Fig. A.8.1. Structure of GeoSurveillance 
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Fig. A.8.2. Statistical analysis procedures in GeoSurveillance 

A.8.3   Methodological overview  

This section provides a brief overview of the three statistical tests implemented in 
GeoSurveillance, namely, the score test and the maximum local statistic (the M 
statistic) for retrospective testing and the cusum statistic for prospective testing.  

Consider a study region consisting of n subregions, and assume that observed 
and expected numbers of disease cases in subregion j (j=1, …, n), are denoted by 
Oj and Ej, respectively, are available. The local score statistic is then defined as 

 

∑
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jjiji EOWU
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)(  (A.8.1) 

 
where Wij represents a spatial weight that is usually specified as a function of the 
distance between subregions i and j. Ej  can for example be estimated by multiply-
ing the size of the at-risk population in subregion j by the overall disease rate for 
the entire study region in the simplest case, but other covariates such as age and 
gender structures of the population can also be taken into account. According to 
Waller and Lawson (1995), the local score statistic under the null hypothesis of no 
elevated risk in subregion j approximately follows a normal distribution with 
mean zero and variance  
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so that an approximated z-value of the local score statistic is obtainable.  

Rogerson (2005) defined a global score statistic as the sum of the squared lo-
cal statistic in Eq. (A.8.1), that is, 
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To define the spatial weight wij between subregions i and j, GeoSurveillance uses 
a Gaussian function formulated as 
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where σ is a bandwidth determining the level of spatial smoothness (or, equiva-
lently, the size of the hypothesized cluster), dij is the distance between subregions i 
and j, and A is the area of the study region. A larger bandwidth gives more weight 
to distant subregions and more smoothing effects are induced. Because of irregular 
areal units and subregions near the edge of the study region, a scaled spatial 
weight  
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needs to be used so that the sum of the squared Wij in Eq.(A.8.4) will be equal to 
be one (Rogerson 2001b, 2005).  

The scaled weight can further be adjusted for the expected value Ej as 
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Using the readjusted spatial weight, Eqs. (A.8.1) and (A.8.3) can be rewritten re-
spectively as follows: 
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Rogerson (2005) shows that, since U2 statistic takes the form of the general test by 
Tango (1995), its statistical significance can be assessed based on the null distri-
bution of Tango’s statistic. Focused tests for a particular region can be conducted 
based on Eq. (A.8.7), whereas a general test for assessing the overall clustering 
tendency can be based on Eq. (A.8.8). 

The M statistic is defined as the maximum of the local statistics Ui given in 
Eq. (A.8.7) for a set of subregions (Rogerson 2001b). The critical value of the M 
statistic is given by  
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where σ denotes a chosen probability of Type I errors.   

The score statistic defined as above can be considered to be transforming Oj 
and Ej into z-values assuming that the counts follow the Poisson distribution. Geo-
Surveillance provides two additional types of z-value transformation:  
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Prospective test. The cumulative sum (cusum) statistic is used primarily in statis-
tical process control in manufacturing environments to pinpoint persistent 
changes in the mean of a monitored variable to assess whether the process is in 
control or encountering abnormal deviations from what is expected (Hawkins and 
Olwell 1998). Rogerson (1997, 2001a) described how to use the cusum method in 
disease surveillance to monitor disease outbreaks, pointing out the increasing rec-
ognition of the need for detecting clusters quickly in a prospective manner. Roger-
son and Sun (2001) also applied the method to detecting clusters of crime shifting 
in space and time. Rogerson and Yamada (2004) further extended the univariate 
basis of the method to a multivariate one. Quick detection of emerging clusters is 
made possible by continuously updating the cusum statistic in near real time as 
new data become available.  

The basic form of the cusum statistic is defined as 

 

( )1max 0,t t tS S z k−= + −  (A.8.11) 

 

where St represents the cumulative sum at time t, and zt is the standardized value 
of a variable of interest with mean 0 and variance 1 at time t. Further, k is a pa-
rameter which is often set equal to ½, and therefore zt exceeding k contributes 
positively to the accumulation of St. A value of St that exceeds a threshold parame-
ter, h, indicates a significant shift or change in the mean value of the monitored 
variable zt. An appropriate value of threshold h is determined according to a de-
sired false alarm rate, characterized by the in-control average run length (ARL0), 
defined as the mean time between false alarms under the null hypothesis of no 
change. Low values of h lead to too frequent false alarms, but a higher probability 
of detecting a real change. In contrast, higher values of h lead to a low probability 
of a false alarm, at the cost of a higher probability of not detecting a real change. 
Siegmund (1985) provided the following approximation for the in-control ARL0 
under the null hypothesis:  
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The user may first specify a desired ARL0 and k, and then solve Eq. (A.8.12) for h. 
For the standardized variable z, k is often chosen to be 1/2 since it minimizes the 
time to detect an actual increase of 2k in the mean. Rogerson (2006) derived an 
approximating formula to compute h directly from given values of k and ARL0 
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(A.8.13b) 

 
This formula provides generally accurate approximations in the range of       
k2ARL0 > 1.  

The relationship between h and ARL0 in Eq. (A.8.13a) should be adjusted 
when the interest is in monitoring the cusum charts for all individual regions si-
multaneously. When each cusum chart is associated with observations in each of n 
subregions, a Bonferroni adjustment may be applied to adjust for the fact that n 
independent tests are carried out simultaneously. More specifically, to maintain 
the false alarm rate for the entire system, the threshold value h for individual 
subregions is obtained by replacing ARLo in Eq. (A.8.13a) by n ARLo. When a 
cusum chart is for a local statistic for each subregion, one should take into account 
correlation between local statistics for nearby subregions, which may decrease the 
probability of detecting real change as well as the false alarm rate. A less conser-
vative adjustment for multiple testing is therefore needed, and one possibility is to 
substitute ARLo n / (1+0.81σ) for ARLo in Eq. (A.8.13b) when the local statistics 
are calculated with the Gaussian weight defined above. Note that the former, Bon-
ferroni adjustment is a special case of the latter where σ = 0. GeoSurveillance in-
cludes an auxiliary tool that returns an appropriate h value for given k, ARL0, n, 
and σ.  

It should also be pointed out that, if a variable of interest can be standardized 
to a z-value, the cusum scheme in Eq. (A.8.11) can be applied to detect significant 
change in the variable over time. Therefore, as Lee and Rogerson (2007) demon-
strate using Moran’s I and Getis’s G statistics, potentially, any of the spatial statis-
tics for detecting spatial clustering can be fruitfully utilized in the cusum scheme 
to monitor changes in spatial pattern over time (Rogerson and Sun 2001). 

A.8.4   Illustration of GeoSurveillance 

In this section, we illustrate how to conduct the statistical tests explained in the 
previous section in GeoSurveillance using sample datasets. For illustration of ret-
rospective tests, the Sudden Infant Death Syndrome (SIDS) in North Carolina, 
1974 data is used. It consists of the numbers of births and SIDS cases in 100 coun-
ties in the state. For the prospective test, the breast cancer mortality data in 217 
northeastern counties of the U.S. is used; this contains annual, standard normal z-
values computed based on observed and expected breast cancer counts for the pe-
riod 1968-1988. They are both polygon datasets, but the same procedures may be 
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applied to point datasets; see the user’s manual for illustrations using point data-
sets. 

In Figs. A.8.3 and A.8.4, the analysis form and map window linked to it 
shows the results from running the score and M statistics. The map in Fig. A.8.4 
shows a distinctive spatial clustering pattern. The tables in Fig. A.8.3 provide ad-
ditional information such as associated z-values, expected and observed counts. 
The detailed procedures for running the ‘retrospective’ tests are documented in the 
user’s manual. 

 

 

Fig. A.8.3. Result tables linked to the map in Fig. A.8.4 
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Fig. A.8.4. Map of the local score statistic for North Carolina SIDS data 

The user can freely explore the spatial patterns by trying different combinations of 
options available in the analysis form. Figure A.8.5 illustrates the results of the 
score and M statistics for the four variable options with bandwidth σ = 1 and sig-
nificance level, α = 0.05. The hotspots (northeastern and southern parts) and cold 
spot (northwestern part) of SIDS cases show clear spatial separation and the over-
all spatial patterns look similar in all panels of the table. 

Figure A.8.6 shows that as the bandwidth extends outward (0.2, 1.0, and 1.8), 
the separate spatial clustering tendency of cold and hot spots gets clearer, and 
more smooth results are produced. The spatial pattern where low and high local 
score statistics are spatially mixed for a small bandwidth (σ = 0.2) approaches the 
spatial patterns where three distinctive clusters emerge for larger bandwidths. The 
formation of the cold spot looks more conspicuous as σ increases. This tendency 
continues as the bandwidth grows; the differences of the local statistics among 
subregions eventually would become negligibly small with no meaningful spatial 
patterns yielded. For other variable types and bandwidth range options, similar re-
sults are expected. 

Figures A.8.7 and A.8.8 present the results of carrying out a ‘prospective test’, 
namely the cusum test. Figure A.8.8 depicts an enlarged version of the lower right 
part of Fig. A.8.7, which contains tables and parameter boxes to set values of k, h, 
and σ. Figure A.8.9 presents the results when no spatial association among nearby 
subregions is assumed (σ = 0). Figure A.8.10 illustrates the cases for σ = 1.5 with 
h values adjusted for the induced spatial association. The charts in Figs. A.8.9 and 
A.8.10 represent maximum cusum values. In contrast to the map in Fig. A.8.9, 
clusters of signaled regions emerge in the mid-eastern and southern extremity of 
the study area in Fig. A.8.10. As the bandwidth increases to 1.5, the threshold h 
gets smaller based on the adjustment of Eq. (A.8.13) for the spatially correlated 
observations and the maximum cusum values get smaller – a consequence of the 
local maximum value being smoothed by nearby z-values. 
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Fig. A.8.5. Results for the local score (upper) and M (lower) statistics 
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Fig. A.8.6. Maps of adjusted local score statistic for different bandwidths 

 

Fig. A.8.7. Linked windows of cusum map, tables and charts 
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Fig. A.8.8. Enlarged image (tables and parameter control panels) 

 
 

 
Fig. A.8.9. Maximum cusum charts and 1998 map when σ = 0 
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Fig. A.8.10. Maximum cusum charts and 1998 maps when σ = 1.5 

A.8.5   Concluding remarks 

In this chapter, GeoSurveillance was introduced as stand-alone software equipped 
with exploratory spatial analysis and monitoring tools. In GeoSurveillance, a set 
of associated spatial tests for cluster detection is implemented in both retrospec-
tive and prospective frameworks. The local score statistic and the M statistic can 
be used as a focused test and a test for detection of clusters in the retrospective 
framework. The associated global score statistic can be considered as a general 
test. The cusum statistic is used to monitor and detect spatial pattern changes in 
the prospective framework.  

Analysis results are all interlinked in a map, tables, and charts. Various auxil-
iary tools are available in the program so that the user can transform various types 
of z-values based on observed and expected counts data, calculate p-values, de-
termine the threshold values for cusum charts, etc. Based on the scheme of inter-
linked visual tools (map, table, chart), exploratory approaches are made possible 
to detect spatial clusters and spatial pattern changes. Although there are limita-
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tions, GeoSurveillance provides a useful analysis platform where some basic func-
tions required for spatial statistical analysis and various exploratory tools are 
tightly integrated together.  

We plan to upgrade GeoSurveillance by making the matrix calculation in the 
score statistic faster for relatively large datasets (over 217 observations). In addi-
tion, some GIS functions will also be improved.  
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A.9  Web-based Analytical Tools for the 
Exploration of Spatial Data 

Luc Anselin, Yong Wook Kim and Ibnu Syabri 

A.9.1  Introduction 

For close to twenty years now, there have been substantial efforts to extend 
Geographic Information Systems with functionality to carry out spatial analysis in 
general, and spatial statistical analysis in particular. Early work tended to 
emphasize objectives for the integration of GIS and spatial analysis, outline 
required functionality and describe overall frameworks, as exemplified in, among 
others, Goodchild (1987), Anselin and Getis (1992), Goodchild et al. (1992), 
Fotheringham and Rogerson (1993), and Fischer and Nijkamp (1993). More 
recently, this has translated into a range of software implementations of linked, 
embedded and otherwise integrated modules extending ‘traditional’ GIS functions 
with data exploration, visualization and analysis tools. For some recent reviews of 
the relevant literature, see, among others, Anselin (2000), Anselin et al. (2002), 
Symanzik et al. (2000), Zhang and Griffith (2000), Haining et al. (2000), and Ga-
hegan et al. (2002). 

The phenomenal growth of the world wide web has resulted in the 
development of so-called internet GIS, ranging from the delivery of static maps to 
interactive distributed computing frameworks. Most of the emphasis in internet 
GIS to date has arguably been on map delivery, cartographic presentation and 
providing access to a variety of distributed geographic information (see for 
example, Plewe 1997; Peng 1999; Kähkonen et al. 1999; Jankowski et al. 2001; 
Kraak and Brown 2001; Tsou and Buttenfield 2002). 

Increasingly, more specialized spatial analytical capabilities are becoming 
implemented in an internet GIS environment as well. Some examples are virtual 

al. 1999; Takatsuka and Gahegan 2001, 2002). 

Reprinted in slightly modified form from Anselin L, Kim YW, Syabri I (2004) Web-based 

Worboys 2001), as well as exploratory data analysis (Herzog 1998; Andrienko et 
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reality modeling (Huang and Lin 1999, 2002), hydrological modeling (Huang and 

6(2):197-218, copyright © 2004 Springer Berlin Heidelberg. Published in book form
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This chapter deals with efforts to incorporate methods for exploratory spatial data 
analysis in an internet GIS. The original motivation stemmed from the need to 
develop an interactive front end to the Atlas of U.S. Homicides of the National 
Consortium on Violence Research (Messner et al. 2000), which would include 
user-friendly ways to carry out a limited set of spatial data manipulations. The 
objective was to provide this functionality through a standard Web browser, so 
that the user would not need to have access to a GIS or specialized spatial data 
analysis software. Our focus is therefore on techniques to detect and visualize 
outliers in rate maps, to smooth these maps to correct for potential spurious 
inference, and to analyze and visualize patterns of spatial autocorrelation. Such 
methods are still largely absent in mainstream statistical and GIS software. A 
much more ambitious effort to provide ESDA and other spatial data analysis 
methods on the desktop is reflected in CSISS' GeoDa software project (Anselin 
2003).1 

In this chapter first a brief review of the methods included in our approach is 
provided, followed by an outline of the architecture of the software 
implementation. We illustrate the analytical tools with an application to the study 
of spatial pattens in county homicide rates around St. Louis, MO, and of colon 
cancer diagnoses in Appalachia. We close this chapter with some concluding 
remarks. 

A.9.2    Methods 

The techniques included in our analytical toolkit are aimed at the exploration of 
outliers in maps depicting rates or proportions, such as homicide rates, cancer 
incidence rates, mortality rates, etc. Three broad classes of methods are 
considered: outlier maps, smoothing procedures and spatial autocorrelation 
analysis. These methods are not new, and more extensive reviews and background 
can be found in, among others, Anselin (1994, 1998, 1999), Bailey and Gatrell 
(1995), Fotheringham et al. (2000) and Lawson et al. (1999). While familiar in the 
spatial analysis literature, they are typically not part of the standard functionality 
of a commercial statistical package or GIS, let alone included in an internet GIS. 

The most basic set of techniques includes simple enhancements to standard 
choropleth maps in order to highlight extreme values. The maps are obtained by 
classifying the data in a particular way or by comparing the data to a reference 
value, as implemented in percentile maps, box maps and excess rate maps. A 
second set of methods encompasses smoothing procedures, in order to obtain 
‘more accurate’ estimates of the underlying risk than produced by the raw rate 
maps. It is well known that when rates are estimated from unequal populations 
(such as widely varying county populations), the results are inherently unstable. 
Smoothing techniques address this issue by correcting (‘shrinking’) the raw rates 
                                                           
1  GeoDa can be downloaded from http://sal.agecon.uiuc.edu/csiss/geoda.html. 
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while taking into account additional information (such as the indication provided 
by a reference rate). Two specific techniques are implemented here, the Empirical 
Bayes (EB) smoother and a spatial rate smoother. A final set of methods 
addresses the visualization of spatial autocorrelation by means of a Moran 
scatterplot. A brief review of some technical issues is provided next, for a more 
in-depth discussion we refer to the literature. 

Outlier maps. Underlying any choropleth map is a sorting of the observed 
values into bins, similar to the classification used to construct a histogram. Each 
bin then corresponds to a color and all observations (locations) in the same bin are 
colored identically on the map. 

In order to highlight extreme values in a distribution, and downplay the values 
around the median, a percentile map uses six categories for the classification of 
ranked observations: 0-1 percent, 1-10 percent, 10-50 percent, 50-90 percent, 90-
99 percent and 99-100 percent. The lowest and highest percentile are extreme 
values, although this is only a simple ranking and does not imply that these 
observations are necessarily extreme relative to the rest of the distribution. In 
other words, they are candidates to be classified as outliers, but may not be 
outliers in a strict sense. 

A more rigorous assessment of the characteristics of the complete distribution 
of the attributes is obtained in a box map (see, for example, Anselin 1998, 1999), a 
specialized form of a quartile map. Again, there are six categories. In addition to 
four categories corresponding to the four quartiles, an extra category is reserved at 
both the high and low end for those observations that can be classified as outliers, 
following the same definition as applied in the familiar box plot, also known as a 
box and whisker plot.2 Consequently, when there are such outliers, the first and 
last quartile no longer contain exactly one fourth of the observations. The map 
shows the location of the outliers in the value distribution. 

These first two types of maps are generic, in the sense that they apply to any 
kind of data. The excess rate (or, relative risk, standardized risk) maps are specific 
to rate or proportion data. Proportions are ratios of events (such as homicides, 
disease incidence or deaths) over a population at risk (the population in an areal 
unit, or, the population in a specific age/sex group in an areal unit). With Ei as the 
count of events, and Pi as the population at risk in area i,  the ‘raw rate’ pi is the 
simple proportion  

 

pi = Ei / Pi . (A.9.1) 

 

                                                           
2  A box plot shows the ranking of observations by value and classified into four quartiles. 

Observations with values that are larger than (less than) the value corresponding to the 
75th percentile (25th percentile) +(–)1.5 times the interquartile range are labeled outliers. 
See also Cleveland (1993) for an extensive discussion of data visualization issues. For an 
application of Tukey box plots see Chapter E.2. 
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Often, the result is scaled to yield a more meaningful number, such as homicides 
or deaths per ten thousand, per hundred thousand, etc. (typically, different 
disciplines have their own conventions about what is a ‘standard’ base value). 
A measure of relative risk is obtained by comparing the rate at each location to the 
overall mean, computed as the ratio of all the events in the study region over the 
total population of the study region, or  
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where N is the number of areal units in the study region. Note that this is not the 
same as the average of the individual pi. Using the average risk and the population 
for each areal unit, an estimate of the expected number of events can be computed 
as 
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The ratio of actual to expected counts of events (or, their difference) is a 
commonly used indicator of the extent to which a location exceeds (or is below) 
what would be observed if the average risk applied to that location.3 In an excess 
rate map, this is symbolized as a choropleth map. The map as such is purely for 
visualization and does not indicate whether of not the observed excess is 
‘significant’ in a statistical sense. 

Rate smoothing. Rate smoothing or shrinkage is the procedure used to 
statistically adjust the estimate for the underlying risk in a given spatial unit, by 
borrowing strength from the information provided by the other spatial units. The 
motivation for this approach comes from Bayesian statistics, where the estimate 
obtained from the data (the likelihood) is combined with prior information to 
derive a posterior distribution. This process is commonly referred to as borrowing 
strength, since it strengthens the original estimate. In practice, a wide range of 
approaches has been suggested that differ in the way additional information is 
incorporated into the estimation process. It is important to recognize that no 
method is best, and each will tend to result in (slightly) different adjustments to 
the raw rate estimate. The motivation for considering different smoothing 
techniques is to assess the degree of stability of the results. When two methods 
yield very different observations as ‘outliers’, additional investigation may be 

                                                           
3  See the collection of papers in Lawson et al. (1999) for further discussion and several ex-

amples. 
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warranted. This contrasts with the situation where the same observation is 
consistently identified as an outlier across several methods. 
An Empirical Bayes smoother uses Bayesian principles to guide the adjustment of 
the raw rate estimate by taking into account information in the rest of the sample. 
The principle is referred to as shrinkage, in the sense that the raw rate is moved 
(shrunk) towards an overall mean, as an inverse function of the inherent variance.4 

In other words, if a raw rate estimate has a small variance (that is, is based on 
a large population at risk), then it will remain essentially unchanged. In contrast, if 
a raw rate has a large variance (that is, is based on a small population at risk, as in 
small area estimation), then it will be ‘shrunk’ towards the overall mean. From a 
Bayesian perspective, the overall mean is a prior, which is conceptualized as a 
random variable with its own (‘prior’) distribution. 

Assume this prior distribution is characterized by a mean θ and variance φ. 
The Bayesian estimate for the underlying risk at i then becomes a weighted 
average of the raw rate pi, given in Eq. (A.9.1), and the ‘prior’, with weights 
inversely related to their variance. This can be shown to yield 
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Note that when the population at risk is large, the second term in the denominator 
of Eq. (A.9.5) becomes near zero, and wi → 1, giving all the weight in Eq. (A.9.4) 
to the raw rate estimate. As Pi gets smaller, more and more weight is given to the 
second term in Eq. (A.9.4). The Empirical Bayes approach (EB) consists of 
estimating the moments of the prior distribution from the data, rather than taking 
them as a ‘prior’ in a pure sense (for technical details, see, for example, Marshall 
1991). 

An important practical issue is the choice of the reference set from which the 
estimate for θ is computed. For example, one could argue that in a study of 
homicides in rural Minnesota counties (characterized by very low homicide 
counts, but also by small populations, such that a single homicide may cause an 
elevated rate), the proper prior would not necessarily be the national homicide 
rate, but rather an average calculated for the Great Plains ‘region’. In any 
application of smoothing, it is important to consider the sensitivity of the results 
(in terms of how locations are classified as being outliers) to the choice of this 

                                                           
4  The original reference is Clayton and Kaldor (1987), details are also given in Bailey and 

Gatrell (1995, pp 303-308).  
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reference region. One of the characteristics of the tools we implement is to make 
this straightforward for the user. Again, it is important to realize that there is no 
best reference region. Rather, in an exploratory exercise, an assessment of 
sensitivity of the identified ‘patterns’ to the choice of technique is an important 
consideration. 

A spatial rate smoother (for example, Kafadar 1996) is based on the notion of 
a spatial moving average or window average. Instead of computing an estimate as 
the raw rate for each individual spatial unit, it is computed for that unit together 
with a set of ‘reference’ neighbors, Si.5 This contrasts with the EB technique, 
where the smoothed rate is an average of the raw rate and some separately 
computed reference estimate. 

An important practical consideration in the implementation of a spatial 
smoother is the size of the ‘window’, or, the selection of the relevant neighbors. 
As with the EB method, there is no best solution, but rather, interest focuses on the 
sensitivity of the conclusions to the choice of the window. As a general rule, the 
larger the window (the more neighbors), the more of the original variability will 
be removed. In the extreme, if the spatial window includes all the observations in 
the data set, the smoothed rate will be the same everywhere. In practice, neighbors 
can be defined in similar fashion to the specification of spatial weights in spatial 
autocorrelation analysis. In our implementation, we use simple contiguity 
(common borders) to define the neighbors. The smoothed rate becomes  
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where iSj∈  are the neighbors for i.6 The spatially smoothed rate map is then a 
choropleth map based on the ranking of the smoothed rate values. It emphasizes 
broader regional trends and removes some of the spatial detail from the original 
map. 

Visualizing Spatial Autocorrelation. The final component in our analytical 
framework is the visualization of spatial autocorrelation by means of a Moran 
Scatterplot (Anselin 1995, 1996). This is a specialized scatterplot with the 
spatially lagged transformation of a variable on the y-axis and the original variable 
on the x-axis, after standardizing the variable such that the mean is zero and 
variance one. With such a standardized variable as zi, the spatial lag becomes 

                                                           
5  A slightly different notion of spatial rate smoother is based on the median rate in the 

moving window, as used by Wall and Devine (2000). 
6  The total number of neighbors for each unit, Ji is not necessarily constant and depends on 

the contiguity structure. 
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[Wz]i   =  ∑j Wij zj (A.9.7)

 
where Wij are elements of a row-standardized spatial weights matrix.7 For the zi  
and with a row-standardized spatial weights matrix, Moran's I coefficient of 
spatial autocorrelation is:  
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or, the slope of the regression line of the spatially lagged variate [Wz]i on the 
original variate zi  (see Anselin 1996). 

Since the variable  zi is standardized, the units on the axes of the scatterplot 
correspond to one standard deviation. Hence, points further than two standard 
deviations from the center (the mean) can be informally characterized as ‘outliers’. 
However, the main contribution of the Moran scatterplot is the classification of the 
type of spatial autocorrelation into two categories, referred to as spatial clusters 
and spatial outliers. As explained in more detail in Anselin (1996), each quadrant 
of the Moran scatterplot corresponds to a different type of spatial correlation. The 
lower-left and upper-right quadrants indicate positive spatial autocorrelation, 
respectively of low values surrounded by neighboring low values, or high values 
surrounded by neighboring high values. Consequently, these are referred to as 
clusters. In contrast, the upper-left and lower-right quadrants suggest negative 
spatial autocorrelation, respectively of low values surrounded by neighboring high 
values, or high values surrounded by neighboring low values. These are therefore 
referred to as spatial outliers. It is important to note that the scatterplot provides 
the classification, but does not indicate ‘significance’. The latter is obtained by 
applying a local Moran (LISA) test, as shown in Anselin (1995). 

The scatterplot also provides a visual indication of the sign and strength of 
spatial autocorrelation in the form of the slope of the regression line. Finally, the 
scatterplot allows for an informal investigation of the leverage (influence) of 
specific observations (locations) on the autocorrelation measure.8 
                                                           
7  The square spatial weights matrix has a row/column corresponding to each observation. 

For each row (observation) it indicates by a non-zero value those columns (observations) 
that are ‘neighbors’. In our implementation, we only consider neighbors defined by sim-
ple contiguity. The weights matrix is row-standardized such that the elements of each 
row sum to one. 

8  In the latest incarnation of our tool, developed after the first version of this chapter was 
completed, a variance stabilization method due to Assunção and Reis (1999) is included 
as an option. This corrects the Moran's I statistic for potentially spurious inference due to 
the intrinsic variance instability of rates, similar to the EB smoother discussed above. 
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A.9.3   Architecture 

Our point of departure for enabling an internet GIS with spatial analytical 
capability is the collection of Java classes contained in the Geotools open source 
mapping toolkit, originally developed at the University of Leeds.9 Geotools 
implements choropleth mapping, cartograms, linking, zooming, panning and other 
standard functions of an internet GIS through a Java applet embedded in a 
standard html web page. The applet executes on the client's machine in the 
browser (provided the browser is Java-enabled). The toolkit is open source, which 
allows for easy customization and complete access to all the code.10 

Basic Geotools architecture. In order to put our extensions into proper 
perspective, Fig. A.9.1 illustrates the basic logic of the standard Geotools internet 
mapping implementation. The main input is a file in ESRI's shape file format, 
from which an attribute (variable) is extracted for mapping. The attibute values are 
stored in Geotools' so-called GeoData object (data structure), which is essentially 
a two column matrix, with each row containing the value of a key (matching the 
ID of a corresponding feature in the shape file) and the attribute value (either 
numeric or character). Both the file name of the shape file as well as the name of 
the variable to be mapped are passed as parameters to the Java applet, but once the 
main applet is set up, they can no longer be changed.  

Once the GeoData object is constructed, it is passed to the 
ClassificationShader class, which can be thought of as a central data dispatch 
center. The ClassificationShader moves the original data to the appropriate 
classification classes, such as Quantile.class, or EqualInterval.class. These classes 
implement the sorting and classification necessary to group the original data into 
bins for use in a thematic map. The result of the classification is passed back to the 
ClassificationShader, which transfers it to the main applet for mapping. This is 
both directly, for the map itself, and indirectly, via the specialized classes required 
to construct the legend (e.g., the Key.class and the DiscreteShader.class). The 
ClassificationShader also manages a rudimentary user interface (Popup dialog) to 
select the type of classification for the choropleth map, the number of intervals, 
start and end colors for a color ramp, etc. (see Fig. A.9.2). 

 

                                                           
19  http://www.geotools.org. Our implementation is based on Geotools Version 0.8.0. More 

recently, Version 2.0 of Geotools has been released in alpha testing stage. The architec-
ture of this new version is completely different and our framework cannot be ported ‘as 
is’ to the new architecture.  

10  An up to date source tree for the Geotools project is maintained in Sourceforge, at 
http://www.sourceforge.net/projects/geotools 
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Fig. A.9.1. Basic Geotools architecture (original) 

For our purposes, there were several limitations to the standard Geotools 
architecture. Foremost among these was the constraint that only a single variable 
could be handled. All manipulations within the Geotools classes (mapping, 
classification, linking) are limited to this single variable, i.e., the values contained 
in the GeoData object. In our application, the smoothing functions require at least 
two variables, i.e., an event count (numerator) and population at risk 
(denominator), and also need to allow for the computation of a new variable (the 
rate). Similarly, spatial correlation statistics necessitate that a new variable be 
calculated (the spatial lag) to provide the input to the statistic. This was not 
possible in the ‘out of the box’ Geotools release we used to implement our web 
analysis.   

 

   
Fig. A.9.2. Geotools interface 
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The original architecture also makes it difficult to implement true subsetting, as 
opposed to zooming. In true subsetting, the classification of the selected subset of 
locations is recomputed each time the subset changes, whereas in zooming, the 
classification is unaffected. Again, the basic GeoData structure does not lend itself 
to subsetting and recomputation. Finally, there is limited user interaction. For 
example, it is not possible to specify a different shape file as input, or to select a 
different variable from what is hard coded in the original applet. 

The need for flexible data manipulation, variable selection and subset 
computations required us to customize the basic toolkit. This took the form of 
several extensions to the standard collection of Geotools classes as well as the 
development of a number of new classes.  

Geotools class extensions. An overview of the architecture of the extensions 
required to implement the smoothing and correlation computations is given in Fig. 
A.9.3. The main difference with Fig. A.9.1 is that the GeoData object is no longer 
constructed in the main applet, but instead only the Shape File Reader (SFR) is 
passed to the ClassificationShader. This input is obtained from the user, by 
extracting the name of the shape file through an html form embedded in the 
opening web page. The ClassificationShader remains the central data dispatch and 
handles a slightly more elaborate user interface through which the variable names 
and type of classification are selected (see Fig. A.9.4). This is implemented in a 
new class (Alert.class). 

 
 

 
Fig. A.9.3. Extended Geotools architecture 
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In contrast to the original Geotools, where the hard coded variable does not 
require any additional computations, the construction of rates and the smoothing 
operations must be carried out internally. The main computational work to 
accomplish this is included in a number of extensions and new classes. 

 
 

 

Fig. A.9.4. Customized interface 

In our implementation, the Classification Classes handle both the construction of 
the data to be mapped as well as the customized classifications needed for the 
special outlier maps. The original Quantile class is extended to incorporate the 
computation of rates, based on the field names for the numerator (Event) and 
denominator (Base) passed by the user interface (Fig. A.9.4). This creates a 
Geotools SimpleGeoData object, which is somewhat more flexible than the basic 
GeoData object and can be used to handle most computed results (smoothed rates, 
spatial lags) as well as subsets. New classification classes were developed to 
handle each of the specialized outlier maps, the Percentile  Map, Box Map and 
Excess Rate Map.11 These are essentially specialized forms of the basic Quantile 
map, but using different criteria to construct the classification. 

In addition to the specialized classifications, new classes were also needed to 
handle the computations required for the Empirical Bayes and spatial smoothing 
operations. These are included among the Classification Classes as well. 

Moran scatterplot and spatial weights. The other main change from the 
original Geotools toolkit is the incorporation of spatial correlation analysis, 
implemented by the addition of the Moran Scatterplot class (the box included on 
the upper right side of Fig. A.9.2). At first sight, this might have been 
accomplished by customizing the available Geotools class for a scatterplot. 
However, the ScatterPlot.class included in the Geotools toolkit cannot properly 

                                                           
11   Specifically, the Percentile.class, Box.class and Excess.class for, respectively, a percen-

tile map, a box map and an excess rate map 
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accommodate subsetting, that is, where the slope of the Moran scatterplot is 
recalculated for a contiguous subset of locations. Also, linking does not function 
properly for subsets. The new class takes the shape field information from the 
main applet and constructs all the necessary auxiliary variables internally, that is, 
the contiguity based spatial weights, the spatial lag, and Moran’s I. These internal 
computations yield the coordinates of the points in the plot (zi on the x-axis and 
[Wz]i on the y-axis), and the slope and intercept of the regression line. This is 
recomputed and redrawn whenever a subset is selected. 

It may be worthwhile to elaborate upon the way in which the spatial weigths 
are obtained. The Geotools toolkit includes a ‘contiguity matrix’, implemented as 
a HashSet, an internal data structure. However, this data structure includes 
considerable additional information (such as all point coordinates for each 
polygon). The spatial lag construction (for the spatial smoother and for the Moran 
scatterplot) only requires a subset of this, that is, the IDs of the neighbors for each 
location. Instead of using the built-in contiguity matrix, we derive our own data 
structure from the HashSet and store this information in a SimpleGeoData 
structure. This contains only the ID information and is kept in memory until a new 
data set is specified. Subsetting is applied directly to this structure as well. 

User interaction. User interaction in a web-based spatial analysis is two-fold, 
one aspect dealing with the server, the other operating in the browser, on the client 
side. The latter is managed by the Java applet. The main choices (variable, 
smoothing procedure, etc.) are invoked by clicking on the legend box that appears 
when the map is first drawn.  Initially, this is a single button, but after clicking,  an 
interface appears as in Fig. A.9.4. Additionally, selected buttons appear in the web 
page to invoke specific methods (see the illustrations in Section A.9.4). 

The interaction on the server side ensures that the initialization parameters are 
obtained to set the proper configuration for the Java applet. In a standard html 
page, a ‘form’ is used to record the selections, as illustrated in Fig. A.9.5. The 
form invokes a PHP script (on the server) that generates a web page corresponding 
to the selected options. This web page includes one of three Java applets, 
depending on the option selected. After this page is rendered on the client (and the 
applet downloaded) all further interaction is through the Java applet on the client. 
There are three basic options, as illustrated in Fig. A.9.5.12 First, the screen 
resolution can be customized in order to make sure the maps and graphs fit on the 
user's screen  (assuming the browser  window is maximized).  Second,  a selection 
can be made from a series of maps/data sets included in a drop down list. These 
data sets must be present on the server in a directory specified by Geotools. 

 

                                                           
12   This particular view is for a Safari web browser on a Mac G4 workstation, with the 

pages served using the Apache server on a Linux workstation.  
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Fig. A.9.5. Welcome screen and general options 

At this point it is not possible for the user to upload shape files to this directory 
without proper write permissions. The final option pertains to the type of analysis 
to be carried out. The single map option is primarily for visualization and 
smoothing, but only one map is rendered in the browser. This is the fastest option, 
with the shortest time required to download the applet. In contrast, the two map 
option renders both the smoothed map as well as the original (unsmoothed) map, 
to allow direct comparison of outliers and other features of the data. The three 
map option also provides space to draw the Moran Scatterplot for the selected 
variable. These two options take longer to download the applet. 

Finally, the user can interact directly with the graphics, since all maps and 
graphs are linked, such that clicking on a location in one of them highlights the 
matching locations in the others. Also, all three graphics support zooming, 
panning and subsetting. 

A.9.4  Illustrations 

We provide a brief illustration of the functionality of the spatial analysis tools 
using two sample data sets. One is a subset of the NCOVR U.S. Homicide Atlas, 
limited to counties surrounding St. Louis, MO (Messner et al. 1999, 2000). The 
other contains data on colon cancer diagnoses in Appalachian counties.13 Both 

                                                           
13   Data compiled from individual cancer registry records and aggregated to the county 

level by Eugene J. Lengerich, Pennsylvania State Cancer Institute, Pennsylvania State 
University. 
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data sets are for rates, respectively homicide counts over population (for 1979-84) 
and colon cancer diagnosis counts over population (1994-98). Using standard 
practice, the counts are aggregated over a small number of years to avoid extreme 
heterogeneity. 

We start with an Excess Rate map (or relative risk map) for the St. Louis 
region homicide rates (see Fig. A.9.6). The map is invoked by selecting the county 
homicide count in the period 1979-84 (HC7984) as the ‘Event,’ and the county 
population in the same period (PO7984) as the ‘Base.’ Also, the proper map type 
must be clicked in the Legend Interface (see Fig. A.9.4). The buttons at the top of 
the map allow zooming, panning and subsetting. For this particular map type, the 
legend is hard coded, showing six intervals for the relative risk.14 Moving the 
mouse over each county triggers a pop up ‘tooltip’ with the ID value for that 
county (for example, St. Clair county in Fig. A.9.6).  

The map illustrates how both St. Louis city and St. Clair county have 
homicide rates that far exceed the region-wide average. By contrast, outlying rural 
counties have relative risks well below the region-wide average. This highlights 
the dominance of the St. Louis-East St. Louis core when it comes to homicides in 
the period under consideration. 

 
   

Fig. A.9.6. Excess Rate map, St. Louis region homicides (1979-84) 

                                                           
14   The colors in the legend can be adjusted individually, but the default is based on re-

commendations from ColorBrewer, http://www.colorbrewer.org. The same approach is 
taken in all other thematic maps. 
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The second example highlights the use of two maps to compare ‘raw’ rates (the 
simple ratio of events over base) to their smoothed counterparts. The top map in 
Fig. A.9.7 shows an example for colon cancer rates that have been transformed 
using the Empirical Bayes approach, shrinking the raw rates towards the overall 
average for the Appalachian region. In this example, two box maps are shown in 
the browser, the top map with the smoothed rates, and the bottom map with the 
original raw rates. Note how Cameron county, identified as  a high outlier in the 
raw rate map (shown as a tooltip), does not maintain that position in the smoothed 
smoothed map. The smoothing is invoked by clicking on the ‘Smooth’ button in 
the map  window  and selecting  the specific  smoothing method in the  drop down 
 
 

 

Fig. A.9.7.  Empirical Bayes smoothing, colon cancer, Appalachia (1994-98). 
Two box maps with smoothed map on top and original raw rate on bottom 
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list. Counties that lose their outlier status after smoothing are so-called spurious 
outliers, where the extreme rate is likely due to a small population at risk.  

In the Empirical Bayes smoothing method, a central role is played by the 
regional average to which the raw rates are shrunk. When the region is highly 
heterogeneous, the choice of the overall regional average as the reference rate may 
not be appropriate. More precisely, the choice of different subregions will yield 
varying subregional averages which affects the smoothing and the resulting 
indication of outliers. We provide a way to assess the sensitivity of the results to 
this choice by means of the subset command. Clicking on the corresponding 
button turns the cursor into a selection rectangle. The classification underlying the 
box map is recalculated for the selected counties, and, as a result, the indication of 
outlier may change. For example, in Fig. A.9.8, a county appears as a low end 
outlier,  when the subset is reclassified for Pennsylvania counties only. In contrast, 

 

 
Fig. A.9.8. Empirical Bayes subset smoothing, colon cancer, Appalachia (1994-98). 
Two box maps with smoothed map on top and original raw rate on bottom 
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the overall map (see Fig. A.9.7) does not classify this county as a low end outlier. 
Again, note how an upper outlier in the raw rate map disappears in the EB 
smoothed map. Other changes are minor in this map, likely due to the smoothing 
of counts over time (the four year average used to compute the county rates).    

Spatial smoothing, shown in Fig. A.9.9, tends to emphasize broad subregional 
trends. Note how the patterns are much stronger in the upper map than in the 
lower map. The smoothed map highlights a North-South divide in the region, 
suggesting spatial heterogeneity (and, possibly, spatial regimes). Again, the 
indication of outlier changes between the raw rate map and the smoothed map, 
supporting the importance of this type of sensitivity analysis before locations are 
classified as ‘extreme.’ 

 

 

Fig. A.9.9.  Spatial smoothing, colon cancer, Appalachia (1994-98) 
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The final element in our analytical toolbox pertains to the visualization of spatial 
autocorrelation by means of a Moran scatterplot. Fig. A.9.10 shows the bottom 
two graphs in the three graph plot generated by the Java applet.15. The illustration 
is for the same homicide rate in the St. Louis region as used in Fig. A.9.6. The 
value of 0.196 is the slope of the regression line and suggests strong positive 
spatial autocorrelation in the homicide rates.16 

 

Fig. A.9.10. Moran scatterplot, St. Louis region homicide rate (1979-84) 

                                                           
15  Since no smoothing is applied in the univariate Moran scatterplot, the smoothed and 

original map are identical. 
16  It is important to note that this does not indicate ‘significance’ of the spatial autocorrela-

tion statistic, but only shows its magnitude. A formal hypothesis test is not currently in-
cluded, but would be required before the value of 0.196 can be characterized as indicat-
ing significant spatial autocorrelation. 
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The highlighted point in the scatterplot corresponds to St. Louis City, as indicated 
by the linked graphs. Its position in the upper-right quadrant suggests that it is part 
of a ‘cluster’ of high homicide rates. The position of the point might also indicate 
potentially high leverage on the value of the statistic. To assess this, we select a 
subset of the counties to the East of St. Louis, but not including the city. The 
spatial pattern of the homicide rates, with a recalculated classification for the Box 
Map is shown in the top half of Fig. A.9.11. Note how in addition to St. Clair 
county (East St. Louis), an additional county in the Southern part of the map is 
now classified as an upper outlier (relative to the other values within the selected 
region). Also note how the recalculated Moran’s  I  no longer  suggests any spatial 
autocorrelation (the line is 

 

 

Fig. A.9.11. Moran scatterplot, East subregion homicide rate (1979-84) 
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essentially horizontal), illustrating the heavy leverage exerted by the single 
St.Louis observation.17 In other words, once St. Louis city is removed from the 
sample, and the focus is on the more rural counties surrounding the city, the 
indication of strong spatial patterning disappears, and, instead, spatial randomness 
seems to be the appropriate conclusion. A complete analysis would assess this for 
other potential high leverage points as well. 

Finally, note how the point to the utmost right in the Moran scatterplot of Fig. 
A.9.11 is more than five standard deviations from the mean. This qualifies it as an 
outlier in the traditional sense of descriptive statistics, as confirmed by its 
classification in the box map. Moreover, since it is in the lower-right quadrant of 
the scatterplot, it also corresponds to a spatial outlier, a location with a much 
higher homicide rate than its surrounding neighbors. 

A.9.5   Concluding remarks 

In this contribution, we outlined an initial framework to implement spatial data 
analysis functions in an internet GIS. Our efforts are a ‘work in progress’ and part 
of a much larger and more comprehensive endeavor to develop spatial analytical 
software tools as part of the program of the Center for Spatially Integrated Social 
Science (CSISS).18 While the current tools serve their purpose, several important 
issues warrant further scrutiny. 

The range of spatial analytical methods included in the framework is clearly 
limited. In part this is by design, given the specific objective to provide an 
interactive front end to an atlas. However, part of the limitation also has to do with 
performance issues encountered for medium size and larger data sets. The 
download time for the applet increases considerably when more functions are 
included, so it is easy to envisage a point where this approach becomes 
impractical. 

In addition, Java as a language is not optimal as a platform for highly 
intensive numerical operations. While this is not a constraint for the currently 
included methods, techniques that require more computation (such as 
randomization tests for spatial autocorrelation) may need to be implemented in a 
different language and/or warrant the development of more optimal data structures 
in order to be completed within a time frame required for real time interaction 
with the data. This calls for a more careful consideration of the division of labor 
between the server and client. As many others have argued, the more 
computationally intensive operations should probably be carried out on the server, 

                                                           
17  See Messner et al. (1999) for a more in-depth analysis of outliers in this data set. The 

overall findings of regional heterogeneity were similar to what is illustrated here. 
18  See http://sal.agecon.uiuc.edu/csiss/index.html 
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with user interaction and simple calculations allocated to the client. The exact 
nature of the tradeoffs associated with this balancing act merit further attention, 
and are the subject of ongoing research. 

Finally, even given these limitations, the current framework provides some 
insight into the complexities of the characterization of spatial outliers and the 
sensitivity of the ‘map’ to various assumptions made in the process. This 
pedagogical objective is reached without requiring the user to have access to 
advanced statistical or GIS software, a main advantage of the web-based 
approach. It is hoped that continued work along these lines will further advance 
the dissemination of spatial analytical techniques to a broader audience.19 
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A.10 PySAL: A Python Library of Spatial 
Analytical Methods 

Sergio J. Rey and Luc Anselin 

A.10.1  Introduction 

This chapter describes PySAL, an open source library for spatial analysis written 
in the object oriented language Python. PySAL grew out of the software 
development activities that were part of the Center for Spatially Integrated Social 
Sciences Tools Project (Goodchild et al. 2000). This National Science Foundation 
infrastructure project had as its goals to facilitate dissemination of spatial analysis 
software to social sciences, to develop a library of spatial data analysis modules, 
to develop prototypes implementing state of the art methods, and to initiate and 
nurture a community of open source developers.  

PySAL is a collaborative effort between Luc Anselin's research group at 
UIUC and Sergio Rey's research group at SDSU to develop a cross-platform 
library of spatial analysis functions written in Python. This combines the 
development activities of GeoDA/PySpace (Anselin et al. 2006) and STARS – 
Space Time Analysis of Regional Systems (Rey and Janikas 2006). Both will 
continue to exist and exploit a common library of functions. 

One particular subcomponent of PySAL is referred to as PySpace, an open 
source software development effort focused on the implementation of spatial 
statistical methods in general and spatial regression analysis in particular using 
Python and Numerical Python. Current activities deal with a set of classes and 
methods to carry out diagnostics for spatial correlation in linear regression models 
and to estimate spatial lag and spatial error specifications. 

The goal of PySAL is to leverage existing software tools development 
underlying GeoDA/PySpace and STARS to yield a core library and application 

duplication of effort in the development of core spatial data analysis functions, the 
 

Reprinted in slightly modified form from Rey SJ, Anselin L (2007) PySAL: a Python library  

programming interface (API) that will serve three needs. First, to avoid 
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of spatial analytical methods, The Review of Regional Studies 37(1):7-27, copyright © 2007
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teams are collaborating on key modules that can be shared across the different 
projects. As a result of this reorganization, the two projects will be able to focus 
on increased specialization and modularization of related functionality. For 
example, PySpace development can focus on advanced spatial econometric 
methods, while STARS development can continue implementing new space-time 
methods, yet both will draw on jointly developed spatial weights classes. This 
avoids the need for separate but largely parallel efforts and also increases 
standardization of core classes and methods.1  By pooling developer time on the 
shared weights classes, we have freed up resources that are being used for 
advances along specialized interests of the two projects. 

The third need that PySAL seeks to address is a current void in the Python 
community where advanced spatial analytic modules are largely absent. While 
much work is being done on cartographic and GIS libraries in Python (Coles et al. 
2004; Butler and Gillies 2005; Gillies and Lautaportii 2006), functionality dealing 
with state-of-the-art spatial statistical and spatial econometric analysis is largely 
absent. Filling this void is important, given the rapidly growing scientific 
community that has adopted Python as the language of choice.2  

The existing Python related cartographic and GIS efforts are part of a much 
larger movement in Open Source Geographic Information Systems. A recent 
inventory of open source packages that are designed to deal with spatial data 
identified over 237 such efforts (Lewis 2007). However, a close examination of 
the objectives of the projects listed reveals that the vast majority focus on spatial 
data manipulation and presentation. There is still a dearth of functionality that 
implements spatial statistical, econometric and modeling techniques. This lack of 
software tools for geospatial analysis in the open source GIS movement mimics 
the early days of commercial GIS development. This then prompted many 
scholars to identify the lack of software support as an impediment for the 
dissemination of spatial analysis methods in empirical research (for example, 
Haining 1989) and led to considerable efforts to remedy the situation (for a 
review, see Fischer and Getis 1997, Anselin 2005). The advantage of the current 
open source GIS efforts is that the very open source nature of the different projects 
facilitates their extension and integration with other software tools. Specifically, 
this provides opportunities to develop geospatial analysis tools that can be readily 
integrated with a wide range of mapping and other GIS functionality. 

PySAL is intended to fill a particular niche in the growing field of spatial data 
analysis software.3  Currently there are two broad classes of implementations of 
spatial analysis packages. The first are those that are self-contained and implement 
a subset of analytical methods in user friendly graphical interfaces. Chief among 

                                                           
1  We provide illustrations in Section A.10.3. 
2  For example, see Langtangen (2006). Also, an overview of scientific computing projects 

using Python is given in http://wiki.python.org/moin/NumericAndScientific. 
3  For a recent overview of the field of spatial analysis software for the social sciences see 

Rey and Anselin (2006). 
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these are GeoDa, GeoVista Studio (Takatsuka and Gahegan 2002), CommonGIS 
(Andrienko and Andrienko 2005; Andrienko et al. 2003) among others. At the 
other extreme are efforts at implementing spatial analysis methods in packages for 
particular programming and data analysis environments. Prominent examples here 
include the R-Geo project (Bivand and Gebhardt 2000) and the econometrics 
toolbox for MATLAB (LeSage 1999). PySAL is envisaged as supporting both 
types of efforts, since the Python environment lends itself to command line 
execution through its interpreter as well as the bundling of code in user-friendly 
executables with a graphical user interface. 

In the remainder of the chapter we first briefly outline the overall design and 
main components of the library. We next provide several illustrations of how the 
modules in the library can be combined and delivered in a number of different 
ways to address various spatial analytical questions, including computational 
geometry, the study of spatial dynamics, smoothing of rates, regionalization, 
spatial econometrics and spatial analytical web services. We close with some 
concluding remarks. 

A.10.2 Design and components 

PySAL is not intended to reinvent a complete Geographic Information System. 
Rather, it is designed as a library that would enable sophisticated spatial analysis 
through various delivery formats. This ranges from simple command line 
interactive scripts, to self-contained packages with a graphical user interface and 
add-on modules to commercial off the shelf programs (for example, to augment 
the spatial statistical toolbox of the ArcGIS software). The functionality of the 
library is geared to facilitate spatial statistical exploration and spatial econometric 
modeling and to avoid duplication of basic GIS functionality. The modular 
structure of the Python language effectively allows us to build upon other efforts 
in geovisualization and spatial data manipulation of the open source GIS 
movement. 

We designed the modules in PySAL to be agnostic of the delivery mechanism, 
so that they can flexibly be integrated with alternative GUIs (for example, Tkinter 
or wxPython), combined as external libraries with other software (for example, 
ArcGIS), or mixed and matched with existing modules developed by others. The 
set of components in PySAL is designed to cover all steps of a spatial data 
analysis process, starting with reading various data formats and carrying out basic 
computational geometry, and moving on to a collection of specialized methods 
useful in spatial exploratory analysis and modeling. Intentionally, a key feature of 
PySAL is that it is self-contained and does not have any tight dependencies on 
external libraries beyond those available within Python. At the same time, because 
it is a library, components of PySAL can be combined with functionality from a 
different GIS or analytical package to carry out specialized analyses. Moreover, 
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PySAL gains the high degree of portability across different platforms and 
operating systems inherent in the Python language. 

A graphical overview of the key components of the current incarnation of 
PySAL is presented in Fig. A.10.1. It is organized into six main categories of 
functionality, dealing with basic data operations, such as the construction and 
manipulation of spatial weights and essential computational geometry functions, 
data exploration, such as clustering methods and exploratory spatial data analysis, 
and spatial modeling, such as spatial dynamics and spatial econometrics. Table 
A.10.1 provides a complementary classification of the functionality included in 
PySAL. Here, a distinction is made between data analytic functions, intended to 
ease the reading, manipulation, and writing of common spatial data formats, and 
ESDA and modeling functions. 

 

Fig. A.10.1. PySAL components 
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The weights module includes functionality to construct spatial weights from a 
range of input formats (including the standard ESRI shape files), and store the 
information efficiently in an internal data structure. This can then be exported to 
different file formats, such as the GAL and GWT formats used by GeoDa and R, 
and the MAT format used by the Matlab spatial econometrics libraries. The 
computational geometry module supports various other modules in providing 
basic manipulations of spatial data, such as the construction of Voronoi diagrams 
(Thiessen polygons), convex hulls and minimum spanning trees. These underlie 
the derivation of network based spatial weights as well as various computations in 
the clustering module. 

Table A.10.1. PySAL functionality by component 

Component Capabilities 

 Data analytic functions 

File input-output Read and write common spatial data formats 
Map calculations Map algebra 
Computational geometry Geometric summaries of spatial patterns 
Spatial weights Efficient construction/manipulation of spatial weights matrices 
Rate Smooting Spatial and non-spatial smoothing of rate data 

 ESDA and modeling functions 

Spatial autocorrelation Local and global spatial autocorrelation 
Space-time correlation Spatial and temporal correlation measures 
Markov and mobility Spatial Markov and distributional dynamics 
Regionalization Spatially constrained clustering 
Spatial regression Classic spatial econometric methods 
Spatial panel regression Spatial methods for panel data 

   
 

Data exploration is supported by the clustering and ESDA modules. The clustering 
module implements a range of regionalization methods which can be used to 
simplify the data and provide alternatives to rate smoothing operations (in the 
ESDA module). They also form the basis for the construction of alternative spatial 
weights structures. The ESDA module contains different methods to implement 
the smoothing of rates as well as standard LISA functionality, such as the Moran 
scatter plot, local Moran and Gi statistics. 

Spatial modeling is implemented in the spatial dynamics and spatial 
econometrics modules. The former contains a number of tools to track the change 
over time of spatial structure, developed with an eye towards applications in 
studies of regional economic convergence. These include spatial Markov analysis, 
as well as spatial θ and spatial τ measures of convergence. The spatial 
econometrics module contains a collection of diagnostics for spatial effects, 
specification tests and estimation methods, as well as simulation tools to embed 
various forms of spatial dependence in artificial data sets. Detailed illustrations of 
selected functionality are provided in the next section. 
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A.10.3 Empirical illustrations 

We present a selection of applications of modules within PySAL and illustrate 
how they can be exposed through various delivery mechanisms, including 
alternative GUIs. The examples are intended to be suggestive, not exhaustive, and 
highlight how particular core modules, jointly developed in PySAL have been 
integrated into the two ongoing projects, GeoDA/PySpace and STARS. 

Computational geometry and spatial weights. Figure A.10.2 contains the 
nearest neighbor graph for a point distribution. Here we have implemented 
efficient nearest neighbor algorithms for general  k-nearest neighbor determination 
in large point sets. Combining these methods together with classes in the spatial 
weights module, we can generate alternative spatial weights matrices based on 
nearest neighbor relations for both point data sets, as well as areal/polygon data 
sets where representative points are used in developing the topological 
relationships. 

The spatial weights module also supports additional graph based definitions of 
weights using point data. These include Gabriel, sphere of influence, and relative 
neighbor criteria. For polygon based shape files, the module also contains efficient 
classes for derivation of Queen and Rook based contiguity matrices on the fly. 
These classes free the user from the tedious and error-prone task of constructing 
weight matrices by hand. For all of these spatial weights, the associated classes 
implement manipulation and summarization methods that are commonly needed 
in spatial analysis, including measures of sparseness, connectivity, and various 
eigenvalue-based metrics, among many others. The weights module also supports 
the reading and writing of common spatial weights matrices formats including 
GAL, GWT and full matrices. 

 

Fig. A.10.2. Nearest neighbor graphs 
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Spatial dynamics. With the increasing availability of spatial longitudinal data sets 
there is an growing demand for exploratory methods that integrate both the spatial 
and temporal dimensions of the data. The spatial dynamics component of PySAL 
implements a number of new exploratory space-time data analysis measures. 

These new measures approach the issue of space-time analysis in two different 
ways. The first introduces a spatial dimension into what are classic measures of 
mobility or dynamics. For example, in the study of regional income distributions 
popular approaches to measure economic mobility include rank concordance 
statistics, rank correlation statistics, and Markov models. All of these generate 
indicators that summarize the amount of movement within the variate distribution 
over time. However, like many classic statistics they are silent about the role of 
geography in the dynamics. In PySAL, the spatial dynamic module implements 
spatialized versions of these three mobility indicators, including a spatial-τ 
statistic, spatial-θ (Rey 2004) and spatial Markov model (Rey 2001). Each of 
these methods speaks to the role of spatial clustering and context in the evolution 
of the distribution of interest. That is, they investigate the extent to which the 
dynamics of the process are spatially dependent. 

 

Fig. A.10.3. Spatial time paths 

The second approach to spatial dynamics in PySAL starts with exploratory spatial 
data analysis methods and extends these measures to integrate the time dimension. 
One example of this is the spatial time path, two examples of which are shown in 
Fig. A.10.3. The time path can be viewed as a dynamic extension of a LISA 
statistic (Anselin 1995) in that the  Y-axis of the graph corresponds to the value of 
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the spatial lag of the variable while the  X-axis is the original value for a particular 
spatial unit. In contrast to a Moran scatter plot (upper-right panel of Fig. A.10.3), 
which displays the (yi , Wyi) values for all locations at one point in time, the time 
path focuses on a single location i, but displays the  (yi,t , Wyi,t) over all time 
periods. 

These measures look at spatial dynamics from a slightly different perspective 
from the first in that they focus on the spatial dimension and explore its evolution 
over time. They can be used for comparative analyses, such as in Fig. A.10.3 
where the paths for per capita incomes for California (bottom left) and Florida 
(bottom right) are contrasted. The spatial dynamics for Florida are more erratic 
than is the case for California. At the same time, a casual glance suggests the 
relationships are similar in that there is positive correlation between each state's 
income and that of its regional neighbors over time. However, by exploiting the 
interactive capabilities of the software, temporal animation reveals that the 
directionality of the dynamics is different in the two cases with Florida and its 
neighbors moving upward towards the center of the distribution, while California 
and its neighbors are moving downwards towards the mean. 

In addition to the time paths, the spatial dynamics module includes a number 
of other new measures that are extensions of ESDA methods to incorporate time. 
These include a bi-variate LISA which allows for consideration of space-time lags 
between two different variables as well as space-time principal components which 
is a multivariate extension of the bi-variate LISA. 

As with most of the modules in PySAL, the spatial dynamics classes can be 
combined with other modules to accomplish a complex analytical task. An 
example of this is seen in Fig. A.10.4 where a new type of spatial weights matrix 
is obtained through a consideration of the time series covariance of per capita 
incomes for each pair of states over a 72 year period. The join structure for the 
original simple contiguity matrix is presented as a simple network, yet each join is 
now colored to signify if that pair of states displays strong (dark grey) or weak 
(light grey) temporal co-movement. A hybrid contiguity matrix could be defined 
by only using the strong links. Also included on the figure is the spider graph for 
Colorado. These dark grey links show which states Colorado has its strongest 
temporal correlation with. This suggests a second type of hybrid contiguity matrix 
based on the intersection of the simple contiguity and the spider contiguity joins.  

Smoothing of rates. An important aspect of exploratory spatial analysis of 
rates or proportions is to correct for the inherent variance instability of the rates. 
Ignoring this aspect may lead to spurious indications of outliers and clusters due to 
higher variance when the population at risk is small. Several techniques for 
smoothing rates have been incorporated into PySAL modules. They consist of a 
porting of the rate smoothing functionality in GeoDa (implemented in C++) to 
Python (for a more extensive discussion, see also Anselin et al. 2004, 2006). 
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Fig. A.10.4. Spider and temporal contiguity graphs 

Functionality of the rate smoothing modules can be classified into three major 
categories: data input, rate computation, and smoothing. The first includes the 
capacity to read in data on counts of events (e.g., number of diseased persons) and 
population at risk from various file formats, including SEER, either as aggregates 
or by age group. Rate computation takes the data and computes rates for 
individual spatial units (e.g., counties) as well as for aggregates (e.g., all the 
counties in a state) and implements both direct and indirect age standardization. 
Rate smoothing implements a number of common methods, including Empirical 
Bayes and spatial rate smoothing. The latter is an interesting instance where the 
modular nature of PySAL is exploited, since it requires functionality from the 
spatial weights module to implement the spatial averaging of rates. 

Figure A.10.5 illustrates an application of spatial rate smoothing to age-
standardized prostate cancer rates in counties covered by the Appalachian Cancer 
Network. This application utilizes the core rate manipulation and smoothing 
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functionality of the library coupled to a graphical front end implemented in 
wxPython. This is an example of delivery of the functionality where the user is 
completely shielded from the Python programming environment, even though it is 
readily accessible if desired. 

The wxPython graphical user interface is cross-platform and provides a local 
look and feel on each platform. It consists of a Python wrapper around the well 
known C++ wxWidgets library. In Fig. A.10.5, the particular look and feel is that 
of the Mac OS X operating system. Using simple menus, the user can select the 
data, spatial weights (for spatial rate smoothing) and smoothing technique and the 
result is presented on a map, as shown in the figure. Functionality such as this can 
also be readily delivered in compiled form, in which case the user no longer would 
have access to the original source code. 

The same smoothing modules can also be used in conjunction with a different 
graphical user interface. For example, rate smoothing is included in STARS, 
which uses the Tkinter Python GUI. In addition, using the command line in with 
the Python interpreter, specific smoothing functions can be used individually in an 
interactive computing environment. 

 
 

 

Fig. A.10.5. Spatial smoothing of ACN county prostate rates 

Regionalization. The regionalization and clustering module of PySAL implements 
a number of new and existing methods that can be used to define groupings of 
fundamental units according to a variety of constraints. These methods include 
contiguity constrained clustering, Automatic Zoning Procedure (AZP) and the 
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max-p region algorithm (Duque et al. 2007). Figure A.10.6 demonstrates the 
application of the AZP method to U.S. income dynamics.  

The regionalization module can also be used together with other modules in 
PySAL to develop new approaches to spatial analytical problems. One example is 
the integration of the spatially constrained clustering algorithms together with the 
spatial smoothing module to develop new approaches towards spatial rate 
estimation (Rey et al. 2007). This work explored alternative ways in which the 
variance instability problem  could be addressed by defining the neighborhood 
smoothing regions using the constrained clustering algorithms. 

 
 

 

Fig. A.10.6. Regionalization of State incomes using AZP 

Spatial econometrics. The spatial econometric modules in PySAL are primarily 
intended to provide support for two types of activities: (i) to allow rapid 
prototyping of newly suggested techniques; and (ii) to put together customized 
combinations of tests and estimation methods. The development efforts are 
focused on general method of moments estimators, semi-parametric approaches, 
spatial panel data models and specifications with discrete dependent variables. In 
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this sense, these modules complement the spatial econometric functionality of 
GeoDa which is aimed at providing a user-friendly environment for more 
established spatial econometric techniques, such as Maximum Likelihood 
estimation. 

For example, PySAL implements code to estimate regression models 
containing a spatially lagged dependent variable (a spatial lag model) by means of 
the spatial two stage least squares method (Anselin 1988; Kelejian and Prucha 
1998). In addition to the traditional estimates of standard errors and a 
heteroskedastic robust form (White 1980; Anselin 1988), this also implements the 
recently suggested heteroskedastic and spatial autocorrelation robust form, or 
HAC estimator (Kelejian and Prucha 2007). The latter takes a non-parametric 
approach to allow for remaining spatial error autocorrelation of unspecified form, 
using a kernel estimation method. 

The PySAL code for the HAC estimator was recently applied in Anselin and 
Lozano-Gracia (2008) to estimate a spatial hedonic model with over 100,000 
observations, using a spatial lag model that included other endogenous variables 
as well. In addition to allowing for remaining spatial error autocorrelation in a 
spatial lag model, the spatial two stage least squares approach in PySAL is also 
not constrained to intrinsically symmetric spatial weights, as is the case for the 
ML estimators in GeoDa. 

Figures A.10.7 to A.10.9 illustrate an application of the spatial econometric 
module to a replication of the analysis of U.S. county homicides in Baller et al. 
(2001). The implementation uses the command line only, taking the model 
specification information from a separate module that contains all the information 
on the data set, variables and spatial weights. For example, in Fig. A.10.7 the 
contents of such a model are shown, including a dictionary for the model variables 
and for the data (respectively, spec and data), as well as two lists of dictionaries 
with spatial weights needed for the spatial lag (mweights) and for the kernel 
estimation (kweights). Each of these dictionaries contains several attributes of the 
data and weights needed by the modules that implement data input and spatial 
weights construction. The module can be edited by means of a text editor and 
imported into the current session to be used by the spatial regression module. In 
the current example, an asymmetric spatial weights matrix for five nearest 
neighbors is used to construct the spatial lag. 

The central element in the spatial econometric functionality is the spmodel 
class, similar in concept to the object-oriented design of model classes in the R 
language. Figure A.10.8 illustrates the construction of an object model of the 
spmodel class in the spreg module. Some of the arguments that are passed to the 
constructor include a data object (spreg.db), a model specification object 
(spreg.spec) as well as weights objects and some model options, e.g., the 
specification of a lag spatial model, using gmm as the estimation method and hac 
as the option for the variance-covariance estimator. Once the model object is 
created, its attributes can be accessed using the familiar dot notation. For example, 
in Fig. A.10.8, the name of the input data set, number of observations, number of 



A10     PySAL: A Python library of spatial analytical methods      187 

variables, the model specification and the spatial weights are illustrated. Note how 
the spatial weights are themselves instances of the weights class constructed in the 
spatial weights modules. 

The estimation results are obtained by invoking one of the methods in the 
spmodel class. In Fig A.10.9 this is illustrated for the twosls method. It is invoked 
on the command line by means of the dot notation, applied to the model instance 
of the spmodel class. This yields the output of the estimates, standard errors and 
measures of fit, in the familiar GeoDa format. Three tables are listed, for the 
traditional standard errors, the heteroskedastic robust form and the HAC. The 
latter is implemented using an Epanechnikov kernel function with an adaptive 
bandwidth for the 20 nearest neighbors. The standard errors increase slightly 
relative to the classic estimate. 

 
 
# spec: model specification: y dep var, X exogenous, yend endogenous 
# H instruments  
spec = {} 
spec['y'] = 'HR90' 
spec['X'J = ['RD90', 'PS90', 'MA90', 'DV90', 'UE90', 'SOUTH'] 

 
# data: data source 
data = {} 
data['fname']='natn.csv'  
data['idvar']='FIPSNO'  
data['dType']='1istvars'  
data['formatheader']= 0  
data['numonly']=-0 

 
# mweights: spatial weights for use in model lag 0 error 1  
# if different 
mweights = [] 
mw = {} 
mw['wtfile'E-'natkS gwt' 
mw['wtType']-'binary' 
mw['headline']=0  
mw['sep']='.' 
mw['rowstand']=1 
mw[' power]=1 
mw['dmax]=0 
mweights.append(mw) 

 
# kweights: kernel weights 
# if none specified, no kernel 
kweights = [] 
kw = {} 
kw['wtFile']= 'natk20.gwt' 
kw['wtType']='epanech' 
kw['headline']=0  
kw['sep']='.' 
kw['rowstand']=0  
kw['power'J=1 
kw['dmax']=0 
kweights.append(kw) 

 

Fig. A.10.7. Spatial regression model specification 
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>>> model = spreg.spmodel(spreg.db,spreg.spec,mweights=spreg.mwl, 
... kweights=spreg.kw1,space='lag',method='gmm',option='hac') 
>>> model.fname 
'natn.csvV 
>>> model.nobs 
3085 
>>> model.k 
8 
>>> model.spec 
{'y': 'HR90', 'X' : ['RD90', 'PS90', 'MA90', 'DV90', 'UE90', 'SOUTH'] 
>>> model.mw1 
<weights.spweight instance at 0x1641670> 
>>> model.kw1 
<weights.spweight instance at 0x14ce8f0> 

 

Fig. A.10.8. Spatial regression model object attributes 

 
>>> model.twosls() 
Data: natn.csv N: 3085 df: 3077 
Dependent Variable: HR90 
Instruments: W_RD90 W_PS90 W_MA90 W_DV90 W_UE90 W-SOUTH  
Spatial Weights: natk5.gwt Type: binary 
Kernel Weights: natk20.gwt Type: epanech 
RZ (var): 0.44097474 R2 (corr): 0.44015616 
25LS Results 
CONSTANT 5.27970466 1.05421367  5.0081.9218  5,8040651e-07 
RD90 3.70854698 0.14648314  25.31722759  1.2849701e-128 
PS9O 1.37504128 0.10015256  13.72946666 1.11636e-41 
MA90 -0.08427221  0.02755448  -3.05838455  0.0022444905 
DV90 0.54414517  0.05500481  9.89268364  9,7467151e-23 
UE90 -0.28049426  0.04118603  -6.81042228  1.1655819e-11 
SOUTH 1.31132254  0.28790335  4.55473172  5.4490157e-06 
W-HR90 0.18870532 0.03971433  4.75156802  2.1109551e-06 
Data: natn.csv N: 3085 df: 3077 
Dependent Variable: HR90 
Instruments: W_RD90 W_PS90 W_MA90 W-DV90 W_UE90 W_SOUTH 
Spatial Weights: natk5.gwt Type: binary 
Kernel Weights: natk20.gwt Type: epanech 
R2 (var): 0.44097474 RZ (corr): 0.44015616 
25LS Results, White Variance 
CONSTANT 5.27970466  1.04716434  5.04190649  4.8759527e-07 
RD90 3.70854698  0.22598487  16.41059827  4.3949434e-58 
PS90 1.37504128  0.16795804  8.18681414  3.8851091e-16 
MA90 -0.08427221  0.02794873  -3.01524329  0.0025887092 
DV90 0.54414517  0.08031388  6.77523167 1.4823565e-12 
UE90 -0.28049426  0.05110650  -5.48842574  4.384525e-08 
SOUTH 1.31132254 0.29345646  4.46854213  8.1594953e-06 
W_HR90 0.18870532  0.04286644  4.40216873  1.1082167e-05 
Data: natn.csv N: 3085  df: 3077 
Dependent Variable: HR90 
Instruments: W_RD90 W_PS90 W_MA90 W_DV90 W_UE90 W_SOUTH  
Spatial Weights: natk5.gwt Type: binary  
Kernel Weights: natk20.gwt Type: epanech  
R2 (var): 0.44097474 R2 (corr). 0.44015616  
25LS Results, HAC Variance with kernel epanech 
CONSTANT 5.27970466  1.08618007  4.86080053  1.2276991e-06 
RD90 3.70854698  0.24481531  15.14834572  4.7483522e-50 
PS90 1.37504128  0.17801139 7.72445672  1.5089075e-14 
MA90 -0.08427221 0.02796515  -3.01347276  0.002603817 
DV90 0.54414517  0.08076990  6.73697932  1.9225394e-11 
UE90 -0.28049426  0.05241424  -5.35148941  9.363273e-08 
SOUTH 1.31132254  0.31097070  4.21686840  2.5485898e-05 
W_HR90 0.18870532  0.04587635  4.11334626  4.0018136e-05  
Anselin-Kelejian Test for Residual Spatial Autocorrelation  
Moran's 1: -0.0552 LM: 11.02 p: 0,000903468 
 

Fig. A.10.9. Spatial two stage least squares with HAC error variance 
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In the example, one diagnostic is included by default (it can also be invoked 
separately as a method of the spmodel class), the Anselin and Kelejian (1997) 
generalized Moran's I test for residuals in a spatial lag model. As shown in Fig. 
A.10.9, the null hypothesis is strongly rejected, providing a solid motivation for 
the use of the HAC standard errors. 

Spatial analytical Web services. The core libraries are designed in such a way 
as to enable a variety of front ends through which users can interface with the 
functionality in PySAL. In previous examples, we have illustrated the use of two 
different GUIs and the shell/command line. A third form of user interface is the 
web browser, where the PySAL functionality is delivered in the form of a spatial 
analytical web service. 

A straightforward way to accomplish this is to include components of the 
library as cgi (common gateway interface) scripts on a web server. The user 
interacts with this through a web page, which sends a form to the server that 
includes all the parameters needed to carry out the analysis. The results are then 
delivered as a new web page. To the user, the experience is similar to an 
interactive GUI on the desktop. 

A more elaborate form of a web interface can be developed by exploiting the 
HTTP and SOAP (simple object access protocol) Web service functionality built 
into the Python language and extension modules. Figure A.10.10 illustrates the 
architecture of a prototype spatial analytical Web service to construct spatial 
weights from ESRI shape files, using standards supported by the Open GIS 
Consortium (OGC). This combines three components, that each can operate on a 
different physical server, allowing for a distributed system. 

The information on the data source and weights type is then passed to the 
Analysis Server, using the SOAP protocol. This back end operation consists of a 
set of Python scripts to handle the interaction between the different services and to 
interface with  the PySAL library  for the actual  computation of the  weights. The 

 

 

Fig. A.10.10. Architecture of spatial weights Web service 
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Fig. A.10.11. Weights Web service user interface 

data are extracted from the data server, the weights are computed and stored on 
the analytical server and the URL of this location is passed back to the user 
interface. The weights information can also be transferred in other ways, using a 
standard XML format, as illustrated in Fig A.10.12.  
 
 
- <ExecuteResponse version="0.4.0”xsi:schemaLocation="http://www.opengeospatial.net/wps 

http://www.bnhelp.cz/schema/wps/0.4.0/wpsExecute.xsd”> 
<ows:Identifier> makeWeight </ows:ldentifier> 

- <Status> 
<ProcessSucceeded/> 

</Status> 
- <ProcessOutputs> 

- <Output> 
<ows:Identifier> outputWeight </ows:Identifier> 
<ows:Title> ResuIting weight file </ows:Title> 
<!—Element Abstract not set--> 
- <ComplexValue format=”text/xml”> 

- <Value> 
- SAL:weightfile inputfile="inputfile" numRec= "88" type="GAL" wtype="Rook Contiguity">  

- <SAL:record id = "1" numNeighbors="4"> 
<SAL:neighbors> 2,6,7,11 </SAL:neighbors> 

</SAL:record> 
- <SAL:record id = "2" numNeighbors="3"> 

<SAL:neighbors> 1,4,11 </SAL:neighbors> 
</SAL:record> 

- <SAL:record id = "3" numNeighbors="5"> 
<SAL:neighbors> 5,10,15,87,88 </SAL:neighbors> 

</SAL:record> 
- <SAL:record id = "4" numNeighbors="3"> 

<SAL:neighbors> 2,11,13 </SAL:neighbors> 
 

Fig. A.10.12. Weights in XML format 

http://sal-dev.sal.uiuc.edu/~mhwang4/PyWebSpace/PyWebSpace_w0.py 
 

Rook 

ohlung.shp 

Make 

 Or select one of the shp files from our data server. 

Enter the url where your shp file resides with http:// or https://: 
(ex: http://geog36.geog.uiuc.edu/~myunghwa/PyWebSpace/out_data/ohlung .shp or 
https://netfiles.uiuc.edu/mhwang4/www/ohlung.shp) 
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The front end is the web interface (shown in Fig. A.10.11) through which the user 
interacts with the system by means of a set of Python cgi scripts that manage 
information flows between the front end and the two other components, the Data 
Server and the Analysis Server. Through the interface a web feature service (Data 
Server, using the Mapserver cgi) is queried for a list of available data sources, 
which then become available in a drop down list on the web interface, transparent 
to the user. This could easily be generalized to query a collection of web feature 
services for available data sets. Alternatively, users can specify the URL for the 
data source explicitly, which can be anywhere on the internet, including other 
compliant web feature services. In addition, the type of weights matrix (Rook or 
Queen) can be selected. 

A.10.4  Concluding remarks 

The main efforts thus far have been on the development of the core analytical 
functionality and coupling these modules with the graphical toolkits used in the 
two source projects: Tkinter for STARS and wxPython for OpenGeoDa/PySpace. 
Future work will explore use of PySAL with alternative front-ends including 
jython (Pedroni and Rappin 2002), RPy (Moriera and Warnes 2004), and ArcGIS. 
Additionally, we are investigating alternative shell/command line environments 
beyond the basic Python interpretor, such as iPython (Pérez 2006). At the same 
time we will regularly be integrating new developments in spatial analysis into the 
computational classes within PySAL. 

Our plans are to continue refining the core components of the library and the 
associated application programming interface (API). We are also evaluating 
alternative licensing schemes with an eye towards leveraging the strengths of the 
open source and spatial analysis communities. We envisage a formal release of 
PySAL in the near future.  
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Spatial Statistics and  
Geostatistics 



B.1  The Nature of Georeferenced Data 

Robert P. Haining 

B.1.1  Introduction 

Georeferenced data or spatial data (we use the terms interchangeably here) come 
in many forms.  Geometrically speaking, such data refer either to points, lines or 
areas – spatial objects or features.  Spatial interaction data record flows between 
the nodes (intersection points) of a network.  These data are captured in an origin-
destination matrix where the number of rows and columns of the matrix corre-
spond to the nodes of the network and the entry on row i and column j records the 
total flow from node i to node j (Fischer 2000).  Spatial tracking data records the 
movement of individuals (or groups) over time between areas or the nodes of a 
network (Goodchild 1998; Frank et al. 2001).  The rows of the tracking matrix are 
the individuals, the columns are time periods and the entry on row i and column j 
records the location of individual i in time period j.  These data can be used to es-
timate transition matrices where the entry on row i and column j of the transition 
matrix records the probability of any individual going from area i to area j in an 
interval of time (Wilson and Bennett 1985, pp.107-109 and pp.250-280).  In these 
two cases the spatial objects (nodes, network links, areas) remain fixed – and mo-
tion takes place over this static spatial backdrop – but over time the point, line and 
area features themselves can for example move, grow, shrink, split and change 
form (Frank 2001). 

It is another type of spatial data, which records attributes associated with spa-
tial features (points or areas), that will be the focus here.  It has the following ge-
neric form   

 
{zj (si, t): j = 1 ,..., k ;  i = 1 ,..., n ;  t = 1, ..., T} ≡ {zj (si, t)}j,i,t                  (B.1.1) 

 

where Zj denotes the jth attribute (of which there are k) and the use of the lower 
case, zj, denotes the measured value of the jth attribute.  The terms si and t denote 
the ith point/area (of which there are n) and the tth time period (of which there are 
T) and these define the locations and time periods to which each attribute value re-
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fers. The georeferencing is associated with si.  In the case of an area there may be 
further information contained in Eq. (B.1.1) which provides data, for each i, on 
those areas that are adjacent to or are the ‘neighbors’ of i, thus writing: {zj (si, t), 
N(i)}j,i,t.  There would be for each i then, a listing of the neighbors of i which are 
denoted here as N(i).  These neighbors might, for example, be all the areas that 
share a common border with i, or those which have direct transport connections 
with i.  So the neighbor data may reflect geometric properties of the set of areas 
but they could also capture interaction flows between the areas, or hierarchical re-
lationships (Haining 1978). {N(i)} is used in constructing the ‘weights’ matrix 
(usually denoted W) that appears in the specification of many spatial statistical 
techniques (for example, spatial autocorrelation statistics) and models (spatial re-
gression models).  The correspondence between a map and two types of weights 
matrix is shown in Fig. B.1.1. 
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Fig. B.1.1. Binary and standardized connectivity matrices based on area adjacencies 

The expression given by Eq. (B.1.1) has often been referred to in the quantitative 
geography literature as the space-time data cube (with or without data on N(i)).  
When t is fixed then in the geographic information science literature {zj(si)}j,i  or 
{zj(si), N(i)}j,i is sometimes referred to as the spatial data matrix (SDM) with n 
rows corresponding to the set of locations and k columns referring to the measured 
attributes.  As Goodchild and Haining (2004, p.365) remark, ‘GIS and spatial data 
analysis come into contact … at the spatial data matrix’. A shapefile is a digital 
vector storage format for storing geometric location and associated attribute in-
formation for GIS. It has clear links with the SDM. The .shp file stores the feature 
geometry and the .dbf file the data on the attributes associated with each spatial 
object.  Adjacencies and hence ‘neighbors’ can be calculated in GIS even though 
the geometric information contained in the shapefiles is not explicitly topological.      

SDM attribute data may refer to properties of discrete entities such as people, 
businesses or houses assigned to point locations.  Attribute data may also be in the 
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form of counts of individuals located in a set of areas that possess a certain prop-
erty (for example, total number of people; the number employed in the tertiary 
sector).  Here, data values are only true of entire areas and the variable is called 
‘spatially extensive’ (Goodchild and Lam 1980).  A quantity expressed as a ratio, 
proportion or density (for example, population density; proportion of the work-
force employed in the tertiary sector) is called ‘spatially intensive’ (Goodchild and 
Lam 1980).  Spatially intensive data values could be true for every part of an area 
(if the variable was distributed uniformly).  Attributes that are distributed continu-
ously over an area are also defined as ‘spatially intensive’ – such as the average 
level of air pollution or rainfall.  Often these attributes are calculated for arbitrarily 
constructed areas but there are other spatial attributes that can only be defined at 
the ecological or group level and only for areas or places that are in some sense 
well-defined – an example of such a variable is the level of social capital in an ur-
ban neighborhood or community.  This quantity cannot be reduced to the level of 
individuals nor is it continuously distributed, rather it is an attribute of an area that 
has some functional meaning or significance (in this case a ‘community’).   

Another type of spatial data refers to the properties of areas as they relate to 
each other, for example quantities such as the ‘distance’ or ‘direction’ from one 
place to another.  It may be possible to extract such data (including adjacency da-
ta) directly from the geo-reference associated with {si}i.  There are also relational 
properties that combine attribute values and the spatial relationships between those 
values such as data on gradients (for example, the difference in material depriva-
tion between two adjacent areas) and data on local area averages (for example, 
spatial averages based on sliding windows of different sizes over a map). 

B.1.2   From geographical reality to the spatial data matrix 

In this section we describe the transformational processes that turn ‘real, continu-
ous and complex geographic variation’ (Goodchild 1989, p.108) into a finite num-
ber of discrete ‘bits’ of data that can be stored in a computer [see Eq. (B.1.1)].  
Figure B.1.2 shows the sequence of stages associated with the construction of the 
SDM for the three elements (attributes, space, time) although we are only inter-
ested here in the stages associated with the locational data.  

The object and field views are the two fundamentally distinct conceptualiza-
tions of geographical reality.  The object view of the world conceptualizes space 
as populated by well-defined, indivisible and homogeneous entities (points, lines 
and polygons) set in an otherwise ‘empty’ space.  The field view of the world con-
ceptualizes space as covered by continuous surfaces.  The object view is often 
used to conceptualize social, economic and demographic data (houses, people, 
factories, roads, towns) whilst the field view is often used to conceptualize envi-
ronmental and physical data (rainfall, pollution, elevation) – although there is al-
ways some choice involved (Burrough and McDonnell 1998, p.20).   
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Fig. B.1.2. Stages in the construction of the spatial data matrix 

The process of representation is the process of discretizing space that is, reducing 
these conceptualizations to a finite number of geometric entities that can then be 
stored in the computer usually as points, lines and polygons.  A field view can be 
discretized using sample points, contour lines, regular polygons (for example, pix-
els obtained from remote sensing) or irregular polygons (for example, vegetation 
patches).  An object view is captured using the same geometric objects but these 
objects are not always the same as the basic spatial entities that make up the object 
view.  In a national Census, individual households (points) are aggregated into 
census tracts (polygons, often irregular in shape) for confidentiality reasons.   
These processes which discretize space inevitably involve a loss of information on 
spatial variability due to smoothing of attribute values and simplification of ob-
jects, with ‘fuzzy’ boundaries often becoming sharper and smoother than in reality 
they are.  In any particular application this raises the question as to the quality of 
the model as a representation of the underlying geographical reality.    

The entities that are created by this process and which discretize geographic 
space should ideally be well-defined.  If there is individual level data then al-
though an individual person is well defined, providing a georeference may raise 
problems because people move about daily and may live in different places over 
the course of their lives.  Georeferencing people by their current residence might 
be satisfactory in the context of delivering health services to a population, but less 
satisfactory in the context of assessing population exposure to an environmental 
risk factor associated with a chronic disease.   

The entities created by the process of discretizing geographic space should 
ideally be internally homogeneous in terms of their attributes.  This will rarely be 
the case and the larger the scale, or resolution, at which polygons are constructed 
the more geographic variation will be smoothed.  The choice of where to draw po-
lygonal boundaries also have important implications for how attribute variation 
will appear on a map.  If, subsequently, polygonal units are further aggregated into 
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regional clusters through some process of region building then intra-area hetero-
geneity is likely to become still more marked. The usual benchmark, in assessing 
model quality, is whether the model is ‘fit-for-purpose’ and this can only be as-
sessed against the particular application.  These examples are designed to under-
line the problems inherent in creating a model for storing data about the world but 
they constitute only part of the larger process defined in Fig. B.1.2. Model quality 
assessment needs also to take into account the processes of conceptualization and 
representation applied to the definition of the attributes and the handling of the 
temporal dimension of Eq. (B.1.1).  These will not be discussed here but see for 
example Haining (2003, pp.57-61).    

The final step in the creation of the SDM is the process of measurement by 
which attributes at particular locations in space and time are assigned values (see 
Fig. B.1.2).  Data values may be obtained by a sampling process or by a complete 
enumeration (for example a national Census of population).  One way of thinking 
about the relationship between what is being measured and the recorded data val-
ue, is that any data value is thought of as an approximation (subject only to meas-
urement error) to some ‘true’ value of the attribute at the particular space-time lo-
cation.  A different view of this relationship is that any attribute value is only one 
possible value from a distribution of possible data values (the so-called ‘super-
population’ reading of spatial data).  Underlying this latter view of data values is 
the assumption that the underlying data generating model is stochastic – to which 
may be added additional variation due to measurement error.  This view of spatial 
data is common in many areas of statistics (see Cressie 1993) and geostatistics 
(Matheron 1963).  Even Census data is sometimes analyzed with reference to a 
superpopulation.  Godambe and Thompson (1971) noted that analysis of UK Cen-
sus data is rarely concerned with the finite de facto population of the UK at a 
given point in time but rather with a conceptual superpopulation of people like 
those living in the UK on the date of the Census.  

Data is classified by the level of measurement achieved: nominal, ordinal, in-
terval or ratio.  The level of measurement determines what logical and arithmetic 
operations can be performed on the data and hence, for example, what statistical 
procedures can be used.  Nominal data allow data values to be compared using the 
operations: equal and not equal; ordinal data also allow ranking (greater than and 
less than); interval data also allow the operations of addition and subtraction; ratio 
data also allow the operations of multiplication and division.   This provides a ba-
sis for a two way classification of data types: by level of measurement and the na-
ture of the discretizing object to which they refer (see Fig. B.1.3). However in the 
case of map operations it is also necessary to distinguish between spatially inten-
sive and spatially extensive variables.  Both count data and rate data are examples 
of ratio level data.  However count data are spatially extensive – when two areas 
are merged (as for example in the operation of areal interpolation or region build-
ing) the corresponding counts can be summed to give the count for the newly cre-
ated map object.  Rate data (for example, number of babies born with birth defects 
divided by the number of live births for an area) by contrast are spatially intensive 
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and to arrive at the correct value for the newly created map object the numerator 
and the denominator must be aggregated separately. 

The quality of the data in the SDM is assessed given the chosen model for the 
SDM.  The combination of model quality and data quality is sometimes referred to 
as defining the ‘uncertainty’ of the relationship between the real world and what is 
held in the SDM.  Data quality, for all three elements in Eq. (B.1.1), attributes, lo-
cation and time, is assessed in terms of four criteria: accuracy, resolution, com-
pleteness and consistency (Guptill and Morrison 1995; Veregin and Hargitai 
1995).  There are a number of complications when considering spatial data qual-
ity.  Data quality might vary across the map being linked to interaction between 
the process of measurement and the underlying geography, such as between to-
pography and the quality of imagery for classifying land use (Haining 2003, p.62).  
Also, there can be interaction between location errors for example and attribute er-
rors – an error in georeferencing a burglary event will introduce error into bur-
glary counts by area if the location error is large enough to transfer the event from 
one polygon to another.   

Accuracy is defined by Taylor (1982) as the inverse of error which is the dif-
ference between the value of an attribute as it appears in a database and its true 
value.  Error is an inevitable consequence of taking measurements in the real 
world, reflecting for example imprecision associated with the measuring device. 
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Fig. B.1.3. Examples of attributes by levels of measurement and types of space 

Improvements in the quality of instrumentation and the skills of the people taking 
the measurements can be expected to reduce this error and thus improve accuracy.  
That said, the concept of a ‘true’ value is an idealization and may not even be use-
ful in certain applications where it may be difficult to conceive of a ‘true’ value 
(for example, deprivation, social cohesion). 
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Resolution refers to the size of the spatial units (polygons) that partition the study 
area but can also refer to the density of sample points for capturing a continuous 
surface.  The more spatial variability that is present, the higher the level of resolu-
tion that will be needed to capture that variation in detail.  In geostatistics the term 
‘support’ is used to refer to the geometrical size, shape and spatial orientation of 
the areal units used to take measurements (Olea 1991).  The size of an area could 
be specified in terms of physical extent in the calculation of a quantity such as the 
proportion of contaminated land.  When a quantity such as the proportion of un-
employed or the proportion of burgled houses in an area is calculated support is 
best defined by the number of entities present in each area (population, houses, 
factories).  Resolution issues become particularly problematic when data originat-
ing from different spatial frameworks, maybe not even at the same scale, have to 
be merged for the purpose of constructing the database (Gotway and Young 
2002).  Pre-2001 population Census data for the UK is available at the enumera-
tion district level, health data is available by postcode but the two spatial frame-
works do not correspond and postcodes do not nest within enumeration districts.  
We shall discuss the implications for spatial data analysis of spatial data resolution 
and the problems raised by data incompatibility (where different data sets needed 
for an analysis are collected on different frameworks) in Section B.1.3. 

The other two data quality criteria also have significance in the context of the 
SDM and how it can be analyzed.  Consistency is defined as the absence of con-
tradictions in a database.  Contradictions are most likely to arise when two differ-
ent databases have been merged such as health outcome data and population data 
which may have been collected at different times.  You cannot, by definition, have 
recorded deaths in an age cohort in a Census tract where there is supposedly zero 
population in that cohort.  Georeferencing errors can give rise to inconsistencies – 
as for example when a traffic accident is mapped as occurring in the North Sea. 

Finally completeness refers to the absence of missing data but may be ex-
tended to include the situation where there is no over or undercounting of an at-
tribute.  Haining (2003, pp.71-74) cites numerous examples.  Census data suffer 
from these problems and agencies responsible for taking a Census often devote 
considerable resources to trying to plug the gaps created by non-response.  This is 
important to researchers because national census data often provide essential de-
nominator data for calculating rates of different social and economic attributes.  A 
distinction is drawn between data being ‘missing at random’ and other forms of 
missing data because methods for imputing values to missing cells in the database 
(using the data that have been collected) depend on why the cells are empty.  A 
weather station might be temporarily out of action because of equipment failure 
and this would be considered as a case of data being ‘missing at random’ if the 
reason for the equipment failure is not linked to the attribute being measured.  
Land use data obscured by cloud cover would probably not be considered ‘missing 
at random’ because the reason for the cloud cover may be linked to a topographic 
factor (height above sea level) that in turn might influence the type of land cover. 
Figure B.1.4 provides a summary of the quality issues described in this section. 
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Fig. B.1.4. From geographical reality to the spatial data matrix 

B.1.3   Properties of spatial data in the spatial data matrix  

Methodology for analyzing data makes various statistical and mathematical as-
sumptions about that data.  It is important that the methodology for spatial data 
analysis makes assumptions that are consistent with data properties.  It is these is-
sues that we consider in this section.  Methodology is also adapted to the types of 
questions asked of the data and the models used but the implications of this for 
spatial data will be considered in the next section. 

In the previous section, it was shown how the spatial data matrix  is populated 
with data as a result of three operations: conceptualization, representation and 
measurement.   In order to put structure on the discussion in this section we shall 
distinguish between fundamental properties of spatial data, properties acquired 
due to the chosen representation and finally properties acquired as a consequence 
of the measurement process by which data are collected for storage in the SDM.  

Fundamental properties. Fundamental spatial data properties are those prop-
erties that are in some sense inherent in attributes that are distributed across the 
earth’s surface.  Continuity is a fundamental property of attributes occurring in 
time.  It would be a strange world if attributes changed suddenly and randomly 
from one second (indeed, one infinitesimal fraction of a second) to the next 
whether it was the weather or prices for commodities.  Events occurring in time 
have an inherent continuity or structure so that knowing what the level of an at-
tribute is at one point in time allows us to make some informed estimate of what it 
will be (or the bounds within which it is likely to lie) at some future point in time.  
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This is the conceptual basis for making predictions, but the further into the future 
we wish to predict the less certain we will be about an attribute’s values.    

Continuity, though of a different type, is a fundamental property of attributes 
located in space.  In the GIScience literature it is often referred to as ‘Tobler’s 
First Law of Geography’ although the observation that attribute values in space 
are not random has a statistical pedigree that in the published literature can be 
traced back to at least the early 20th century and a paper by Student (1914) and the 
observation that ‘near things are more related than distant things’ to observations 
by Fisher (1935, p.66) where in the context of agricultural field trials he remarked  
that ‘patches in close proximity are commonly more alike, as judged by yield of 
crops, than those which are further apart’.  Of course assessing spatial continuity 
is complicated, relative to the time series case, by the second dimension (depend-
ency might not be the same in all directions) and by the lack of directionality (time 
has a natural uni-directional flow from past to present).    

The idea of ‘continuity’ translates in the spatial context as follows.  Measure-
ments of the same attribute taken at several locations in geographical space will 
show evidence of correlation – or autocorrelation (‘self-correlation’).  If the value 
for an attribute at one location is high (low) it is probable that when the same at-
tribute is measured at a nearby location, that value too will be high (low). This de-
notes positive spatial autocorrelation.  As the distance separation of observations 
increases such autocorrelation will tend to weaken until at some distance observa-
tions on the same attribute will appear to be independent.  At certain scales of 
separation there may be negative spatial autocorrelation.   

A distinction should be drawn between autocorrelation in the case of entities 
in an object view of the world and in the case of a field view of the world.  In the 
case of distinct entities it is possible to conceive of complete spatial randomness in 
their attribute values and indeed negative spatial autocorrelation between adjacent 
neighbors (for example, plants competing for nutrients in the soil which produce 
strong plants next to weaker plants).  In the case of a surface of values it is not 
possible to imagine complete spatial randomness (for the same reason as in the 
temporal case) and certainly not possible to imagine negative spatial autocorrela-
tion unless the surface has been partitioned – in the latter case, the scale of the par-
tition coinciding with contrasting landscapes (for example, a ridge and valley to-
pography partitioned into areas that coincide with the ridges and the valleys).  

Quantifying and testing for the significance of spatial structure was an impor-
tant research agenda during geography’s ‘quantitative revolution’.  Statisticians 
including Moran (1950), Geary (1954) and Krishna-Iyer (1949) had developed 
tests for the presence of spatial autocorrelation on regular lattice systems, and a 
number of geographers including Dacey (1968) at Northwestern University and 
Cliff and Ord (1973) at Bristol University (Cliff a geographer, Ord a statistician) 
adapted these statistics to the situation usually encountered in the social sciences 
where data are collected from an irregular spatial partition or irregular distribution 
of locations.    
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Statistically, spatial autocorrelation is a second order property of an attribute dis-
tributed in geographical space signifying local variation about a mean value (see 
Chapter B.3 for more details). But in addition there may be a mean or first order 
component of variation represented by a linear, or quadratic or higher order trend.  
Statistical tests and models can be used to quantify the spatial structure present in 
spatial data but they are of course particular structures for representing or describ-
ing this fundamental property and should not be confused with the fundamental 
property itself. These early statistics focused on global descriptors of spatial struc-
ture (assuming the same structure is present irrespective of where the analyst is on 
the map – spatial stationarity) but there is no a priori reason to believe that spatial 
structure is homogeneous across the map or indeed that it can be defined using a 
global specification.   

Structure might be quite localized with different structural forms present in 
different parts of the map.  Indeed in a geographical context it has been argued 
that it is unlikely that structure will be location invariant (see for example Granger 
1969 for an early statement of this point) and that as a consequence spatial het-
erogeneity is another fundamental property of spatial, particularly geographical, 
data.   However it is arguable whether spatial heterogeneity should be considered a 
fundamental property of spatial data in the same sense that spatial dependence is 
considered a fundamental property.  One reason for this is that the existence of 
spatial heterogeneity seems to be dependent on the extent of the area considered, 
another reason is that in statistical terms spatial heterogeneity is not distinguish-
able from clustering (Bartlett 1964).  Notwithstanding this, many argue that het-
erogeneity should be expected in certain types of spatial data and that the concept 
of heterogeneity extends to the relationships between different variables (Bruns-
don et al. 1998). 

Properties due to the chosen representation. How the fundamental properties 
of a spatially distributed attribute are retained in the SDM will depend on the cho-
sen representation (Jelinski and Wu 1996).  If a surface is captured using point 
samples then the extent to which the underlying structure is captured will depend 
on the density of the sample points in relation to surface variability.  If polygons 
are used, it will depend on the size of the polygons in relation to surface variability 
and whether the polygons represent an artificial, imposed grid (an intrinsic parti-
tion such as remote sensing pixels) or follow natural boundaries (a non-intrinsic 
partition such as vegetation patches, or neighborhoods).  There is a loss of infor-
mation which follows as a consequence of sampling and discretizing and if for ex-
ample sample points are widely separated then important information about the 
extent to which nearby values are similar will be lost.  In general non-intrinsic par-
titions produce less smoothing and the construction of such partitions can be car-
ried out using region-building algorithms (see for example Haining 2003, pp.200-
206). 

In the case of the object view, the use of areas (polygons) for representing ge-
ography involves aggregation of the entities lying within them.  This too results in 
a loss of information and a smoothing of spatial variability.  The effect of this rep-
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resentation on data properties depends on the scale of the polygons and the posi-
tioning of the polygon boundaries.  Intra-polygon heterogeneity will depend on the 
scale of the polygons in relation to the variability of entities within the polygon; 
inter-area heteroskedasticity (or the variation in the variance of attributes across 
the set of polygons) will depend on such factors as the variation in the number of 
entities within each polygon.  If the set of polygons that partition the space vary 
greatly in say population size (with some polygons having large population and 
others small population counts) then calculated rates will have less precision in the 
case of those polygons with small populations relative to those calculated for po-
lygons with larger population counts. This is referred to as the small number prob-
lem (see for example Haining 2003, pp.196-197).   

Extreme rates tend to be associated with polygons with small populations but 
statistically significant rates (for example, disease rates significantly above or be-
low a benchmark figure such as the area-wide mean) tend to be associated with 
polygons with large populations (Haining 2003, p.199).  This is one of the con-
flicts at the heart of some applications of the new digital technology applied to 
spatial data.  Spatial precision and the ability to store geographical data at fine 
spatial scale does not equate with statistical precision.  Data errors or small ran-
dom fluctuations, say in the number of events, can have a big effect on the calcu-
lation of rates for small populations, which also do not change smoothly or con-
tinuously in response to increases or decreases in the value of the numerator. 
Smoothing may be applied to try to reduce these effects (Banerjee et al. 2004, 
pp.69-70). 

The size of the polygon partition will affect the calculated measure of spatial 
autocorrelation for an attribute that is a rate, for the reasons outlined above.  If ar-
eas vary substantially in spatial support (population sizes on which the rates are 
calculated) then any test for spatial autocorrelation that assumes constant variance 
across the set of areas (such as the tests in Cliff and Ord 1973) should be used 
with caution.  Significant spatial autocorrelation could be a consequence of the 
way areas with large and small population supports are distributed geographically 
(Gelman and Price 1999).  This has led to revisions to the standard autocorrelation 
tests (see for example Assunção and Reis 1999).  

Properties introduced through the measurement process. We conclude this 
section by considering how the process of taking measurements might introduce 
false properties into a spatial database.  We consider a few selected examples. Lo-
cation error may induce attribute error with overcounting in one area matched with 
undercounting in another because a case has been attributed to the wrong area.  
Such errors are often relatively short range (perhaps due to a small coding error) 
so it is possible that the errors in counts are negatively autocorrelated with an un-
dercount in one area matched with an overcount in an adjacent area.  False clusters 
of cases of an event can be induced if geo-coding follows some convention – such 
as assigning motor vehicle theft to the nearest cross roads. 

When data on different attributes have been collected on different spatial 
frameworks and then have to be put onto a common spatial framework through the 
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aggregation of smaller units ‘the uniqueness of each unit and the dissimilarity 
amongst units is … reduced’ (Gotway and Young 2002, p.633).  If there is posi-
tive spatial autocorrelation in the attribute this decrease in variance is less marked.  
If the aggregation process is based on a moving average manipulation of the data 
the fact that overlapping spatial units will be used will induce (additional) positive 
spatial autocorrelation in the data.  A somewhat similar effect is observed with the 
pixel values recorded through remote sensing.  These values are not in one-to-one 
correspondence with an area of land on the ground because of the effects of light 
scattering (Forster 1980).  The point spread function quantifies the relationship be-
tween pixel value and area of land included in the calculation.   The form of the 
error is similar to a weak spatial filter passed over the surface introducing an addi-
tional level of positive spatial autocorrelation into the database because the values 
for adjacent pixels cover overlapping segments of geographical space.  Subse-
quent map operations carried out on such data may further complicate the error 
properties for attributes derived from such data through error propagation (Hain-
ing and Arbia 1993).  

Wherever problems of accurate measurement have a geography this is poten-
tially a significant problem for any research that involves making comparative 
statements across the area of study.  There tends to be more or less full counting of 
burglaries in suburban areas (where householders have insurance but need the po-
lice to provide a reference number in order to make a claim); however inner city 
residents tend to underreport burglaries perhaps because they may fear reprisals, 
perhaps because they do not expect the police to recover the stolen goods and they 
themselves have no household insurance.  Area differences in crime rates between 
suburban and inner city areas may therefore not be fully reflected in the database.   

B.1.4  Implications of spatial data properties for data  
analysis 

We discuss how the nature of spatial data influences the form and conduct of spa-
tial data analysis.  We do so by examining aspects of exploratory and confirmatory 
spatial data analysis.  We also consider how the nature of spatial data may influ-
ence the interpretation of the results of any analysis. 

Cressie (1993) organized his book Statistics for Spatial Data based on a four-
fold typology of spatial data: geostatistical data, lattice or area (or, to use Ripley’s 
1981 term ‘regional’) data, point pattern data and objects (Cressie 1993, pp.8-9).  
Geostatistical data is data from a continuous surface occupying a fixed subset, D, 
of two dimensional space (R2) and where the attribute Z(si) is a random vector at 
location si in D.  Lattice or regional data is where D is a fixed, regular or irregular 
finite collection of points in R2 or areas that partition R2.  D may be a graph so that 
the neighbors (N(i)) of each point are defined and Z(si) is again a random vector at 
location si in D.  Geostatistical data are distinguished most clearly from regional 
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data by the ability of the spatial index si to vary continuously over the subset of 
R2.   

Point pattern data are data where D is a point process in R2. Z(si) is a random 
vector at location si in D which can be used to distinguish between the usual spa-
tial point process and a marked spatial point process where points either possess or 
do not possess some attribute.  Object data are data where again D is a point proc-
ess in R2 but Z(si) is a random set. Point pattern data and object data are distin-
guished from geostatistical and regional data by the fact that points in D are the 
outcome of a random process.  Methods of spatial data analysis depend at least in 
part on the type of data and the types of problems associated with that type of data 
– although Cressie (1993, p.11) notes: ‘That is not to say that methods from one 
class of problems cannot be borrowed from methods usually associated with an-
other class’.  Methods also depend on the types of inference problems associated 
with each type of data. 

To help illustrate ideas and to provide a link with the earlier part of this chap-
ter, Fig. B.1.5 shows the relationship between Cressie’s (1993) typology of spatial 
data for the purpose of classifying different branches of spatial statistics and the 
GIScience conceptualization of geographic reality and includes some examples 
that fall into the different categories.  

Exploratory spatial data analysis (ESDA) comprises a collection of visual and 
numerically resistant techniques for summarizing spatial data properties, detecting 
patterns in spatial data (both relationships between variables and geographical pat-
terns), identifying unusual or interesting features in data including possible data 
errors and formulating hypotheses.  The location of data points on the map and the 
spatial relationships between them carry important information that will be rele-
vant to their analysis (Haining et al. 1998).  The map is an essential visualization 
tool and the linkage between map windows and other graphics windows is an es-
sential part of computer software designed for ESDA (Andrienko and Andrienko 
1999; Monmonier 1989).  However visualizing spatial data raises particular prob-
lems.  In the case of area data, the areas that partition the map may be of different 
size.  Two consequences may follow.  The eye is drawn to the areas of greatest 
physical extent.  Areas may contain different base populations and, as noted, rates 
are more robust in areas with large populations.  These may not be the areas of 
greatest physical extent – indeed the reverse may be the case.   Dorling (1994) ad-
vocates the use of cartograms so that areas are transformed in physical extent to 
reflect some key attribute such as population size. Geostatistical methods have 
been developed, ‘downscaling’ choropleth maps using area to point Poisson 
kriging, in order to create smoother maps of spatial variation (see for example 
Goovaerts 2006, 2008).  Banerjee et al. (2004) review a number of exploratory 
techniques for geostatistical (spatial process) and area data types.   

Turning to confirmatory spatial data analysis, at the core of statistical theory 
developed for spatial data is the recognition that spatial data are not independent 
so that classical statistical theory (developed under the assumption of observations 
from independent random variables) no longer applies.  It is a fundamental prop-
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erty of much spatial data, as we have seen, that they are positively autocorrelated 
with an autocorrelation that decreases with increasing distance separation.  This 
has a number of important consequences for modeling, parameter estimation and 
hypothesis testing using likelihood methods which we can only sketch here (for a 
treatment of inference with spatial data from a Bayesian perspective see Banerjee 
et al. 2004 where spatial effects are treated as latent within the data, never ob-
served and modeled using random effects rather than directly). 

  Conceptualizations of geographical reality 

 Object view Field view 
Geostatistical  Rainfall 

Ground temperature 
 
 

 
Regional 

D = points: prices at a set of  
retail outlets of the same type 
in a city 
 
D = polygons: counts or rates 
of a particular cancer by health 
region 

Soil pH recorded by soil regions 
(non-intrinsic polygons) 
 
 
Vegetation data recorded by 
pixel from remotely sensed im-
agery (intrinsic polygons) 

 
 
 

Point process 

Distribution of individual 
plants across an area (point 
process). 
 
Distribution of individual 
plants across an area classified 
as diseased or not (marked 
point process) 

 

 
 
 
 
 
 
 
 
 

 
Cressie’s  
data types 

 
 

Object 

Distribution of craters across a 
landscape.  The location of a 
crater and its spatial extent are 
the outcome of two processes 

Vegetation map with patches of 
varying size.  Location and ex-
tent of a patch are the outcome 
of two processes 

Fig. B.1.5. Cressie’s (1993) typology of spatial data and the two conceptualizations of geo-
graphic reality 

Consider the sample mean as the estimator of the mean of a normal distribution.  
Classical theory underestimates the confidence interval associated with the sample 
mean when data are positively autocorrelated. This is because a sample of corre-
lated normal data carries less information about the mean than an equivalent sized 
sample of independent normal observations. The ‘effective’ sample size (Clifford 
and Richardson 1985) for the purposes of inference is smaller than the number of 
observations.  The interested reader is referred to Cressie (1993, pp.13-15) and 
Haining (1988) for a fuller discussion of this example where spatial models are 
used to explicitly measure the ‘effective’ sample size.  Classical statistical infer-
ence based on ordinary least squares (OLS) theory also breaks down in the case of 
regression modeling with spatial data when model errors are positively autocorre-
lated (see for example Anselin and Griffith 1988).  The conventional F and t tests 
of hypothesis on regression parameters are not valid and may lead the analyst to 
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conclude that a statistically significant relationship exists between the dependent 
and an independent variable when such a conclusion is not justified at the chosen 
level of significance. Typically a regression model that explicitly models the spa-
tial dependency structure replaces the normal regression model (see for example, 
Anselin 1988).  We have also noted that, in the case of area data, the OLS assump-
tion of constant variance is likely to be violated.  Errors may not be homoskedastic 
if the dependent variable is a rate calculated for areas with widely varying base 
populations. 

There is, however, another side to this coin.  Suppose now inference is di-
rected at predicting an unknown observation z(sn+1) given n observed data values 
{z(s1), ..., z(sn)} all from the same normal distribution with unknown mean and 
variance and independent.  The best linear unbiased estimator (BLUE) of z(sn+1) is 
the mean.  However when the independence assumption is replaced by data that 
are spatially correlated the relevant theory is provided by ordinary kriging in 
which the BLUE is a linear function of the n data values with the largest weights 
attached to those locations closest to the location to be predicted, with adjustment 
for the effects of any observed data clustering (see, for example, Haining 2003, 
pp.167-174).  Such a result accords well with our intuition.   In this case the spa-
tial dependence in the data is being exploited in order to derive a predictor of the 
unknown observation with a smaller mean squared prediction error than that given 
by classical theory which ignores information on the location and relative posi-
tions of observations. 

It was suggested in Section B.1.3 that spatial heterogeneity of structure is also 
a property of geographical data sets particularly when the data are collected over 
large areas.  This has been the motivation for developing local tests and model 
specifications.  In the case of local statistics, geographically defined subsets of the 
data are analyzed rather than taking all the data together as is the case with global 
spatial autocorrelation tests (Anselin 1995).  Local statistics have been developed 
to test for the presence of localized clusters of cases (of a disease for example).  
Perhaps the best known is the Scan test developed by Kulldorff (1997) but owing 
much to ideas contained in Openshaw’s Geographical Analysis Machine (Open-
shaw et al. 1987). Openshaw’s GAM, by using multiple moving windows of vary-
ing size and carrying out tests on each one, addressed the problem of searching for 
clusters across the map which may exist anywhere at any scale (thus avoiding pre-
specification bias), but it was Kulldorff’s test that addressed the problem of multi-
ple testing – one of the major statistical problems that has to be addressed when 
developing local statistics. 

The problem of testing for clusters of cases of some attribute also illustrates a 
number of the core issues that arise due to representational choices and data meas-
urement issues.  If the data are in the form of area counts then the size of the areas 
(the data support) will have an important influence on our ability to detect clusters.  
Clusters will probably be lost or diluted if they are much smaller than the areal 
units that partition the study area.   The position of the boundaries of each area 
could be critical if they cut through a cluster thereby dispersing the raised count 
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over several areas.  Most crucially, as implemented in GAM and the SCAN statis-
tic, areas cannot be analyzed independently as was done in the case of earlier tests 
(see, for example, Choynowski 1959) – the spatial relationships between the areal 
units need to be allowed for in the construction of the test because a cluster may 
extend over several contiguous areal units.  As a final point, if data are in the form 
of area counts or a marked point dataset, if there are cases in a cluster that are 
missing, misclassified or wrongly located then this might seriously affect the 
power of any test to detect that cluster (see Kulldorff 1998).  

Data support raises further issues that have implications for spatial data analy-
sis.  Where data have been collected on different supports (‘incompatible data’) 
but for the purposes of analysis need to be combined, how should this be done?  If 
different process mechanisms are important at different scales, data are required at 
the relevant scales but what types of models should be specified? What are the 
implications of data support for model inference? We conclude with consideration 
of these questions. 

Combining data involves changing the support of a variable thereby creating a 
new variable. Gotway and Young (2002) define the change of support problem 
(COSP) as the problem of how the spatial variation of one variable associated with 
a given support relates to that of the new variable created on a different support.  
The authors review various solutions to the COSP including geostatistical solu-
tions based on different forms of kriging and map overlay solutions (point in po-
lygon, areal weighting, spatial smoothing and regression methods).  Geographers 
and those who use GIS will be most familiar with the latter methods, physical geo-
graphers and earth scientists with the former. These solutions produce new maps 
with the original data transferred to the new support.  Map overlay solutions give 
no indication of the prediction error associated with the new map whilst geostatis-
tical solutions ‘often rely on contrived parametric models’ (Gotway and Young 
2002, p.645). Gotway and Young also review multiscale modeling solutions (mul-
tiscale spatial tree models and Bayesian hierarchical models).   

There is further discussion of Bayesian models for the COSP in Banerjee et al. 
(2004, pp.175-212). These statistical modeling solutions allow the analyst to use 
data collected at different resolutions to model complex systems (see for example 
Fieguth et al. 1995; Gabrosek et al. 1999) but depend on making assumptions that 
are unverifiable from the data. As Gotway and Young (2002, p.645) observe, the 
common solution strategy for COSP is to build a model from data with small sup-
port and use that to estimate parameters and make valid inferences.  The focus 
then turns to the validity of the assumptions needed to obtain solutions. Bierkens 
et al. (2000) provide an accessible discussion of the COSP in the context of envi-
ronmental research focusing on a wide range of techniques for ‘upscaling’ (aggre-
gation) and ‘downscaling’ (disaggregation).  

Many environmental problems (for example, climate change research) require 
the construction of models that are defined at different scales with interactions oc-
curring across those scales often within a hierarchical (global to local) structure.  
Wikle (2003) provides an overview of hierarchical modeling approaches to the 
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analysis of complex environmental systems.   Marceau (1999) in reviewing these 
issues discusses examples that demonstrate the effects of scale on the explanatory 
power of different sets of variables and, in the context of landscape ecology, de-
scribes the hierarchical patch dynamics paradigm (HPDP) of Wu and Louks 
(1995).  HPDP combines two elements. The patch is the fundamental structural 
and functional unit of a landscape and deals with heterogeneity and interaction in 
a horizontal way; hierarchy theory defines the vertical structure of the system in 
terms of a limited number of discrete hierarchical levels with effects operating at 
different scales.   

As Marceau (1999) notes, this paradigm and the consequent models recognize 
how spatio-temporal heterogeneity, scale and hierarchical organization affect the 
structure and dynamics of ecological systems.  Similar conceptual frameworks are 
found in the social sciences.  In the case of adolescent development Brooks-Gunn 
et al. (1993, p.354) comment: ‘individuals cannot be studied without considera-
tion of the multiple ecological systems in which they (the adolescents) operate’. 
The contextual effect of place can operate at a hierarchy of scales from the imme-
diate neighborhood up to regional scales and above. Criminologists analyze the 
contribution of different scales of influence from the individual to neighborhood 
scales on offending and victimization (Wikström and Loeber 2000).  Sampson et 
al. (1997) use multi-level modeling to identify different scale effects in the distri-
bution of violent crime. 

Finally we turn to specific instances of inference problems that arise linked to 
the problem of support.  The ecological inference problem and the modifiable 
areal units problem (MAUP) familiar to geographers are both linked to the COSP 
and are special instances of it.  Much spatial data, especially in human geography, 
is made available in the form of counts or rates for areal units, or zones.  Typically 
these zones are arbitrary and modifiable and all too often have no intrinsic geo-
graphical meaning (Hipp 2007).  It has long been known that the results of statisti-
cal techniques such as regression and correlation are dependent on the spatial 
framework in terms of which data are collected.  Results depend on the scale of 
the areal units (the scale problem) and their configuration (the aggregation prob-
lem).   For early discussions see Gehlke and Biehl (1934) and McCarthy et al. 
(1956).  This concern has come to be known as the modifiable areal units problem 
following Openshaw and Taylor (1979) who demonstrated how widely correlation 
coefficients can vary for the same set of underlying data but observed under dif-
ferent partitions of the space.  As King (1997, p.252) and others have noted how-
ever the MAUP is not an empirical problem.  If an analyst wants statistics that are 
invariant to the level of aggregation then do not use regression or correlation, use 
statistics that are invariant (see also Tobler 1990).  As King (1997, p.252) points 
out, ‘deriving statistics invariant to aggregation for the relationship between vari-
ables, corresponding to correlation or regression coefficients, may be more diffi-
cult, but it is a theoretical difficulty’. 

It follows that making statistical inferences about individuals based on aggre-
gate data is flawed.  Robinson (1950) used the term the ecological fallacy to de-
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scribe the error of doing so.  The term aggregation bias is used to denote the dif-
ference between the parameter estimate obtained from group data and the estimate 
obtained from individual level data.  Where some individual level data are avail-
able, some progress can be made in using aggregate data to make individual level 
inference and this is a project of interest in spatial epidemiology where there is a 
focus on acquiring estimates of risk, at the individual level, to different types of 
exposures (Jackson et al. 2008). 

B.1.5   Concluding remarks 

An important class of spatial data is compiled through a process that starts with a 
continuous and complex reality and concludes with the construction of the spatial 
data matrix.  Spatial data have properties, some deriving from the fundamental na-
ture of geographical reality, others acquired through the representational and 
measurement processes that follow.  Those properties and the resulting quality of 
spatial data provide an essential context within which methods for analyzing spa-
tial data are developed and results interpreted.  Equally important are the types of 
questions we ask, the inference problems we face including the spatially-
structured models we build through which we seek to understand the world.  It is 
these models and how they are constructed that determine the model for the spatial 
data matrix – that determine in any particular scientific context what data are 
needed, at what scales and according to what configurations. 
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B.2    Exploratory Spatial Data Analysis 

Roger S. Bivand 

B.2.1  Introduction 

Exploratory spatial data analysis (ESDA) as used in spatial statistics, spatial 
econometrics and geostatistics, developed from exploratory data analysis (EDA). 
In particular, two threads that are central to a-spatial EDA have carried over to 
ESDA – the importance of the data themselves, and the importance of analytical 
graphics in representing chosen characteristics of the data. 

This chapter will present some of the underlying intentions of ESDA, and 
survey some of the outcomes. This will necessarily involve the use of software, 
since most EDA and ESDA techniques presuppose the use of computing resources 
in some form. Here, we will use R-2.8.0 (R Development Core Team 2008), 
because the integration of its output with the printed page is somewhat less 
problematic than that of systems with graphical user interfaces. The choice of  R 
also touches nicely on the Bell Labs' inheritance of the  S language, with its links 
to John Tukey and Bill Cleveland, described by Chambers (2008), himself a major 
contributor to applied statistics. 

In his recent book, Chambers (2008, p.1) proposes the principle that: ‘our 
Mission, as users and creators of software for data analysis, is to enable the best 
and most thorough exploration of the data possible.’ In this tradition, exploration 
is part of the process of formulating the question and organising the data so as to 
be able to answer that question. As Cox and Jones (1981) note, the tradition stands 
some way from the classical division between descriptive and inferential statistics. 
The substantive research problem is what matters: ‘As John Tukey often remarked, 
better an approximate answer to the right question than an exact answer to the 
wrong question’ (Chambers 2008, p.3). This may involve exploring distributional 
assumptions in relation to variables of interest, perhaps including transformations 
or the removal of trends, but does presuppose that the analyst wants to find the 
‘right’ question, a point to which we will return in conclusion. 

Attentive reading of classics in spatial data analysis, such as Cressie (1993), 
and Bailey and Gatrell (1995), shows that both EDA and ESDA have long played 
an important part in finding the ‘right question’. This heritage is continued in 
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newer presentations like Waller and Gotway (2004), and Schabenberger and 
Gotway (2005). While many point to the increasing availability of spatial data as 
such, it seems typical that the data we need to attack a given research problem is 
often costly to gather, often collected for other purposes, and often not with the 
support best suited to the problem. Consequently, we need to try to make the best 
possible use of the available data, both in connection with the thrust of our 
research problem, and looking out for signals suggesting potentially richer 
questions. 

Our research problem focuses our attention on components of variation in our 
response variables of interest, on variables or spatial locations that account for 
observed variability. In terms proposed by Tukey, the response variables 
constitute the data, and what we know about the data based on previous 
knowledge is the smooth, leaving residual variation in the rough. Exploratory data 
analysis opens up two complementary possibilities: that our prior knowledge – 
choice of variables in the smooth and their functional form – deserves revision, 
and that patterning in the rough can be shifted to the smooth. In particular, spatial 
patterning in the rough can be used as a ‘spatial’ smooth in some cases, especially 
when observations on omitted variables shown in the spatial patterning are not 
available for any reason. Exploratory spatial data analysis plays an important role 
in the examination of a-spatial residual variation, to try to see whether spatial 
patterning can be used to account for the variation in the data in a more 
satisfactory way. 

In this chapter, we will work with examples to show some of the available 
methods that build on the EDA approach to data analysis. The examples use 
legacy data sets, and will not necessarily start from univariate EDA as perhaps 
they should, but rather illustrate fresh groups of methods in turn in each section. 
One example data set that will be used frequently is the French ‘Moral Statistics’ 
data set discussed in detail by Friendly (2007) and taken up in connection with 
geographical visualization by Dykes and Brunsdon (2007).  

B.2.2   Plotting and exploratory data analysis 

Cox and Jones (1981, p.135) describe one of the basic attitudes of exploratory data 
analysis as: ‘plot both your data and the results of data analysis’ – pointing 
directly to statistical graphics. Plotting multiple versions of a display by hand is so 
time-consuming that actually using EDA visualization had to wait until computer 
graphics resources became available, despite the hopes expressed in Tukey (1977) 
that paper and pencil would be enough. Naturally, in the 1970's computer graphics 
were not very sophisticated, and portability across graphics devices other than line 
printers was very hard to achieve, so early Minitab EDA output was formatted for 
line printers (as was output from the subroutines provided in Velleman and 
Hoaglin 1981). 
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Output to interactive user terminals was hard, with the initial exception of the first 
Apple Macintosh computers, which provided both a monochrome graphics screen 
and a pointing device. This was used by DataDesk and other software to provide 
ways of exploring data visually; other software for PC systems did not have such a 
standardised graphics library until much later; Systat for example used a pen 
plotter for graphics output. Workstation systems, largely running Unix, did have 
mature graphics libraries, but with a plethora of different versions – Silicon 
Graphics™ machines were well-liked but very costly. 

Since those early years, cross-platform software accommodating differences in 
graphics devices has become more common, in addition to cross-platform 
graphics libraries – Xgobi transitioned to use the Gnome graphics library as 
Ggobi1, and may now be used on many platforms (Cook and Swayne 2007). Other 
data visualization software has chosen to use Java as a virtualized platform, as we 
will see in Section B.2.2 in the case of Mondrian2 (Theus 2002). This is not 
dissimilar to the use of XLISP to underpin XLispStat on a cross-platform basis, 
used by Brunsdon (1998) for exploratory spatial data analysis. The use of Tcl/Tk 
by Dykes (1997, 1998) is a further example of a developer ‘borrowing strength’ 
from an underlying programming language, which provided cross-platform 
support for interactive graphics, for exploratory spatial data analysis. 

The concise introduction to exploratory data analysis by Jacoby (1997) 
provides us with a first data set and details of the computing environment used –  
S was used for demonstrating many of the techniques presented, and they may be 
reproduced using R. The univariate EDA methods used are described by Jacoby 
(1997), and implementation details of the graphics functions used can be found in 
Murrell (2005). Sarkar (2007) shows how to use lattice graphics in R to display 
panels accommodating both the variable(s) of interest and conditioning variables – 
this builds on Trellis graphics introduced in Cleveland (1993) and Becker et al. 
(1996). The data set contains Medicaid program quality scores for 48 U.S. 
contiguous states for 1986, here stored externally in a shapefile, and read into a  
SpatialPolygonsDataFrame object. 

Figure B.2.1 shows a number of graphical representations of the observed 
values of the program quality scores (PQS), ranging from the simple but 
informative stem and leaf tally on panel a), through a jittered stripchart on panel 
b), and a boxplot [see panel c)]; [see Chapter E.2 for a further discussion of the 
use of boxplots], to a composite of a histogram with default bin widths and 
starting point, overlaid by density plots for three bandwidths, and furnished with a 
rug plot along the bottom axis showing the data values in panel d). As in the 
remainder of this chapter, the code snippets illustrate how the displays may be 
made, sometimes in abbreviated form to simplify presentation. The PQS variable 
belongs to the  medicaid object, here a  SpatialPolygonsDataFrame object, 
and is accessed using the $ operator. 

                                                           
1  http://www.ggobi.org/ 
2  http://www.theusrus.de/Mondrian/index.html 
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> stem(medicaid$PQS, scale = 2) 
> stripchart (medicaid$PQS, method = ,jitter’, vertical = TRUE) 
> boxplot(medicaid$PQS) 
> hist(medicaid$PQS, col = ,grey90’, freq = FALSE)  
> lines(density(medicaid$PQS, bw = 15), lwd = 2)    
> rug(medicaid$PQS) 
 
It is helpful to contrast the smoother generalisation of the boxplot, the histogram, 
and the density plot with the larger bandwidth to the stem and leaf plot, the 
stripchart, the rug plot, and the density plot with smaller bandwidth. The first 
group of techniques shows the ‘big picture’, while the second group gives more 
detail, and may even suggest some clustering of the observed values. 
 
 

 

Fig. B.2.1. Displays of the reported Medicaid program quality score values 1986: 
a) stem and leaf display – here ordered with large values at the top to match the next two 
panels; b) stripchart with jittered points; c) boxplot with standard whiskers; d) histogram 
with overplotted density curves for selected bandwidths 

All of these techniques use an ordering of the data, as do the two shown in Fig. 
B.2.2. The plot of the empirical cumulative distribution function of the observed 
values involves their ordering, and the tallying of ties, to be compared with their 
rank orders. A uniform distribution gives a more or less straight diagonal line, but 
the plot is perhaps most useful for exploring unusual breaks between values. The 
functions can be used in the following way. 
 
> plot(ecdf(medicaid$PQS) 
> o <- order(medicaid$PQS) 
> dotchart(medicaid$PQS[o], labels = as.character (medicaid$STATE_ABBR) [o], 
+ groups = medicaid$Division[o]) 

26 / 014 

25 / 3 

24 / 57 

23 / 5 

22 / 022489 

21 / 3799 

20 / 1279 

19 / 01222566 

18 / 0134 

17 / 123677 

16 / 0679 

15 / 89 

14 / 16 

13 /3 
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The accompanying dotchart displays all the observed values, with state labels and 
grouped by statistical division. It introduces the concept of conditioning, here on 
division, to permit the comparison of ordered values in relation to a structuring 
variable. With 48 observations, the dotchart is becoming illegible, and would 
probably benefit from aggregation: curiously, both stem and leaf displays and dot-
charts may be viewed ‘out of focus’ to look at a ‘big picture’. Zooming in, it does, 
however, permit the retrieval of values for identified observations, so that the ana-
lyst can see ‘which are which’. 
 

 

Fig. B.2.2. Medicaid program quality scores 1986: a) empirical cumulative distribution 
function, and b) dotchart 

Dynamically linked graphics. The interactive identification of observations, and 
groups of observations with apparently shared characteristics, has emerged as an 
important exploratory tool in data analysis. A pointing device is used to select one 
or more observation on one graphics display, and the selection is dynamically dis-
played on all other data displays, both text and graphical. Naturally, this is hard to 
represent in print, but has generated a rich literature and many software implemen-
tations. The background for dynamically linked graphics is discussed in detail by 
Becker et al. (1987). 

One implementation that has served as a research forum for exploring the pos-
sibilities offered by multivariate dynamically linked graphics is XGobi (Cook et 
al. 1996, 1997). From the beginning, XGobi developers were interested in linking 
to map displays (Symanzik et al. 2000), leaving geographical representation to a 
desktop GIS. Cook and Swayne (2007) show how dynamically linked graphics 
have developed and matured, and how dynamic data manipulation, such as ‘flying 
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through’ clouds of multivariate data points, can be related to static but reproduci-
ble graphic displays. Theus (2002) describes the Mondrian software implementa-
tion of many multivariate dynamically linked graphics, including a map view. 
Naturally, showcasing dynamically linked graphics in print is not possible, but any 
SpatialPolygonsDataFrame object may be exported in the correct format for 
Mondrian in this way. 
 
> library(maptools) 
> sp2Mondrian(medicaid, ,medicaid.txt’) 

B.2.3   Geovisualization 

While data visualization is perhaps more closely related to data analysis, the work 
of cartographers brings in scientific and information visualization. This cross-
fertilization has led to a range of innovative software tools, many of which are 
documented in the work of the Commission on GeoVisualization of the Interna-
tional Cartographic Association.3 Work by cartographers is welcomed in statistical 
graphics; for example the results of studies into the use and abuse of colour in 
visualization have diffused widely. Geovisualization is not separate from explora-
tory spatial data analysis, but rather constitutes the backbone of ESDA, joining up 
the large range of techniques proposed for examining spatial data in a shared and 
easily comprehended visualization framework. 

Monmonier (1989) introduced the concept of geographical brushing, borrow-
ing from brushing in dynamically linked graphics, selecting observations for 
linked highlighting from a map representation, most often choosing observations 
within a map window. Many of these techniques for linked highlighting were im-
plemented in software described by Haslett et al. (1991) and Haslett (1992), and 
followed up by Dykes (1997, 1998) in the ‘cartographic data visualizer’ cross-
platform implementation. Progress made during the 1990s is summarised by An-
drienko and Andrienko (1999) and Gahegan (1999). 

Like Mondrian, GeoVISTA studio (Takatsuka and Gahegan 2002) uses Java 
as an integrating cross-platform framework linking the dynamic display of spatial 
data with its conceptual underpinnings. The treatment of ontologies as an integral 
part of geovisualization software is developed by MacEachren et al. (2004a, b). 
The approach taken by GeoDa (Anselin et al. 2006) is simpler, combining dy-
namically linked graphics, map views, and numerical exploratory techniques to be 
discussed in Section B.2.5. 

Dykes and Mountain (2003) add the temporal dimension to interactive graph-
ics with spatial data, while the data is smoothed by geographical weighting in the 
methods described by Dykes and Brunsdon (2007). Many of these proposals seem 
to address issues of importance for visualization research as such, rather than for 

                                                           
3  http://geoanalytics.net/ica/ 
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applied data analysis; by contrast, Wood et al. (2007) combine innovative geo-
visualization with ‘mashups’, permitting output graphics to be viewed using either 
browser-based mapping applications, or stand-alone software and geodata distri-
bution systems like Google Earth™. 

Thematic cartography. Just as graphical output may be described as lying on a 
continuum from analytical to presentation in terms of the requirements of its 
viewers, so may cartographic output (Slocum et al. 2005). Thematic cartography is 
an important part of exploratory data analysis with spatial data, as well as playing 
a vital role in presenting model results. It is also crucial in the communication of 
the intermediate and final results of research, both on screen in applications and 
documents, and in print. Bailey and Gatrell (1995, pp.48-61) describe the devel-
opment of computer mapping for analytical purposes. We will not be considering 
the use of cartograms here, although arguments can be made for their importance 
in ESDA (Dorling 1993, 1995). There are issues concering the legibility of carto-
grams, and further difficulties in the algorithmic construction of legible polygons, 
which led Durham et al. (2006) to complete the construction of acceptable units 
for the British Census by hand. In this review, we will be using R graphics meth-
ods largely documented in Bivand et al. (2008, pp.57-80), in particular the spplot 
methods for suitable objects; the first argument here is the object, and the second, 
a vector of variables to display using the same class intervals, here a single vari-
able. 
 
> lbls <- as.character(medicaid$STATE_ABBR) 
> spl <- list(,sp.text’, coordinates(medicaid), lbls, cex = 0.6) 
> spplot(medicaid, ,PQS’, col.regions = grey.colors(20, 
+ 0.95, 0.4), sp.layout = spl, col = ,grey30’) 
 
The example (see Fig. B.2.3) shows a map view of the program quality score vari-
able; the sp.layout argument allows additional graphics components to be added 
to the output. The spplot method can take an argument setting the class intervals, 
but where none is given, it uses a default of ‘pretty’ numbers encompassing the 
range of the data with 19 equally spaced internal intervals, so taking 20 colour 
values. The grey.colors function creates a ramp of grey shades from its second 
to third argument value for a default gamma of 2.2, which seems to match some 
computer displays, projectors, and printed output adequately. 

The grey shades chosen are not the same as those proposed by Brewer et al. 
(1997); Brewer and Pickle (2002) in ColorBrewer, mostly in not using the lightest 
or darkest greys, and by using a larger gamma than the one proposed there.4 Hav-
ing good control of class intervals and colours used is an important part of the-
matic cartography, and is far from easy to achieve in print. Readers willing to try 
out the code underlying this review are invited to explore alternative palettes to 
see whether the ‘message’ of the presented thematic maps is affected.  

                                                           
4  The gamma correction is a component of the colour space implementation intended to 

neutralise the effect of the display medium (the default value of 2.2). 
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Fig. B.2.3. Medicaid program quality scores, 1986: thematic cartography as a method for 
statistical display 

Conditioned choropleth maps. Trellis graphics displays are intended to permit the 
researcher to explore multivariate relationships by conditioning on potentially in-
teresting variables (Becker et al. 1996). In an innovative paper building on modern 
statistical graphics, Carr et al. (2000) propose the use of linked micromaps, match-
ing maps used to provide graphical indices for conditioned panels, and condi-
tioned choropleth maps. They define CC maps in the following way: ‘Similar to 
conditioning on sex and showing separate choropleth maps for males and females, 
CC maps provide for conditioning on the levels or values of variables and for the 
display of multiple choropleth maps. The basic difference in the examples here is 
that the conditioning does not distinguish separate populations within each unit of 
study but rather partitions the units of study’ (Carr et al. 2000, p.2530). More de-
tails and examples can be found in Carr et al. (2005). 

In the classic North Carolina sudden infant death syndrome data set, a rela-
tionship is found between the Freeman-Tukey transformed SIDS rate for 1974-
1978 by county and the Freeman-Tukey transformed nonwhite birth  rate (Cressie 
1993, pp.548-551). 

We can use a lattice of conditioned choropleth maps to explore the spatial 
footprint of this relationship. We could convert the nonwhite birth rate into a cate-
gorical variable (factor) to partition the counties, but follow usual practice when 
conditioning panels on a numerical variable and use equal count overlapping shin-
gles. The reasons for using overlapping shingles – to avoid the risk of giving the 
breaks in the conditioning variable too much influence in the display – are dis-
cussed by Becker et al. (1996, pp.142-147), and documented for R by Sarkar 
(2007, pp.177-187). With no overlap, equal.count would return members cor-
responding to quantiles for the number of conditioning levels required, but as can 
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be seen from Fig. B.2.4, the shadings in the panel strips do overlap, reflecting the 
chosen degree of protection from interval choice artefacts. The equal.count 
function in lattice allows us to construct a shingle, and to use it in CCmaps. 

 
> library(lattice) 
> sh_nw4 <- equal.count(nc.sids$ft.NWBIR74, number = 4 
+    overlap = 1/5) 
> CCmaps(nc.sids, ,ft.SID74’, list(Nonwhite_births = sh_nw4)) 
 

As we move from lower left to lower right, then upper left to upper right across 
the panels of Fig. B.2.4, we see that the counties in each level of the shingle seem 
to be clustered, and that the choropleth map values of the variable of interest in-
crease. This corresponds to the positive relationship reported between the vari-
ables, but also suggests that including the conditioning variable may reduce resid-
ual autocorrelation in a model of Freeman-Tukey transformed SIDS rates. 

 
> gfrance <- readOGR(,.’, ,gfrance1’) 
> gfrance$Pop_crime <- gfrance$Crime_prop/100 
 
 

 

Fig. B.2.4.  North  Carolina Freeman-Tukey  transformed  SIDS rates  by  county  for  
1974-1978 conditioned on four shingles of the Freeman-Tukey transformed nonwhite live 
birth rates 

Friendly (2007, p.395) includes a conditioned choropleth map of a variable from 
the Guerry French moral statistics data set: number of population per observation 
unit per crime against property, conditioned on wealth and literacy. The data set is 
available from the author’s website5 as a shapefile, which we read in as before. 
Figure B.2.5 shows the spatial distribution of the three variables being used here. 

                                                           
5  http://www.math.yorku.ca/SCS/Gallery/guerry/maps.html#spatial 
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In order to plot a conditioned choropleth map, we need to construct two shingles, 
here, following Friendly (2007, p.395), with 10 percent overlap and two levels 
each. 
 
 
> sh_wealth <- equal.count(gfrance$Wealth, number = 2, 
+    overlap = 1/10) 
> sh_literacy <- equal.count(gfrance$Literacy, number = 2, 
+    overlap = 1/10) 
> CCmaps(gfrance, ,Pop_crime’, list(Wealth = sh_wealth, 
+    Literacy = sh_literacy)) 
 
 
Figure B.2.6 differs from the original figure in a number of ways. The class inter-
vals used for displaying the crime variable are not the same, and the legend is as 
provided by the underlying spplot and levelplot methods. The ordering of the pan-
els also differs, but the spatial footprint is the same: wealthy and literate places 
experience higher rates of crime against property than poor and illiterate places. 
Note the inverted rate used – population per crime, rather than crime counts per 
inhabitant. 
 
 

 

Fig. B.2.5. Choropleth maps of population per crime against property, rank wealth and per-
centage literacy, France (Friendly  2007) 
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Fig. B.2.6. Choropleth maps of population per crime against property, conditioned  
on ranked wealth and percentage literacy, France (see Friendly 2007, p.395) 

B.2.4  Exploring point patterns and geostatistics  

Within the spatial analysis literature, ESDA has often been described as a subset 
of exploratory data analysis (Anselin 1998; Anselin et al. 2007). In a somewhat 
broader framework, however, it is perhaps difficult to distinguish ESDA as a sub-
set of EDA, because many other strands feed into it, for example from information 
visualization and geographical information science, that are not present in EDA it-
self. It is tempting rather to see EDA as that part of ESDA of relevance to data 
where observations have no spatial location; such an over-arching view admits 
geovisualization as a part of ESDA, and places exchanges of knowledge and tech-
niques between cartography and statistical graphics in a more natural context. 
Note that statisticians often use spatial data sets and objects as vehicles for their 
presentations (cf. Chambers 2008). 

‘Analyzers of spatial data should ... be suspicious of observations when they 
are unusual with respect to their neighbours’ (Cressie 1993, p.33). This opera-
tional definition, buttressed by lively concern about data collection on the one 
hand and model specification on the other, is reflected in many of the examples 
presented in Cressie (1993), see also Unwin (1996), Kaluzny et al. (1998), Hain-
ing (2003), and Lloyd (2007). Often it is not sufficient to see ESDA as a toolbox 
of finished tools, because one frequently needs to ‘get closer’ to the data than the 
tools allow. This is one of the reasons for placing ESDA within an environment 
for statistical computing like R (Bivand et al. 2008), where users can engage the 
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data as far as they might wish. Finally, it should be noted that there are topics not 
yet adequately covered, such as ESDA for categorical data, surveyed and ad-
vanced by Boots (2006). 

Exploring point patterns. While ESDA is often seen as being applied to areal 
data, in fact approaches to data analysis derived from EDA are used throughout 
spatial data analysis. For example, the Ĝ nearest neighbour distance measure used 
in point pattern analysis is simply a binned empirical cumulative density function 
plot of the nearest neighbour distances. Levine (2006) describes how many ex-
ploratory tools are provided in CrimeStat in an accessible fashion, and with the 
possibility of using simulation to see whether the patterns detected by the user 
ought to be treated as significant. Diggle (2003) gives many examples of the ways 
in which care in data analysis – respecting the data – informs even the most tech-
nically advanced statistical procedures. Baddeley et al. (2005) show how residuals 
from modelling a point pattern may be explored diagnostically; the spatstat pack-
age for R provides many ways to explore point patterns (Baddeley and Turner 
2005). We will not be considering scan tests in this chapter; their provision in R is 
reviewed in Gómez-Rubio et al. (2005), and Bivand et al. (2008). 

One of the classic data sets provided with R shows the locations of earth-
quakes near Fiji since 1964; the points in geographical coordinates are accompa-
nied by the depth detected, the magnitude of the event, and the number of stations 
reporting it. These mean that we can treat it as a marked point pattern, for example 
using non-overlapping shingles of depth. The xyplot function takes a formula 
object as its first argument – this is a symbolic expression of the model to be visu-
alised, here with points to be plotted on longitude and latitude conditioned on a 
depth shingle. 
 
> data(quakes) 
> depthgroup <- equal.count(quakes$depth, number = 3, overlap = 0) 
> xyplot(lat ~ long | depthgroup, data=quakes, main=,Fiji earthquakes’, 
+    type = c(,p’, ,g’)) 
 

 

Fig. B.2.7. Seismic events near Fiji since 1964, conditioned on depth 
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Figure B.2.7 reproduces the conditioning of location on depth for the earthquake 
events discussed in detail by Murrell (2005, pp.126–141) and Sarkar (2007, 
pp.67–76). They also show how magnitude may also be visualized on conditioned 
scatterplots through a further shingle, or shaded symbols. Here we will consider 
how we might express the relative intensity of the point pattern using kernel 
smoothing. In order to do this we should project the geographical coordinates to 
the plane, using an appropriate set of parameters, here a Transverse Mercator pro-
jection used on Fiji. We use the default bisquare kernel with three chosen band-
widths, and set kernel values close to zero to NA. 
 
> coordinates(quakes) <- c(,long’, ,lat’) 
> proj4string(quakes) <- CRS(,+proj=longlat’) 
> quakes_tmerc <- spTransform(quakes, CRS(,+init=epsg:3460’)) 
> library(splancs) 
> pl <- bboxx(bbox(quakes_tmerc)) 
> h150k <- spkernel2d(as.points(coordinates(quakes_tmerc)), 
+    poly = pl, h0 = 150000) 
> is.na(h150k) <- h150k < .Machine$double.eps 
 
 

 
Fig. B.2.8. Kernel density plots of seismic events near Fiji; three  
increasing bandwidth settings 

Figure B.2.8 shows density plots of the earthquake events for three increasing 
bandwidth values. The panels have also been furnished with shorelines and a 
graticule to aid in positioning the events. Had we additionally conditioned on 
depth or magnitude, or added tectonic boundaries, we might have come a little fur-
ther. However, we can already see clearly that the observed pattern is not likely to 
be homogeneous. Exploration of point patterns is often helpful in drawing atten-
tion to the need to look for covariates that may account for inhomogeneity, or to 
possible use of a control point pattern to contrast with the observed cases. 

Exploratory geostatistics. It is probable that more exploratory spatial data 
analysis is done in geostatistics than in the remaining domains of spatial data 
analysis; Cressie (1993) gives many examples. It is easy to grasp why interpola-
tion is crucially dependent on identifying the ‘right’ model, in terms of the selec-
tion of observation locations, the fitting of models of spatial autocorrelation, de-
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tecting useful covariates, and checking the appropriateness of assumptions such as 
isotropy. If a seriously sub-optimal model is chosen, both the predictions them-
selves and estimates of uncertainty around those values will not be as satisfactory 
as might have been achieved with the same data. Lloyd (2007) and Müller (2007) 
provide further discussions of techniques for making good use of the data to hand, 
and of the design of patterns of sampling locations to improve prediction. Geosta-
tistics is also discussed in Chapter B.6. 

Here we will use a data set of precipitation values for Switzerland, discussed 
in Diggle and Ribeiro (2007, pp.118-121, pp.149-150, pp.169-172), and used in 
the ‘Spatial Interpolation Comparison 97’ contest6. The examples demonstrate that 
geostatistics software, here R packages, provides much support for exploratory 
spatial data analysis, discussed for example by Bivand et al. (2008, pp.192, 
pp.195-200). Other software adopts the same approach; the Geostatistical Analyst 
extension to ArcGIS™ is well furnished with ESDA tools. 
 
> library(geoR) 
> data(SIC) 
> plot(sic.100, borders = sic.borders, lowess = TRUE) 
 
In the geoR package, the plot method for a geodata object is to make an ESDA 
graphic display. Setting the lowess= argument permits a smoothed line to be 
drawn through scatterplots of the data against the x and y coordinates, so that the 
four-panel display, shown in Fig. B.2.9, conveys a lot of information. On screen, 
the map symbols are coloured, to draw more attention to the spatial patterning of 
the quartiles of the variable of interest. We could of course condition a scatterplot 
of the location coordinates on a shingle of the variable of interest, as presented 
above. The histogram overplotted with a density line and rug plot shows that the 
data deserves more exploration, especially if a trend is mixing distributions of pre-
cipitation values together. The trend is here taken as the mean of the data, but the 
smoothed lines suggest that a spatial trend is present, of course in addition to the 
effect of station elevation, which has not been included here. 

Location diagnostics.  Should we attempt to add in a spatial trend, or a covari-
ate, we should pay attention of the warning given by Unwin and Wrigley (1987) to 
use the same diagnostic tools as in any other modelling exercise. It is, as Fig. 
B.2.10. shows, quite frequently the case that some observations exert a more than 
proportional influence on the fitted model. The circles are proportional to Cook’s 
influence statistic, and indicate that the distinguished stations ought to be looked 
at carefully, to see why they differ so much from their near neighbours. Note that 
most of the distinguished stations are on the edge of the study area. 
 
 

                                                           
6  http://www.ai-geostats.org/index.php?id=data 
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Fig. B.2.9. Exploratory geostatistical  display of Swiss precipitation data from the 1997 
Spatial Interpolation Comparison contest: a) precipitation quartiles; b) plot of precipitation 
by northings; c) plot of precipitation by eastings; d) histogram and density of precipitation 

 

 

Fig. B.2.10.  Influence plots  for trend  surfaces,  Swiss precipitation  data, circle radius 
proportional to Cook’s influence statistic (Unwin and Wrigley 1987): a) quadratic trend 
surface; b) cubic trend surface 
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Variogram diagnostics. Variogram diagnostics are linked to other steps taken in 
exploring variables in geostatistics (Pebesma 2004). Using the spatial representa-
tions presented in Bivand et al. (2008), we can review some of the tools made 
available in the gstat package. First, we convert the Swiss precipitation data set to 
a suitable object form, and show a h-scatterplot of pairs of observed values condi-
tioned on distance, expressed in the breaks argument to hscat. The formula in-
terface used here places the variable of interest on the left hand side of the equa-
tion, and only the intercept term on the right hand side. 
 
> library(gstat) 
> sic.100SP <- SpatialPointsDataFrame(SpatialPoints(sic.100$coords), 
+    data = data.frame(precip = sic.100$data)) 
> hscat(precip ~ 1, data = sic.100SP, breaks = seq(0, 120, 
+    20)) 
 
The first diagnostic plot (Fig. B.2.11)  is known as an h-scatterplot, and conditions 
a scatterplot of the values at pairs of locations on the binned distance hij between 
them; the diagonal lines represent perfect correlation. The sample correlations be-
tween the observed values at locations i and j are perhaps a little hard to read in a 
monochrome plot, so are repeated in text output, declining from 0.714 in the first 
20km bin, to 0.344 between 20 and 40km, and going through zero in the third bin. 
It appears, then, that nearer observations are more like one another, and that the 
similarity declines with distance. 

By defining a gstat object, we can easily create variograms of different 
kinds by passing this object and additional arguments to variogram. 
 
> g <- gstat(id = ,precip’, formula = precip ~ 1, data = sic.100SP) 
> evgm <- variogram(g, cutoff = 100, width = 5) 
> revgm <- variogram(g, cutoff = 100, width = 5, cressie = TRUE) 
> cevgm <- variogram(g, cutoff = 100, width = 5, cloud = TRUE) 
 
Figure B.2.12 shows a variogram cloud plot and a plot of empirical variogram 
values for twenty 5km wide bins, for classical and robust versions of the 
variogram. The bin borders are shown to highlight the way in which the empirical 
variogram is constructed as a measure of central tendency of squared differences 
in the variable of interest between pairs of points whose inter-point distance falls 
into the bin. Cressie (1993, pp.74-83) provides the development of a robust esti-
mator, shown with a dashed line in Fig. B.2.12, that reduces the impact of un-
usually large differences in value between near neighbours. The fields package re-
turns number summaries by bin in addition to the classical variogram estimator in 
output from the vgram function. 

Figure B.2.13 shows a variogram map, and four empirical variograms for four 
axes at 0°, 45°, 90° and 135°; the variogram direction lines are coded in the same 
way on both panels. A variogram map is centred around (0, 0) and has map di-
mension and cell size similar to cutoff and interval width values; it is constructed 
by averaging pairs that have distance within a certain bin. In this case, we see that 
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the structure aligned with the 45° direction corresponds to lower variogram values 
for nearer bins. Recall that here we taking the trend as the mean only, ignoring the 
impact of large scale spatial trends and covariates. 

Directionality.  Finally, we follow Bivand et al. (2008, pp.205-206) in exam-
ining possible anisotropy in the data set. Using the same bins as earlier, we add 
arguments to the variogram function to create objects for plotting. 
 
> mevgm <- variogram(g, cutoff = 100, width = 5, map = TRUE) 
> aevgm <- variogram(g, cutoff = 100, width = 5, alpha = c(0, 
+ 45, 90, 135)) 

 
 
 

 

Fig. B.2.11. h-scatterplots: scatterplots of pairs of observed values conditioned on distance; 
sample correlations shown in panels 

 

 

Fig. B.2.12. Swiss precipitation data – binned classic and robust variogram values:  
a) variogram cloud display; b) variogram values [note that the vertical axis is not in the 
same scale in a) and b)] 
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Fig. B.2.13. Detecting directionality in the variogram of Swiss precipitation data:  
a) variogram map showing binned semivariance values by direction and distance;  
b) classical variograms for four axes at 0°, 45°, 90° and 135° 

B.2.5  Exploring areal data 

Much of the literature on exploratory spatial data analysis has focussed on the ex-
ploration of areal data with respect to spatial association. In this section, we will 
look at local indicators of spatial association within this tradition, but will also 
consider how larger scale regularities may be revealed by using median polish 
smoothing and Moran eigenvector mapping. A topical area that has not been given 
enough attention is that of regression diagnostics for fitted spatial regression mod-
els (Haining 1994); while users appear to want heteroskedasticity-corrected stan-
dard errors, few seem to realise that the mis-specification could arguably be better 
handled if diagnostic methods had been used (see also Mur and Lauridsen 2007). 

Median polish smoothing. Cressie (1993, pp.46-48, pp.393-400) discusses in 
some detail how smoothing may be used to partition the variation in the data into 
smooth and rough. Initial use of median polish smoothing is described by Cox and 
Jones (1981). In order to try it out on the North Carolina SIDS data set, we will 
use a coarse gridding into four columns and four rows given by Cressie (1993, 
pp.553-554), where four grid cells are empty; these are given by variables L_id 
and M_id in object nc.sids. Next we aggregate the number of live births and the 
number of SIDS cases 1974-1978 for the grid cells. 
 
> L_id <- factor(nc.sids$L_id) 
> M_id <- factor(nc.sids$M_id) 
> both <- interaction(L_id, M_id) 
> mBIR74 <- tapply(nc.sids$BIR74, both, sum) 
> mSID74 <- tapply(nc.sids$SID74, both, sum) 
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Using the same Freeman-Tukey transformation as is used for the county data, we 
coerce the data into a correctly configured matrix, some of the cells of which are 
empty. The medpolish function is applied to the matrix, being told to remove 
empty cells; the function iterates over the rows and columns of the matrix using 
median to extract an overall effect, row and column effects, and residuals. 
 
 
> mFT <- sqrt(1000) * (sqrt(mSID74/mBIR74) + sqrt((mSID74 + 
+    1)/mBIR74)) 
> mFT1 <- t(matrix(mFT, 4, 4, byrow = TRUE)) 
> med <- medpolish(mFT1, na.rm = TRUE, trace.iter = FALSE) 
> med  

Median Polish Results (Dataset: ,mFT1’) 

Overall: 2.909650 

Row Effects: 
[1]  -0.05686791  -0.37236370  0.05686791  0.79541774 

Column Effects: 
[1]  -0.005484562  -0.446250551  0.003656375  0.726443256 

Residuals: 
 [,1]  [,2]  [,3]   [,4] 
[1,] NA  -0.45800  0.000000   0.37556 
[2,] -0.092554  0.00000  0.101695   0.00000 
[3,] 0.092554  0.30464  -0.090726  -0.55364 
[4,]  NA  NA  0.000000  NA 
 
 
Returning to the factors linking rows and columns to counties, and generating ma-
trices of dummy variables using model.matrix, we can calculate fitted values of 
the Freeman-Tukey adjusted rate for each county, and residuals by subtracting the 
fitted value from the observed rate. Naturally, the fitted value will be the same for 
counties in the same grid cell. 
 
> mL_id <- model.matrix(~L_id - 1) 
> mM_id <- model.matrix(~M_id - 1) 
> nc.sids$pred <- c(med$overall + mL_id %*% med$row + mM_id %*% 
+    med$col) 
> nc.sids$mp_resid <- nc.sids$ft.SID74 - nc.sids$pred 
> nc.sids$ft.SID74_c <- scale(nc.sids$ft.SID74, scale = FALSE) 
> nc.sids$pred_c <- scale(nc.sids$pred, scale = FALSE) 
 
 
Figure B.2.14 shows the median polish smoothing results as three maps, the ob-
served Freeman-Tukey transformed SIDS rates, the fitted smoothed values, and 
the residuals. 
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Fig. B.2.14. Median polish for North Carolina SIDS data – the Freeman-Tukey transformed 
SIDS rates and fitted smoothed values are mean-centred to use the same scale as the residu-
als 

Local indicators of spatial association (LISA).While global measures permit us to 
test for spatial patterning over the whole study area, it may be the case that there is 
significant autocorrelation in only a smaller section, which is swamped in the con-
text of the whole. Both distance statistics (Getis and Ord 1992, 1996; Ord and 
Getis 1995), and the local indicators of spatial association derived by Anselin 
(1995), resemble passing a moving window across the data, and examining de-
pendence within the chosen region for the site on which the window is centred. 
The specifications for the window can vary, using perhaps contiguity or distance 
at some spatial lag from the considered zone or point. 

There are clear connections here both to the study of point patterns – although 
methods for boundary correction have not been specifically added to weighting 
matrix definitions yet – and to geostatistics, since these statistics have application 
to the exploration of non-homogeneities in relationships between locations across 
the study area. They are however subject to a correlation problem when cast in a 
hypothesis testing framework, that estimated values of the local indicator for 
neighbouring zones or sites will be correlated with each other because they are 
necessarily calculated from many of the same values, recalling that neighbouring 
placements of the moving window will most likely overlap. Ord and Getis (1995) 
provide suitable adjustments to critical values of the Gi and Gi

* statistics. De Castro 
and Singer (2006) provide further developments for the appropriate handling of 
the false discovery rate. 

The uses to which local statistics have been put are to identify ‘hot-spots’, to 
assess stationarity prior to the use of methods assuming that the data do conform 
to this assumption, and other checks for heterogeneity in the data series (Getis and 
Ord 1996). A thorny problem is that local indicators do pick up global patterns if 
they are present for whatever reason (Ord and Getis 2001). Measures of spatial 
autocorrelation are discussed in more detail in Chapter B.3. 

Implementations of LISA techniques can be found in GeoDa (Anselin et al. 
2006), in SAM (Rangel et al. 2006), and in the spatial statistics toolbox of Arc 
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GIS™, as well as the R versions discussed below (Bivand 2006; Bivand et al. 
2008). The availability of software implementations has contributed to a wave of 
applications in many scientific domains. Scanning just the last two years, it ap-
pears that one key application area is in sociology and social policy, ranging from 
social medicine and fertility (Crighton et al. 2007; Schmertmann et al. 2008), 
through child care (Anselin et al. 2007; Freisthler et al. 2006; Lery 2008; Voss et 
al. 2006), to language neighbourhoods (Ishizawa and Stevens 2007), deprivation 
and mortality (Sridharan et al. 2007) and homicide (Ceccato et al. 2007). Another 
application area with many contributions is concerned with regional economic 
performance (Patacchini and Rice 2007; Patacchini and Zenou 2007; Yamamoto 
2008), and regional and local development (Portnov 2006; Yu and Wei 2008). 
Penetration in other areas is also occurring, for example in local genetic structures 
(Sokal and Thomson 2006) and forestry (Räty and Kangas 2007). 

Some but not all of the published cases using LISA techniques are explora-
tory. All of the papers introducing LISA techniques stress the need for caution in 
drawing conclusions, because apparent hotspots may rather reflect mis-
specification – for example the omission from the mean model of an important in-
termediate variable or the choice of an inappropriate functional form, because 
constructing tests for very small sets of neighbours even in the absence of mis-
specification is hard (Tiefelsdorf 2000, 2002; Bivand et al. 2009), and because of 
the multiple and dependent tests problem (de Castro and Singer 2006). Finally, as 
Waller and Gotway (2004, p.239) show, it may be necessary to create customised 
tests acknowledging the construction of the dependent variable, in their case using 
a constant risk hypothesis. 

To present LISA techniques, we will return to the Guerry French moral statis-
tics data set. To begin with, a list of contiguous neighbours is constructed, leaving 
Corsica with no neighbours (for details of the handling of no-neighbour observa-
tions, see Bivand and Portnov 2004). 
 
> library(spdep) 
> gf_cont <- poly2nb(gfrance) 
 
Figure B.2.15 shows the Gi and Gi

*  statistic values, scaled as standard deviates, 
for population per crime against property. The contiguity neighbours are con-
verted into spatial weights using row-standardisation, after, in the Gi

* case, adding 
in the observations as their own neighbours. 

 
> lwW <- nb2listw(gf_cont, zero.policy = TRUE) 
> gfrance$local_G <- c(localG(gfrance$Pop_crime, lwW, zero.policy= TRUE)) 
> lwWs <- nb2listw(include.self(gf_cont)) 
> gfrance$local_G_star <- c(localG(gfrance$Pop_crime, lwWs)) 
 
Negative values show which observations are surrounded by observations with 
similar low values. while positive values show which observations are surrounded 
by observations with similar high values. Recall that high values show many in-
habitants per crime, low values few inhabitants per crime. The value for Corsica, 
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which has no neighbour, is missing for Gi and takes a value proportional to the 
difference between the global mean and its own inverse crime rate for Gi

* , because 
then Corsica is its own only neighbour. 
 
 

 

Fig. B.2.15. Local Gi and Gi
*  statistics: population per crime against property, France 

Since we are using Gi and Gi
* scaled as standard deviates, we will not apply them 

to residuals of models fitting global coefficients. The local Moran’s Ii values are 
unscaled – they are not standard deviates, so the global Moran’s I equals the mean 
of the local Moran’s Ii values. 
 
> gfrance$local_I <- localmoran(gfrance$Pop_crime, lwW, 
+    zero.policy = TRUE)[, 1] 
> mean(gfrance$local_I) 
[1] 0.2606168 
> moran.test(gfrance$Pop_crime, lwW, zero.policy = TRUE)$estimate[1] 
Moran I statistic 
        0.2606168 
 
Since it may be the case that the local autocorrelation is driven by mis-
specification, we will try two variants on the null model of treating the mean of 
population per crime against property as all we know. In addition to the null 
model, we will fit a simultaneous autoregressive model with only an intercept; the 
autoregressive coefficient is significant, and the model fit improves from the null 
baseline. 
 
> C_p_esar <- spautolm(Pop_crime ~ 1, gfrance, lwW, zero.policy = TRUE, 
+    method = ,Matrix’) 
> coef(C_p_esar) 
(Intercept)   lambda 
76.502332     0.470789 
> gfrance$local_I_err <- localmoran(residuals(C_p_esar), 
+    lwW, zero.policy = TRUE)[, 1] 
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The second variant is to fit a linear model using the percentage literacy and rank 
wealth variables as suggested in the conditioned choropleth map example. The co-
efficient for percentage literacy is negative, which – recalling that the crime rate is 
inverted – means that higher literacy is associated with more crime. The rank 
wealth coefficient is positive because lower rank means higher wealth, hence 
lower rank is linked to more crime. 
 
> C_px_lm <- lm(Pop_crime ~ Literacy + Wealth, gfrance) 
> coef(C_px_lm) 
(Intercept)     Literacy     Wealth 
75.7783729      -0.4569233   0.4733127 
> lm.morantest(C_px_lm, lwW, zero.policy = TRUE)$estimate[1] 
Observed Moran's I 
         0.06888486 
> gfrance$local_I_xlm <- localmoran(residuals(C_px_lm), 
+    lwW, zero.policy = TRUE)[, 1] 
 
This model fits the data much better than the simultaneous autoregressive null 
model, and, as Friendly (2007, p.396) reports, accounts for somewhat over a quar-
ter of the variation in the dependent variable. The residuals of this model show no 
global autocorrelation, and a simultaneous autoregressive model with these vari-
ables included does not improve the fit. As Fig. B.2.16 shows, there is much more 
‘action’ in the left-hand panel, where we only model the data by the mean. 

Both of the areas picked out in Fig. B.2.15: the Île-de-France in the north-
central part of the country with low values of the statistic, and today’s Auvergne 
region in the south-central part of the country with high values, corresponding to 
values of the inverted crime rate, have higher values of Moran’s Ii. Observations 
with intermediate values of Gi have low values of Ii, because they represent places 
with neighbours with inverted crime rates unlike their own. Moving to the right in 
Fig. B.2.16, we see that the range of shading is compressed, as the effects of mis-
specifation are removed. The very low value in Rhône (mid-southeast) in the map 
of Ii  for the null model and the residuals of the simultaneous autoregressive null 
model is removed once the covariates are included (the large and relatively 
wealthy city of Lyon is atypical of its surroundings). In the map of Ii  for the re-
siduals of the linear model with covariates, Puy-de-Dôme in the Auvergne still has 
a large value of the statistic, suggesting that the inverse crime rate is even higher 
in the Auvergne than one would expect from the levels of wealth and literacy (or 
their absence) observed there. 

We will make a LISA plot using a conditioned choropleth map, conditioning 
the observed Moran’s Ii for the null model on factors capturing the Moran scatter-
plot quadrants in which the observations fall  (Anselin 1996).  The factors take 
values c (‘L’, ‘H’) depending on whether the observations are above or below the 
mean of the inverse crime rate, and above or below the mean of the spatial lag of 
the inverse crime rate.   
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Fig. B.2.16. Local Ii   statistics for the null model, the residuals of the  
simultaneous autoregressive model, and the residuals of the linear model  
including literacy and wealth: population per crime against property, France 

 
 
 

 

Fig. B.2.17. Conditioned choropleth LISA map: Moran’s Ii for the null  
model conditioned on the LISA quadrant; first letter above, second letter left 
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Figure B.2.17 shows the split in the null model between  the HH’cluster’ in the 
Auvergne, with high values of the inverse crime rate observed for the observations 
and their neighbours, and the LL ‘cluster’ in Île-de-France, with low values of the 
inverse crime rate observed for the observations and their neighbours. The HL and 
LH panels do not display patterns that are as clear. 

 
 

 

Fig. B.2.18. Moran scatterplots for a) null; b) simultaneous autoregressive;  
c) linear model with covariates; and d) influence map for the three models;  
the dashed lines divide the scatterplots into the LISA LL, HL, LH, and HH quadrants 

Finally, Fig. B.2.18 shows Moran scatterplots for all three models, the null model, 
the simultaneous autoregressive null model, and the linear model with covariates 
(Anselin 1996). Interestingly, the observations found to extert influence on the 
linear relationship between the residuals from the models of the inverse crime rate 
and its spatial lag are largely the same ones across models, and form a belt stretch-
ing west and east from the Auvergne east to the Swiss border. These observations 
could be exerting such consistent influence because of measurement issues with 
the inverted crime rate, or because of remaining model mis-specification and 
pointing up such unusual observations is among the reasons for engaging in ex-
ploratory data analysis. Li et al. (2007) propose a approximate profile-likelihood 
estimator for spatial autocorrelation, which also has an ESDA extension, including 
a scatterplot and a local APLE measure. 
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> sPc <- scale(gfrance$Pop_crime, scale = FALSE) 
> aple(sPc, lwW) 
[1]   0.4810092 
> aple_res <- aple.plot(sPc, lwW) 
> crossprod(aple_res$Y, aple_res$X)/crossprod(aple_res$X) 
        [,1] 
[1,] 0.4810092 
> gfrance$localAple <- localAple(sPc, lwW) 

 
 
As Fig. B.2.19 shows, the new measure provides a view of the data that is not dis-
similar to that of local Moran’s Ii. The scatterplot shows that the same observa-
tions exert influence, and the map of values shows the same impact of higher posi-
tive local autocorrelation in the Auvergne and Île-de-France regions. 

Two further avenues will be left unexplored here. First, it is possible that some 
of the problems in exploring the inverse crime rate come from the greater uncer-
tainty of rate estimates for observations with small populations, and using an Em-
pirical Bayes smoothing procedure may be appropriate. Second, the crime count 
with a log population offset term could be modelled using Poisson regression, and 
the deviance or Pearson residuals explored for spatial patterning. 

 
 

 

Fig. B.2.19. APLE plot and local APLE values for the population per crime rate:  
a) approximate profile-likelihood estimator plot, showing observations with influence;  
b) local APLE values, with observations with influence marked by asterisks 

Scale. There are close relationships between the graph structure of spatial weights, 
and the structure exposed by examining the eigenfunctions of a centred weights 
matrix (Griffith 2003; Tiefelsdorf 2000), relationships underlying the understand-
ing of Moran’s I. It has been suggested by Griffith (2003) that maps of eigenvec-
tors may be used to explore the effect of scale, because some eigenvectors will 
show large scale structures, others will capture regional differences, and others 
again will represent small scale patterns. Naturally, the choice of a different spatial 
weights matrix may give a different view on patterning at different spatial scales. 
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> SF1 <- SpatialFiltering(Pop_crime ~ 1, data = gfrance, 
+ nb = gf_cont, style = ,W’, zero.policy = TRUE, tol = 0.5, 
+ verbose = FALSE) 
> SF2 <- SpatialFiltering(Pop_crime ~ Literacy + Wealth, 
+    data = gfrance, nb = gf_cont, style = ,W’, zero.policy = TRUE, 
+    tol = 0.5, verbose = FALSE) 
 
Here we show the eigenvector maps for the eigenvectors chosen by semparametric 
spatial filtering for the null model and the linear model with covariates (Tiefels-
dorf and Griffith 2007). Figure B.2.20 shows the six eigenvectors chosen to re-
move the residual spatial autocorrelation from the null model. The first eigenvec-
tor chosen is shown on the upper left, and displays a smooth, almost linear trend. 
The next two chosen on the upper row show regional patterns, something like 
quadratic and cubic trend surfaces. On the lower row, the chosen eigenvectors 
pick up smaller scale patterns. 
 
 

 

Fig. B.2.20. Six eigenvector maps for eigenvectors: null model 

 
 

 

Fig. B.2.21. Two eigenvector maps for eigenvectors: linear model with covariates 
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Figure B.2.21 shows the two eigenvectors chosen to remove the residual spatial 
autocorrelation from the linear model with covariates. Because the same palette is 
used in Figs. B.2.20 and B.2.21, we can see how much of the residual autocorrela-
tion has been removed by the covariates. Note that the eigenvectors differ because 
they are centred using the model projection matrices, so that their maps are not the 
same. Perhaps the patterning remaining in the linear model with covariates residu-
als signals that not all the mis-specification has been removed. 

Geographically weighted approaches. Non-stationarity is a further source of 
misspecification, such as omitted variables or inappropriate functional forms. It 
may be approached through geographical weighting, passing a kernel with a given 
bandwidth over the map of data points in order to compute weighted regressions at 
fit points. The weights are proportional to the distances between the data points 
and the fit points (Brunsdon et al. 1998; Fotheringham et al. 2002). A change of 
support is involved, because the observation polygons are replaced by the polygon 
centroids, here both for the data points and the fit points. 
 
> library(spgwr) 
> GWfrance_bw100km1 <- gw.cov(gfrance, ,Pop_crime’, bw = 1e+05, 
+    cor = FALSE) 

 

Fig. B.2.22. Population per crime against property: a) population per crime against  
property; b) geographically weighted means; and c) geographically weighted  
standard deviations 
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Taking a bandwidth of 100km and the default Gaussian kernel, we can calculate 
geographically weighted measures for the inverted crime rate (Dykes and Bruns-
don 2007). Figure B.2.22 repeats the map of the inverted crime rate for reference, 
and shows the input variable and its geographically weighted mean using the same 
class intervals and palette. A smaller bandwidth would have yielded less smooth-
ing, a larger bandwidth more, as Dykes and Brunsdon (2007) visualize. 

Turning to the geographically weighted standard deviations, there seems to be 
some patterning, with observations apparently very unlike their neighbours being 
highlighted. However, recall that we are dealing with a rate variable, population 
per crime against property, where our confidence about the rate estimate should be 
related to population size. Figure B.2.23 shows a map of geographically weighted 
standard deviations for the chosen bandwidth conditioned on a shingle of the 1831 
population. Although the picture is not very clear, it does seem that some of the 
observations with smaller populations have larger geographically weighted stan-
dard deviations. Obvious exceptions are the observations including the large cities 
of Lyon and Bordeaux, which were not like their rural neighbours in the first half 
of the Nineteenth century. 

 

 

Fig. B.2.23. Conditioned choropleth map of the geographically weighted standard deviation 
on the inverted crime rate, conditioned on population size 

Geographically weighted regression. Extending the geographically weighted ap-
proach to geographically weighted regression, we can fit our linear model with 
covariates using the same bandwidth and support. 
 
> GWfrance_bw100km <- gwr(Pop_crime ~ Literacy + Wealth, 
+    data = gfrance, bandwidth = 1e+05, hatmatrix = TRUE) 
 
Figure B.2.24 shows maps of the geographically weighted regression coefficients 
and the coefficient of determination. As Wheeler and Tiefelsdorf (2005) point  
out,  the  GW  coefficients  may be  highly  negatively  correlated  with each other, 
as we see is the case between the intercept term and the percent literacy coefficient 
– the maps are almost mirror images of each other. It may be helpful to refer back 
to the maps of the variables shown in Fig. B.2.5; there are some similarities in spa-
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tial patterning between the covariates and the geographically weighted regression 
coefficients, given smoothing by the kernel employed. Since collinearity is pre-
sent, it is hard to conclude unequivocally that the variation in the geographically 
weighted regression coefficients demonstrates non-stationarity, although it is very 
possible that the present linear model with covariates remains mis-specified. 
 

 

Fig. B.2.24. Maps of geographically weighted regression coefficients; a) intercept;  
b) percent literacy; c) rank wealth; and d) the coefficient of determination 

Finally, as earlier, we also have a problem with Corsica, which had no contiguous 
spatial neighbours, and which here has almost no weight on any other observation 
for this bandwidth and kernel (sum.w). 
 
 
> Corse <- which(gfrance$Department == ,Corse’) 
> as(GWfrance_bw100km$SDF, ,data.frame’)[, c(1:5)][Corse, 
+    ] 
     sum.w X.Intercept. Literacy Wealth R2 
85   1.032410   101.5770   -1.67253   0.7115072   0.9971373 
> sapply(as(GWfrance_bw100km$SDF, ,data.frame’)[, c(1:5)], 
+    rank)[Corse, ] 
     sum.w   X.Intercept.   Literacy   Wealth   R2 
        1          77           1        64     86 
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It has extreme local coefficient values (shown by value and rank here) and a coef-
ficient of determination of close to unity, which, although unimportant in them-
selves, do affect the visualization by stretching the range of values to be displayed. 
The use of an adaptive kernel perhaps have helped, but may make the interpreta-
tion of the output more complex. 

B.2.6   Concluding remarks 

This chapter should by now have shown that there are many EDA, geovisualiza-
tion, and ESDA tools and techniques, and that many are implemented and avail-
able. There are however still two issues to be addressed: the tendency for explora-
tory analysis – looking for the ‘right’ question – to slide into inference, be it 
formalised or not, without considering the implications. In some cases, it can lead 
to the insertion of a kind of geographical particularism into our understanding of 
data generation processes. This is unfortunate, because it implies that our under-
standing of phenomena of interest is dominated by spatially structured (and/or un-
structured) random effects, that the undocumented spatial autocorrelation is at the 
centre of our endeavours. 

The second issue was taken up in the introduction: the assumption that the 
analyst does want to find the ‘right’ question. Krivoruchko and Bivand (2009, 
p.17) have discussed the wide range of user motivations encountered: ‘In some 
cases, users are neither able to make nor interested in making an appropriate 
choice of method … In other cases, users are more like developers, working much 
more closely with the software in writing scripts and macros, and in trying out 
new models.’ 

This suggests that the problem may be addressed by making the methods eas-
ier to use, by documenting them better, and offering training. It may additionally 
mean drawing attention to the possible benefits of doing the analysis at hand re-
sponsibly, something which is far from simple in check-box organisations, or even 
when academic supervisors or referees impose their views on analyses rather than 
empower the analyst to move towards a better question. It is not a coincidence that 
many early publications on EDA appeared in newsletters concerned with the 
teaching of statistics and data analysis. 

Perhaps it is the case that using EDA and ESDA may not get you tenure 
quickly, getting to right questions takes time, luck, experience, and often partici-
pation in a scientific community willing to share insights and advice. On the other 
hand, when the research questions actually do matter, improving the way that they 
are framed is not a trivial achievement, and it is this that is the purpose of explora-
tory data analysis. 
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B.3   Spatial Autocorrelation 

Arthur Getis 

B.3.1  Introduction 

In this chapter we review the concept of spatial autocorrelation and its attributes.  
Our purpose is to outline the various formulations and measures of spatial autocor-
relation and to point out how the concept helps assess the spatial nature of geo-
referenced data.  For a fuller treatment of the subject, a number of texts, written at 
various junctures in the development of the concept and at differing levels of 
mathematical sophistication, spell out many of the details not discussed here (Cliff 
and Ord 1973, 1981; Miron 1984; Upton and Fingleton 1985; Goodchild 1986; 
Odland 1988; Anselin 1988; Haining 1990a; Legendre 1993; Dubin 1998; Griffith 
1987, 1988, 2003).  In addition, and as background to this chapter, Haining’s con-
tribution in this volume (see Chapter B.1) gives a clear view of the nature of geo-
referenced data.  Our goal is to briefly describe the literature on this subject so that 
the spatial autocorrelation concept is accessible to those who (i) are new to dealing 
with georeferenced data in a research framework or (ii) have worked with geo-
referenced data previously but without explicit knowledge of how the concept can 
be beneficial to them in their research.  We are constrained by space and, as a re-
sult, our plan is to be short on explanations but identify key literature where the 
reader will find further details. 

After defining and briefly giving the background for the concept of spatial 
autocorrelation in this section, we explain the concept’s attributes and uses in Sec-
tion B.3.2. In the next section, we discuss the matrices that must be created in or-
der to assess most measures of the spatial autocorrelation concept. We outline the 
various spatial autocorrelation formulations in Section B.3.4.  This is followed in 
Section B.3.5 with a short discussion of the problems in applying the concept in 
research situations.  Finally, Section B.3.6 provides a brief description of available 
spatial autocorrelation software.  The reference list can serve as a guide to the lit-
erature in this area. 

© Springer-Verlag Berlin Heidelberg 2010
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Definitions  

The simplest definition of the spatial autocorrelation concept is that it represents 
the relationship between nearby spatial units, as seen on maps, where each unit is 
coded with a realization of a single variable.  Adding more detail and conciseness, 
as Hubert et al. (1981, p.224) put it: 
   

‘Given a set S containing n geographical units, spatial autocorrelation re-
fers to the relationship between some variable observed in each of the n 
localities and a measure of geographical proximity defined for all n(n–1) 
pairs chosen from S.’ 

 
If a matrix Y represents all of the (n2–n) associations between all realizations of 
the Y variable in region ℜ   and W represents all of the (w2–w) associations of the 
spatial units to each other in region ℜ , irrespective of Y, then the degree to which 
the two matrices are positively (negatively) correlated is the degree of positive 
(negative) spatial autocorrelation.  Thus, if it is assumed that neighboring spatial 
units are associated and so are represented in the W matrix as high positive num-
bers and low numbers or zero for all others, and the Y matrix has high values in 
spatial units neighboring other high values, then the two matrices are similar in 
structure with the result that positive spatial autocorrelation exists.    

Development of the concept 

The spatial autocorrelation concept was bred at the University of Washington in 
the late 1950s, principally by Michael F. Dacey, mainly in the presence of William 
L. Garrison and Edward Ullman, two geographers very much influenced by the 
central place work of the 1930s German economic geographer Walter Christaller.  
Earlier, an extensive literature had been developed on the principal of nearness, 
that is, the strong effect that nearby areas have on each other versus the relatively 
weak influence of areas further away (for example, Ravenstein 1885; von Thünen 
1826; Zipf 1949) with the implication that near spatial units are similar to one an-
other. This notion is best summarized by Tobler’s First Law, ‘Everything is re-
lated to everything else, but near things are more related than distant things’ (To-
bler 1970, p.234). The roots of the idea go back to Galton, Pearson, Student, and 
Fisher.  Until 1964, in the social science and statistics literature, spatial autocorre-
lation had been called ‘spatial dependence,’ ‘spatial association,’ ‘spatial interac-
tion,’ ‘spatial interdependence,’ among other terms.  In geography, the modern 
meaning of the term ‘spatial autocorrelation’ was first mentioned by Garrison in or 
before 1960 (Thomas 1960, in Berry and Marble 1968), and first developed in a 
statistical framework by Cliff and Ord (1969).   

Three statisticians laid out the mathematical characteristics of spatial autocor-
relation, although they used the term contiguity ratio to describe their work.  
Moran (1948), Krishna-Iyer (1949), and Geary (1954) developed join count statis-
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tics based on the probability that joined spatial units were of the same nominal 
type (black or white) more than chance would have it.  Their work was extended 
to take interval data into account.  Geary, in particular, made the point that the 
mapped residuals from an ordinary least squares regression analysis must display 
the characteristic of independence.  Dacey further explicated join count statistics, 
extending the number of colors studied from two to k, and clearly showed the link 
between using nominal and interval data (Dacey 1965).  Also, Dacey recognized 
the possible effect of the shapes, sizes, and boundaries of regions (topological in-
variance) on the results of analyses that used georeferenced data (Dacey 1965).   

In the field of geostatistics, Matheron (1963) had already developed in con-
siderable detail the mathematics that accompanies the assumption of intrinsic sta-
tionarity, the notion that inherently characteristic of spatial distributions is a dis-
tance effect.  Without using the term spatial autocorrelation, the correlogram (the 
inverse of the semivariogram), was invented to represent intrinsic stationarity, the 
declining similarity of variable values assumed to exist among spatial units as dis-
tance increased from each other.  

The monograph Spatial Autocorrelation by Cliff and Ord (1973) sheds light 
on the problem of model mis-specification owing to spatial autocorrelation and 
demonstrated statistically how one can test residuals of regression analysis for 
spatial randomness by using spatial autocorrelation statistics.  Models that require 
traditional statistics for their evaluation are mis-specified if they do not take spa-
tial autocorrelation into account. The moments of Moran’s distribution, called 
Moran’s I, were fully developed by Cliff and Ord (1973, 1981) under varying 
sampling assumptions.   

B.3.2  Attributes and uses of the concept of spatial 
autocorrelation  

The following list gives some idea of the range of uses for the concept and for the 
formulas created to measure the degree of spatial autocorrelation in modeling 
situations. The list should convince all of those who deal with georeferenced data 
that an explicit recognition of the concept is basic to any spatial analysis. 

• A test on model mis-specification.  Properly specified models that call for nor-
mally distributed residuals also require that residuals map onto the study region 
in such a way that one cannot detect any association between nearby spatial 
units.  Proper specification requires that any spatial association is subsumed 
within the model proper. The most used, and statistically most powerful, test 
for detecting the spatial independence of residuals is that of the spatial autocor-
relation statistic, Moran’s I  (Cliff and Ord 1972, 1981; Anselin 1988).    

• A measure of the strength of the spatial effects on any variable.  A thorough 
understanding of the effects of regressor variables on a dependent variable re-
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quires that any spatial effects on both dependent and independent variables be 
quantified.   Spatial autocorrelation coefficients in regression models help us to 
understand the strength of spatial effects (Haining 1990b; Anselin and Rey 
1991). 

• A test on assumptions of spatial stationarity and spatial heterogeneity. Before 
engaging in many types of spatial analysis, it is necessary to make the assump-
tion that spatial stationarity exists.  There are many definitions of spatial sta-
tionarity; most common is that the mean and variance of a variable under con-
sideration do not vary appreciably from subregion to subregion in the study 
region.  Spatial autocorrelation measures allow for tests on hypotheses of no 
spatial differences in distribution parameters such as the mean and variance 
(Haining 1977; Leung 2000).  

•  A means of identifying spatial clusters. Spatial clustering algorithms are de-
pendent on the conjecture that there is spatial autocorrelation among some 
nearby values of one or more variables of interest. The basis of clustering com-
puter routines such as ClusterSeer, StatScan, and AMOEBA is the concept of 
spatial autocorrelation (Aldstadt and Getis 2006). 

• A means of identifying the role that distance decay or spatial interaction might 
have on any spatial autoregressive model.  Measures of spatial autocorrelation 
can identify the parameters of spatial decay (for example, the parameters of a 
negative exponential model) or the parameters of spatial interaction models 
(Fotheringham 1981).    

• A way to understand the influence that the geometry of spatial units has on a 
variable.  Measures of spatial autocorrelation will change in certain known 
ways when the configuration of spatial units changes.  These measures are ideal 
for understanding the role that spatial scale might have on relationships among 
georeferenced variables (Arbia 1989; Wong 1997).  Also see Okabe et al.  
(2006) on network configurations and spatial autocorrelation. 

• A test on hypotheses about spatial relationships. Spatial autocorrelation statis-
tics are usually designed to test the null hypothesis that there is no relationship 
among realizations of a single variable, but the tests may be extended to con-
sider spatial relations between variables (Wartenberg 1985). 

• A means of weighing the importance of temporal effects. A series of measures 
of spatial autocorrelation taken over time sheds light on temporal effects (Rey 
and Janikas 2006). 

• A focus on a single spatial unit’s effect on other units and vice versa. The local 
view of spatial autocorrelation (see below) allows for focused tests where a par-
ticular spatial unit is the focus (Ord and Getis 1995; Anselin 1995; Sokal et al. 
1998). 

• A means of identifying outliers, both spatial and non-spatial. Certain statistical 
and graphical routines allow for the exact identification of units that unduly in-
fluence spatial effects (Anselin 1995). 

• A help in designing an appropriate spatial sample.  If the goal is to avoid, as 
much as possible, spatial autocorrelation in the sample, then a reasonable sam-
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ple design would benefit from a study of spatial autocorrelation in the region 
where the sample is to be selected (Fortin et al. 1989; Legendre et al. 2002; 
Griffith 2005).    
 

The list can be expanded, but suffice it to say here are many characteristics of spa-
tial autocorrelation that add depth and understanding to any spatial analysis. 

B.3.3  Representation of spatial autocorrelation 

Since the types of studies in which the concept of spatial autocorrelation is used 
vary considerably, many methods and techniques of analysis have been created for 
special purposes.  The following simple representation of spatial autocorrelation is 
the key to the proper choice of measure or test (Hubert and Golledge 1981; Getis 
1991).   

The cross-product statistic   

1 1

n n

ij ij ij
i j

W YΓ
= =

=∑∑  (B.3.1) 

 

whereΓ is a measure of spatial autocorrelation for n georeferenced observations.  
It is made up of W, a matrix of values that represents the spatial relationships of 
each location i to all other sites j. The Y matrix shows the non-spatial relationship 
of realizations of a variable Y at site i with all other realizations at all other sites j.   
When W, the spatial weights matrix, and Y, the variable matrix have similar struc-
tures [for example, both have high values in the same (i, j) cells in their respective 
matrices and low values in the same (i, j) cells] one can say that there is a high de-
gree of spatial autocorrelation. The correlation can be positive or negative depend-
ing on whether respective cells are similarly matched or oppositely matched.  If 
realizations of Y are randomly placed in the spatial units, no matter how the spatial 
weights matrix is structured, the result will be a Γ  of zero, or no spatial autocor-
relation.  The same is true if the W matrix is based on random spatial associations 
and the Y happens to be spatially structured.  Thus, it is clear that for any mean-
ingful assessment of spatial autocorrelation the W matrix must be a careful repre-
sentation of spatial structure and the Y matrix must represent a meaningful asso-
ciation between realizations of the Y variable. Equation (B.3.1), as it is presented, 
is not a test of spatial autocorrelation, but only a measure.  Tests on the existence 
of spatial autocorrelation, however, take on the same cross-product structure.  In 
the next section, the structure of W matrices is discussed.  
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The W matrix 

The W matrix embodies our preconceived or derived understanding of spatial rela-
tionships. If we believe or if theory tells us that a particular spatial relationship is 
distance dependent, then the W matrix should reflect that supposition.  For exam-
ple, if it is assumed that a spatial relationship declines in strength as distance in-
creases from any given site, then the W matrix will show that nearby areas are 
weighted more highly than sites that are far from one another.  Various distance-
decay formulations theorized or derived for such phenomena as travel behavior, 
economic interaction, or disease transmission would require the elements within 
the W matrix to reflect these effects.  Thus, a typical W matrix might contain ma-
trix elements (represented as lower case letters) of the form 

 

α−= ijij dW      with α ≥ 1. (B.3.2) 

 
Or, in words, the weight entered into cell (i,j) is the inverse of distance d between 
the two sites, i and j, reduced by the exponent α, where α is greater than one.  The 
W matrix can represent distances other than those derived from Cartesian geome-
try.  For example, friendship or cell phone networks may be distance related in so-
ciological terms. A bevy of schemes have been created to attempt to fashion W 
(Getis and Aldstadt 2004). Some of the schemes are: 

 
• Spatially contiguous neighbors (default for many studies), 
• Inverse distances raised to some power (distance decline function), 
• Lengths of shared borders divided by the perimeter (a geometric view), 
• Bandwidth as the nth nearest neighbor distance (point density dependent), 
• Ranked distances (non-Cartesian approach), 
• All centroids within distance d (density dependent),  
• n nearest neighbors (equal weighting of matrix entries), 
• Bandwidth distance decay (required for geographically weighted regression), 
• Gaussian distance decline (based on the square term), 
• Derived spatial autocorrelation (based on observed spatial association). 

      
Perhaps the most used W is the first in the list above.  W is made up of ones for 
contiguous neighbors and zero for all others, whether the data are raster or vector. 
By convention, the ith observation is not considered a neighbor of itself. The con-
tiguity W matrix is often row-standardized, that is, each row sum in the matrix is 
made to equal one, the individual Wij values are proportionally represented. Row- 
standardization of W in contiguity schemes is desirable so that each neighbor of a 
spatial unit is given equal weight and the sum of all Wij is equal to n.  As we will 
later see, these characteristics enhance understanding of spatial autocorrelation 
measures and coefficients.  Researchers should be aware, however, that row-
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standardization may give too much weight to observations with few spatial links 
and not enough weight to observations having many contiguous neighbors 
(Tiefelsdorf et al. 1998).   

Those developing spatial models consider the spatial weights matrix to be one 
of the following three types of representations: 

 
 (i) a theoretical notion of spatial association, such as a distance decline function, 
(ii) a geometric indicator of spatial nearness, such as the representation of con-

tiguous spatial units,   
(iii) some descriptive expression of the spatial association already existing within 

a set of data. 
 
For viewpoint one, modelers argue that a W matrix is exogenous to any system 
and should be based on a pre-conceived matrix structure. A typical theoretical 
formulation for W would be based on a strict distance decline function such as 
shown in Eq. (B.3.2). Since little theory is available for the creation of these ma-
trices, many researchers follow viewpoint two, that is, they resort to geometric W 
specifications, such as a contiguity matrix, reasoning that it is the nearest 
neighboring spatial units that bear most heavily on  spatial association in a typical 
set of georeferenced data. Tiefelsdorf (2000) has created a system for coding these 
and other matrices based on geometric structure that goes well beyond simple con-
tiguity matrices.  

For viewpoint three, modelers allow study data to ‘speak for themselves,’ that 
is, they extract from the already existing data whatever spatial relationships appear 
to be the case and then create a W matrix from the observed spatial associations.  
As a result, models based on this type of endogenous specification have limited 
explanatory power, the limit being the reference region.  Kooijman (1976) pro-
posed to choose W in order to maximize Moran’s coefficient (see next section). 
Reinforcing this view is Openshaw (1977), who selects that configuration of W 
which results in the optimal performance of the spatial model.  Getis and Aldstadt 
(2004) construct W by using a local spatial autocorrelation statistic to generate the 
Wij from the data.  

The nature of the variables being studied for spatial effects is the key to an 
appropriate W.  Variables that show a good deal of local spatial heterogeneity at 
the scale of analysis chosen would probably be more appropriately modeled by 
few links in W, while a homogeneous or spatial trending variable would better be 
modeled by a W with many links.  This implies that the scale characteristics of 
data are crucial elements in the creation of W. As spatial units become large, spa-
tial dependence between units tends to fall (Can 1996).    
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The Y matrix 

The non-spatial matrix, Y, provides a view of how the realizations of a variable are 
associated with one another. Y represents the interaction of the elements yij. They 
may interact by an additive (yi + yj), multiplicative (yi yj), differencing (yi – yj), or 
division (yi / yj) process.  A useful type of multiplicative matrix is the covariance 
matrix (yi – 

–
y) (yj – 

–
y).  All of these matrices can be scaled in order to serve a par-

ticular view of relationships within a variable.  In the following section, we pre-
sent the scaling of these processes for the creation of various views of spatial 
autocorrelation. In sum, the measures and tests for spatial autocorrelation differ by 
use and by the structure of their W and Y matrices.    

B.3.4  Spatial autocorrelation measures and tests  

Spatial autocorrelation measures can be differentiated from tests on spatial auto-
correlation by purpose, but both allow for the assessment of spatial effects in any 
analysis of georeferenced data.  Moran’s I, discussed below, is both the leading 
measure of and leading test on spatial autocorrelation, while, for example, the 
Kelejian-Robinson test on spatial autocorrelation is not used as a measure.  Also, 
measures of spatial autocorrelation of the correlogram are not used as tests on spa-
tial autocorrelation.   

Spatial autocorrelation measures and tests can be differentiated by the scope 
or scale of analysis. Traditionally, they are separated into ‘global’ and ‘local’ 
categories. Global implies that all elements in the W and Y matrices taken together 
are brought to bear on an assessment of spatial autocorrelation, that is, all associa-
tions of spatial units one with another are included in any calculation of spatial 
autocorrelation. This results in one value for spatial autocorrelation for any one W 
and Y matrix taken together.  Local measures are focused, that is, they usually as-
sess the spatial autocorrelation associated with one particular spatial unit. Thus, 
only one row of the W and the matching row of the Y matrix reflect on the meas-
ure of spatial autocorrelation although all elements’ interactions may be used as a 
scalar. 

Global measures and tests  

Gamma (Γ ). As discussed earlier, this measure was used in our discussion as the 
basis on which all spatial autocorrelation measures and tests are structured.  A test 
on the statistical significance of Γ is made practical by randomizing Y values in a 
number of simulations.  The observed Γ can then be compared to the envelope 
created by the results of the simulations.  Statistical significance implies that spa-
tial autocorrelation exists.  
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Join-count.  The purpose here is to identify for an exhaustive nominal classifica-
tion of spatial units, such as for land use types – residential (A), industrial (B), 
commercial (C) – whether there are statistically significant numbers of spatially 
associated AA, AB, AC, BB, BC, and/or CC occurrences.  In a system of spatial 
units, the expected number of AA, for example is a function of the type of test that 
is selected for identifying statistical significance.  Here we use the free sampling 
test (Cliff and Ord 1981).  

Given the probability rp  that a spatial unit is a particular type of land use, 
and the number of units of that type is rn , the expected number of joins of the 
same type is  
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For different types, the expectation is 
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The p  values are usually estimated from the data ( /rn n ). The W matrix is made 
up of ones and zeros representing joined spatial units (one) and non-joined spatial 
units (zero).  There is a series of Y matrices, one for each test, where each is made 
up of ones and zeros representing specified types of associated spatial units (for 
example, AB is one and not AB is zero) and summarized as the probabilities of oc-
currence of A and B ( rp and sp ).  In order to perform tests on spatial autocorrela-
tion, the variance must be known and the assumption invoked of an asymptotic 
normal distribution of the frequency of cells (see Cliff and Ord 1981 for details).    

Moran’s I.  This statistic is structured as the Pearson product moment correla-
tion coefficient.  The crucial difference is that space is included by means of a W 
matrix and instead of finding the correlation between two variables, the goal is to 
find the correlation of one variable with itself vis-à-vis a spatial weights matrix.  
The Y is a covariance matrix, that is, Moran’s I focuses on each observation as a 
difference from the mean of all observations.  Set W to a preferred or required spa-
tial weights matrix (any of those listed above), set Y equal to the auto-covariance 
(yi – 

–
y) (yj – 

–
y), and scale the measure (invoking a Pearson limit structure) by mul-

tiplying by 
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where  
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and, by convention, i is not to equal j (no self association). We have then 
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The expected value is ( ) 1/ ( 1)E I n= − −  and the variance is calculated somewhat 
differently under an assumption of randomness versus an assumption of normality.  
These two assumptions represent the supposed theoretical way the Y values were 
produced under the hypothesis of randomly placed Y values. Thus, Moran’s I is a 
test for spatial randomness; rejection of the null hypothesis implies with a certain 
degree of certainty (for example, 95 percent) that spatial autocorrelation exists.  
The randomness assumption (R) implies that the values of y are realizations of a 
single uniformly distributed Y variable (that is, a variable where all possible reali-
zations are equally likely).  The normal assumption means that each y value is a 
randomly selected realization of a different normal distribution, one representing 
each spatial unit.  It should be pointed out that a variation exists for Moran’s I 
when residuals of regression are being tested for spatial randomness. This is 
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where ε  is a vector of ordinary least squares residuals and εT is the matrix trans-
pose.  The expected value and variance are a function of the number of independ-
ent variables in the system (Cliff and Ord 1972).   

Moran’s I can be used in a wide variety of circumstances.  As a global statis-
tic, Moran’s I quickly indicates not only the existence of spatial autocorrelation 
(positive or negative) but also the degree of spatial autocorrelation  If the variable 
of interest is the error term in a regression model, the question of model mis-
specification can be evaluated by applying Moran’s I.  In spatial econometrics, the 
test has  power  for testing  residuals for many types of spatial autoregressive 

n
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models (Anselin 2006).  Since Moran’s I is distributed normally, its value may be 
assessed by the z values of the normal distribution. The statistic is flexible in that 
the W matrix may be of any form – it has no restrictions on the spatial system 
used.  Of course, outliers in one or both of the W and Y matrices will yield mean-
ingless results.  The local version of Moran’s I, discussed later, lends itself to spa-
tial cluster identification and spatial filtering.  A large literature has been devel-
oped to explore the properties of Moran’s I. In addition to the basic references 
given in the first paragraph of this contribution, see Tiefelsdorf and Boots (1995, 
1997); Hepple (1998).        

Geary’s c. The particular test employed for spatial autocorrelation is a func-
tion of the type of hypothesis required for the analysis.  In the case of Moran’s I, 
the null hypothesis was based on a covariance structure, that is, the expectation 
that related neighbors co-vary in no consistent way.  For Geary’s c, the null hy-
pothesis is that related spatial units do not differ from one another.  The implica-
tion of this hypothesis is that the expectation is that there is no consistency to the 
differences between neighbors; sometimes the differences are large and sometimes 
small.  In this case, as for Moran’s I, the W matrix is made up of any meaningful 
spatial relations between spatial units.  The Y matrix is simply made up of the dif-
ferences in the realizations of the variable Y among all observations: (yi – yj)

2.  A 
scale is included so that the resulting structure is normal, thereby lending Geary’s 
c to statistical tests.  Thus, we have 
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Note that the scale results in an expected value of Geary’s c as one.  In tests, val-
ues less than one indicate positive spatial autocorrelation (small differences) and 
values greater than one imply negative spatial autocorrelation (consistently large 
differences).  Geary’s c is negatively related to Moran’s I.  Many of the references 
already given for Moran’s spatial autocorrelation statistic contain references to 
Geary’s measure. 

The variogram. Central to the field of geostatistics is the semivariogram.  
Cressie (1993) provides a detailed treatment of the concept.  Suffice is to say here 
that the semivariogram is a distribution of differences among spatially associated 
units and therefore is related to Geary’s c. The major difference is that the 
semivariogram hypothesizes that the differences decline with distance from each 
other in a systematic way.  Thus, the semivariogram describes a continuous view 
of differences, while Geary’s statistic is relegated to one W. A typical 
semivariogram has the shape of a positive exponential distribution, where close 
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distances display small differences and low variances, and far distances are not af-
fected by distance effects in such a way that when all differences are taken to-
gether the value of the global variance obtains. The semivariogram has the form 
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where there is a W for each constant distance d controlled by an integer multiplier 
a.  Thus, a particular constant distance (say, one kilometer) has a W for each a.  
But, the W matrices are constrained to contain ones and zeros.  In effect, the W 
matrix identifies spatial units that are related at a particular distance (ad) or a par-
ticular band from each observation.  The display of the spatial autocorrelation is 
called the correlogram, a function that decreases with distance until the range is 
reached.  The range represents a distance where the global variance is unaffected 
by distance effects.  The scale of the semivariogram, 1/2, is a recognition that 
there is double counting, the differences between i and j are the same as between j 
and i. Cressie (1993) provides a comprehensive treatment of geostatistics, and 
Rosenberg et al. (1999) emphasizes the spatial autocorrelation aspects of the 
analysis. 

Ripley’s K function. As is true of the correlogram, Ripley’s K function (Ripley 
1976; Besag 1977) represents a continuous set of spatial autocorrelation indica-
tors.  The K function, unlike the measures discussed previously, emphasizes only 
location and not the other attributes of a random variable.  So here we are re-
stricted to point patterns based on the number of pairs of points found at a series of 
distances from each ith point.  In this case, the object is to count all pairs of points 
at each distance.  If there are more pairs of points than spatial random chance (spa-
tial Poisson distribution) would have it, there is statistically significant clustering; 
fewer pairs of points implies a statistically significant dispersion of points, the op-
posite of clustering.  The null hypothesis obtains when there are about as many 
pairs of points as one might find in a point distribution created by a random proc-
ess.  A random spatial process is called a homogeneous Poisson process over the 
study plane, that is, all sites within the area of study are equally likely to receive a 
point, and the siting of a point in no way bears on the siting of another point.  The 
statistic is estimated in the following way 
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Within the study region of size R, for distance d we count all of the pairs of points 
that are not larger than d apart.  Thus for a number of increasing distances the 
value of K(d) will increase as more pairs are added to the total.  The W matrix is 
made up of one for (i, j) pairs within d of one another and zero otherwise. As dis-
tance increases, the boundary of the region is more likely to be closer to a point i 
than to any j point.  In that case, an edge correction eij is invoked which assumes 
that any point outside of the boundary is unobserved but that the point process 
continues for at least a short distance beyond the boundary.  Center a circle of ra-
dius dij on i, and if the circle crosses the boundary, the proportion of the circum-
ference of the circle that lies inside the study area replaces that particular pair 
count of one to a value greater than one, thus insuring consistency of the presumed 
point process.  Of course, points close to the boundary but far from a neighbor dis-
tort any result. Further, by including the estimate of ˆ ( )K d in the following for-
mula, a significant improvement is made for recognizing spatial autocorrelation in 
a point process. 

  

ˆ ( )ˆ( ) .K dL d
π

=  (B.3.12)

 
When this formula is used, the expectation based on the hypothesis of Poisson 
randomness becomes a positive straight line where  ˆ( )L d d= .  Typically a series 
of Poisson random distributions is simulated, helping to create an envelope con-
taining, say, 95 percent of possible point patterns under the hypothesis of random-
ness.  An observed pattern whose L(d) value falls outside of the envelope indicates 
the existent of positive (clustering) or negative (dispersion) spatial autocorrelation.  
The value of this analysis is particularly great when it is assumed that some non-
Poisson point process is responsible for the observed spatial pattern.  Thus, a clus-
tered pattern may itself be considered a null hypothesis that can be tested for fur-
ther clustering.  In addition, a number of patterns in the same area representing 
different variables may be compared.  See Bailey and Gatrell (1995), and Getis 
and Franklin (1987). 

Spatial autocorrelation coefficients. In regression models where estimation is 
based on georeferenced data, it is mandatory that any statistically significant spa-
tial effect must be accounted for in the model. The spatial effects can be diagnosed 
by means of Moran’s I tests on residuals or on variables that are to be included in 
the model.  Also, regardless of diagnostics, spatial dependencies may be subsumed 
by creating spatial autoregressive models of one kind or another.  Two popular 
autoregressive models are (i) the mixed regressive spatial autoregressive model, 
often called the spatial lag model, 
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y = ρWy  + Xβ  + ε (B.3.13)

 
and (ii) the linear regression with a spatial autoregressive error, or simultaneous 
autoregressive model (SAR), often called the spatial error model  

 

1( ) .λ −= + −y X I Wβ μ  (B.3.14)

 
In both of these cases, parameters representing spatial effects, ρ and λ must be de-
termined.  Note that in each case they precede the W matrix, which takes any of 
the forms discussed above. In essence, the coefficients reveal the strength or influ-
ence of the W matrix. In so doing, they become spatial autocorrelation coeffi-
cients; high positive or negative values represent strong spatial effects and low 
values the opposite.  When ,ρ λ  are zero, there are no spatial effects. This is true 
since the error terms ε and µ respectively are randomly distributed in space. If, in 
estimation of the models, errors are spatially correlated, the models are mis-
specified. In addition to Moran’s I regression residual test, specialized tests such 
as the the Kelejian and Robinson (KR) test (1993), or the Wald, Likelihood Ratio, 
and Lagrange multiplier tests are used to identify spatial autocorrelation in spatial 
lag or spatial error type models (Anselin 2006).  For example, for the KR test, 
normality of errors is not required, nor is it necessary to hypothesize a strictly lin-
ear model. In addition, KR studies only certain selected contiguity relationships 
(Kelejian and Robinson 1993).  For details on spatial autocorrelation coefficients, 
see Anselin (1988).  Anselin (2006) presents a comprehensive review of spatial 
econometrics.   

Local measures and tests      

Among spatial analysts, there has always been an interest in focused measures, 
that is, a desire to describe precisely the ‘situation’ or proximity characteristics of 
a particular site.  But it was not until the invention of local statistics that it became 
possible to measure and test for certain situational characteristics.  What better 
way is there to investigate situational characteristics of sites than to use spatial 
autocorrelation measures and tests?  The basis for local tests for and measures of 
spatial autocorrelation comes from the cross-product statistic.  This time the struc-
tural form is 
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Note that here we are finding the interaction between spatial weights in the ith 
vector only and the y values in Y’s ith  vector. iΓ  allows for autocorrelative com-
parisons between the two vectors for a given site i. 

Getis and Ord local statistics. These statistics are additive in that the focus is 
on the sum of the j values in the vicinity of i.  The fact that there are two statistics, 
Gi  and *

iG , allows researchers to choose hypotheses based on proximity (Gi) or on 
clustering *( ).iG  *

iG  is written as 
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and –y and s are the mean and standard deviation, respectively.  

The mathematical distinction between the two statistics depends on the role of 
the ith observation.  If our concern is with the effect of the influence of i on the j 
values, the focus is on the site i but not the y-value associated with it.  Thus, the 
view is one of proximity (situation).  The null hypothesis would be: there is no as-
sociation between i and its neighbors j up to distance d.  The *

iG  statistic, on the 
other hand, includes the value yi in its calculations; it sums associations between i 
and j including i (the value for Wii – usually one – is added to Wi).  Thus, *

iG  lends 
itself to studies of clustering since a cluster usually contains its focus as a member 
of the cluster.   

Both statistics  are distributed  normally.  They are scaled in such a way that 
Gi (d) and *( )iG d  are equivalent to standard deviations of the normal distribution. 
Thus, there is no need to convert the statistics. It is interesting to note that *

iG  is 
mathematically associated with global Moran’s I(d) so that Moran’s I may be in-
terpreted as a weighted average of the local statistics (Getis and Ord 1992; Ord 
and Getis 1995).  For these statistics as well as all other spatial autocorrelation sta-
tistics, boundary effects may lessen the number of associations between i and j.  
To avoid the resulting bias, boundary effects should be minimized by judicially 
selecting the area of study. Hot spots identified by these statistics can be inter-
preted as clusters or indications of spatial nonstationarity. 

Local indicators of spatial association – LISA. LISA statistics were created by 
Anselin (1995), whose motivation was to decompose global statistics such as 
Moran’s I and Geary’s c into their local components for the purpose of identifying 
influential observations and outliers.  The individual components of Ii are related 
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to I. Just as the iΓ  sum to Γ , so too will all Ii sum to I, subject to a factor of pro-
portionality. Local Moran’s Ii  is defined as 
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Tests for spatial autocorrelation may be carried out either using the moments of 
the Ii distribution (see Anselin 1995) or by random permutations. The second 
technique, the strategy of conditional randomization, is preferred for LISA since 
the possible existence of global autocorrelation would otherwise affect the inter-
pretation of Ii  (Anselin 1995). 

For Geary’s c, the local version is 
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Here the factor of proportionality is 

 

.
)1(

2
1 1
∑∑
= =−

=
n

i

n

j
ijW

n
nγ  (B.3.21)

 



B.3     Spatial autocorrelation      271 

The LISA statistics are particularly useful for identifying spatial clusters.  High 
spatial autocorrelation values indicate clusters of high or low values.  Software 
provided in GeoDa (discussed below and in an earlier section of this book) pro-
vides graphics in which the ++, – –, + –, and – + types of spatial association are 
differentiated. Sokal et al. (1998) take a different view of local analysis, and Boots 
(2002) analyzes local measures of spatial autocorrelation. 

Geographically weighted regression. A local version of an ordinary least 
squares regression analysis has been proposed by Fotheringham et al. (1995).  The 
point of geographically weighted regression (GWR) is that regression parameters 
are not constant over space as characterized by traditional regression models and 
that the variation can be explicitly modeled.  By using a W, usually a Gaussian or 
near-Gaussian spatial weights decline function for each i as elements in the ma-
trix, a regression can be estimated for each ith location.  Although each weight 
matrix need not be focused on data sites, the point of the analysis is to estimate the 
variation in parameters across space.  The form of GWR can be written as 

 

Y = (β ⊗ X) 1 + ε (B.3.22)

 
where the logical operator (Kronecker product) ⊗ requires that corresponding ele-
ments in each matrix are multiplied by each other. Since each matrix has n-by-
(k+1) dimensions, where the number of independent variables is k, the vector of 
ones with dimensions (k+1)-by-1 yields the required n-by-1 matrix for Y.  This al-
lows β to consist of n sets of local parameters. Each set contains a slope and inter-
cept for each independent variable for each i. The betas are estimated by use of a 
W for each i. The d for all Ws is either selected in advance or estimated from the 
data.  A typical W is based on a pre-selected outer distance bandwidth b 
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Often, in a single study, b is allowed to vary because standard errors might be par-
ticularly high when the b-radius includes only a few data points around i.  Various 
systems are provided for selecting b (Fotheringham et al. 2002).  A result of GWR 
is a map of what might be called ‘parameter space.’  Areas with high parameter 
values indicate particularly strong correlative relationships between regressor and 
response variables, but the parameters are not directly indicative of spatial auto-
correlation. Since the beta values are a function of the spatial weighting scheme, 
to the extent that W captures the spatial autocorrelation effects in each of the vari-



272      Arthur Getis 

ables, it is reasonable to say that high beta values reflect on the pattern of spatial 
autocorrelation in the system. It is possible, however, to specify autoregressive in-
stead of OLS models, thus the GWR parameters can play the same role as in spa-
tial autoregressive models.  The implication is that one or more spatial autocorre-
lation maps can be produced for each equation in the system. Fotheringham, 
Brunsdon, and Charlton continue to write many articles on this subject. Reviews 
and analyses are found in Páez et al. (2002), Leung (2000) and Wheeler and 
Tiefelsdorf (2005) and in Chapter C.6 of this Handbook.  

Local spatial autocorrelation in the presence of global spatial autocorrela-
tion. As mentioned in our necessarily short discussion of local statistics, when 
global spatial autocorrelation exists, it becomes difficult to interpret the nature of 
local spatial autocorrelation. How much of a statistically significant result for a lo-
cal test on i is due to pervasive global autocorrelation? It may be that local statisti-
cal significance is just an artifact of the larger scale effect due to global associa-
tions.  Ord and Getis (2001) provide a test, called O, that includes separate 
information on the observations within d of i (regular or irregular areas) represent-
ing the hypothesized hot spot, and on observations immediately outside of the hot 
spot.  The statistic is 

 

0( )i dO d Y Y= −  (B.3.24)

 
where dY  is the mean of the n(d) observations within d and 0Y  is the mean of the  
m = M – n(d) observations, the M being a regionally partitioned set of observa-
tions that displays ‘relative homogeneity.’ The M should be considerably larger 
than n(d) [at least 10 times] but considerably smaller than all n observations in the 
study area. M can be selected to include all observations from i [(except the n(d)] 
up to the range (in the geostatistical sense) derived from all observations.  The 
idea of the statistic is to compare characteristics of data at two spatial scales; 

[ ( )] 0.iE O d =  Testing procedures are given in Ord and Getis (2001). Boots and 
Tiefelsdorf (2000) consider the relationship of global to local measures of spatial 
autocorrelation. 

B.3.5  Problems in dealing with spatial autocorrelation  

It is clear that spatial autocorrelation can be defined precisely, but it is not always 
clear whether the various measures and tests just described can actually find spa-
tial autocorrelation in georeferenced data.  Each of them has its own shortcomings, 
but more important, they perform better or worse depending on the way in which 
W and Y are specified.  For example, results depend on the nature of W, again em-
phasizing the importance of a meaningful specification of W. Much work remains 
to be done to better understand the effects of various W matrices on results.  Simi-
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larly, Y will yield different results depending on the nature of the associations 
specified for the realizations of Y. The fundamental question for researchers in this 
area is:  What is responsible for any spatial autocorrelation that exists in a particu-
lar data set? Is it the way the boundaries of the spatial units were drawn (the geo-
metry and/or scale of the spatial units under study) or is it a function of the nature 
of the variables under study? When spatial autocorrelation is embedded within a 
variable, is it because of the geometry of the spatial units or something else? A 
number of commentators have discussed the problems in dealing with spatial 
autocorrelation including Bao and Henry (1996), Legendre (1993), and  Pace and 
Barry (1997). 

A particularly difficult area of research is the selection of tests that can with-
stand the simultaneity effects of multiple tests.  Especially in local statistics, usu-
ally there are tests on spatial autocorrelation for each data site.  This results in very 
large numbers of tests that are in fact dependent on one another.  Thus we come to 
the ironic situation where in the search for spatial autocorrelation we are subject to 
the effects of spatial autocorrelation itself.  For example, many of the observations 
used to find a local measure of spatial autocorrelation will be used again for a test 
focused on a neighboring observation. There have been several attempts to resolve 
this problem of simultaneous, dependent tests (Getis and Ord 2000; Castro and 
Singer 2006; Benjamini and Hochberg 1995). Also see Chapter B.4.  Researchers 
must be conscious of Bonferroni-type confidence intervals when they select their 
diagnostic and testing devices.  

Many traditional tests require the assumption of stationarity.  Checking for 
stationarity in empirical work is a good practice.  GWR, while attempting to get 
around this problem, falls prey to problems of sample size (necessarily small for 
estimates of Yi ) and to the overlapping test problem.   

The problem of the effect of global spatial autocorrelation on local effects was 
alluded to above.  Is that relationship fully understood?   What about the effect of 
boundaries on levels of confidence?  Sample size and thus the number of degrees 
of freedom are affected by the spatial extent of study regions. For example, does 
the distance d include suitable numbers of observations that allow for acceptable 
levels of confidence in results?  How is d to be selected?  Careful attention must 
be given to the effect of various d on results.  A promising technique of analysis, 
spatial filtering, may be particularly useful in answering many of these questions 
(Getis 1990, 1995; Griffith 1996, 2003; Griffith 2002). See also Chapter B.5 in 
this volume. Many of these problems can be better understood in a framework of 
exploratory spatial data analysis.  The software packages mentioned in the next 
session are designed to assist in exploration and model development and testing.    
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B.3.6  Spatial autocorrelation software 

Tests and measures of spatial autocorrelation are available in a number of software 
packages.  Most often in these packages, finding and testing for spatial autocorre-
lation is only one part of a large variety of spatial analytic procedures.  

GeoDa. Perhaps the most comprehensive package is GeoDa (Anselin et al. 
2006), which provides a number of exploratory procedures that elicit information 
about spatial patterns.  In addition, tests and analysis of spatial autocorrelation are 
available in a number of different segments of the software, including the estima-
tion and testing of a variety of spatial econometric models. Novel graphical and 
mapping procedures allow for detailed study of global and local spatial autocorre-
lation results.  Non-stationarity and outliers can be assessed by means of maps of 
statistically significant clusters.  See Chapter A.4 of this volume for further expla-
nations.   

R Packages.  Two noteworthy packages are based on the R language envi-
ronment.  One is the spdep, a package with many spatial data exploratory func-
tions, graphics, and hypothesis tests on spatial autocorrelation (Bivand 2006).  A 
package specifically designed for the study of point pattern processes is Spatstat 
(Baddeley and Turner 2005).  A special feature of this package is simulation rou-
tines for different types of point pattern processes.  Tests and diagnostics are in-
cluded.  See Chapter A.3 for a fuller treatment of this package.  

PPA (Point Pattern Analysis). This small package includes routines for global 
and local spatial autocorrelation statistics.  Included are nearest neighbor and K 
function procedures and tests. Graphics are not included (see Aldstadt et al. 2002). 

SANET is a toolbox that allows for the study of spatial autocorrelation on net-
works (Okabe et al. 2006). 

STARS (Space-Time Analysis of Regional Systems) is an exploratory package 
that brings together a number of recently developed methods of space-time analy-
sis into a graphical environment.  Spatial autocorrelation can be studied on dy-
namically-viewed time-dependent maps.  Many descriptive statistics are available, 
as in GeoDa, that are keyed directly to individual observations on maps (Rey and 
Janikas 2006).  See Chapter A.5.  

ArcGIS. This large system of spatial data management and analysis contains 
modules that allow for map study with K functions and autocorrelation statistics 
(ArcVIEW 9.3).  More detail is available in Chapter A.1.  Recent versions contain 
routines for GWR.  One module, Geostatistical Analyst, provides a large number 
of descriptive and analytical routines for the study of semivariograms (ESRI 
2001).    

ClusterSeer 2. Developed primarily for health science spatial research, this 
package makes available a number of pattern analytic routines popular in disease 
and crime research. The routines identify statistically significant spatial clusters 
whether or not the focus is on a particular observation or a particular site.  The 
concept of spatial autocorrelation is embedded in many of the routines (Jacquez et 
al. 2002). 

Le Sage’s Spatial Econometrics Toolbox. This package contains an extensive 
collection of MATLAB econometric functions, many of which were created for 
spatial data (LeSage 1999, 2004).  
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Spatial Statistics and SAS. By means of SAS procedures, Griffith (see Chapter A.2 
of this volume) has created specialized routines that allow for the analysis of spa-
tial econometric systems, in particular, spatial filtering (see Chapter B.5 of this 
volume). 
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B.4  Spatial Clustering 

Jared Aldstadt 

B.4.1  Introduction 

Spatial clustering analysis has become common in many fields of research, and is 
most commonly used in epidemiology and criminology applications.  Knox (1989, 
p.17) defines a spatial cluster as, ‘a geographically bounded group of occurrences 
of sufficient size and concentration to be unlikely to have occurred by chance.’  
This is a useful operational definition, but there are very few situations when phe-
nomena are expected to be distributed randomly in space.  In most cases an im-
plicit assumption in spatial cluster analysis is that the researcher has accounted for 
all the factors known to influence the variable of study.  This would lead to an ex-
amination of residual spatial variation in a spatial modeling exercise.  Spatial clus-
tering analysis is carried out on raw variables or rates when there are no a priori 
hypotheses regarding the process. 

There are an ever increasing number of methods available for the analysis of 
spatial clustering.  These techniques can be divided into two categories: those that 
are used to determine if clustering is present in the study region, and those that at-
tempt to identify the location of clusters. The first category of tests is called global 
clustering techniques and these methods provide a single statistic that summarizes 
the spatial pattern of the region.  These will be discussed in the section that fol-
lows.  The second type of methodology is called local clustering.  Local methods 
examine specific sub-regions or neighborhoods within the study to determine if 
that area represents a cluster of high values (a hot spot) or low values (a cold 
spot).  These methods can be further differentiated as either focused or non-
focused tests.  Focused tests examine one or a small set of pre-defined foci of in-
terest.  Non-focused tests are designed to find clusters that exist throughout the en-
tire region of analysis.  Local clustering methods will be discussed in Section 
B.4.3.  Considerations for choosing a spatial clustering method and some conclud-
ing remarks are provided in Section B.4.4. 
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B.4.2  Global measures of spatial clustering 

The methods developed to detect global clustering are also called general tests of 
clustering.  In most cases, the null hypothesis is one of spatial randomness.  These 
methods provide a single summary statistic which describes the degree of cluster-
ing present in the mapped pattern.  The value of the statistic indicates whether the 
pattern is clustered, random, or dispersed.  In contrast to a clustered pattern, a dis-
persed pattern is one where high values and low values are nearby each other more 
often than would be expected in a random pattern.  Clustered and dispersed pat-
terns may also be labeled positive and negative spatial autocorrelation respec-
tively.   

Areal data methods 

The first set of methods deal with areal data, or the attributes of units that are 
mapped as polygons.  These attributes are most often aggregate data such as a 
density or a rate per unit of population.  It does not usually make sense to carry out 
spatial analysis with a raw count of events within a spatial unit.  Much of the 
variation in the attribute is likely to be a function of the size of the unit or the 
population at risk within the unit.  The use of rates may also confound cluster 
analysis when there is substantial variation in the size of the denominator to be 
used to calculate rates.  Consequently, variants of general tests have been devel-
oped that account for this variation in population size and examine the spatial pat-
tern of the excess or deficiency of events occurring in each spatial unit.  These 
analyses are not limited to scale data, and a method that examines clustering in a 
map with two classes will also be discussed. 

Global clustering statistics take a common form that compares the similarity 
of values at locations to the spatial proximity of the locations.  This type of statis-
tic is called a general cross-product statistic, and it was introduced by Mantel 
(1967) for computing the similarity between two matrices.  The spatial proximity 
between each pair of locations i and j is denoted Wij and entered into an n-by-n 
matrix called the spatial weights matrix.  The spatial weights matrix is most often 
denoted as W, and is discussed further below.  The similarity of two data values xi 
and xj is denoted Sij and can be entered into an n-by-n matrix that is labeled S. 
Clustering is indicated when spatial proximity and similarity are positively related.  
In summation notation, the general form of the statistic is 
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Each of the techniques presented in this section are a variation of this form, with 
the distinguishing variant being the measure of similarity between values.  Often 
the indices are normalized by global measures of similarity and spatial connec-
tivity. 

The spatial weights matrix defines the structure of spatial relationships in the 
study region.  It delimits the extent of clustering that the clustering technique is 
able to detect.  The choice of W, therefore, should be considered carefully in clus-
tering analysis.   The simplest and perhaps most commonly used set of spatial 
weights is the binary contiguity matrix.  Here, Wij is equal to one if units i and j 
share a common boundary and zero otherwise.  There are two variants of the bi-
nary contiguity matrix.  The Rook case requires that neighbors share a common 
edge.  A common vertex or point is all that is required for contiguity in the Queen 
case.  Other binary weights matrices include a number of nearest neighbors and 
the complete set of neighbors with a given distance.  Spatial relationships may 
also be defined as a function of the distance between units.  Most commonly ele-
ments are defined as 

 

α−= ijij dW  (B.4.2) 

 
where dij is the distance between units i and j and α  is larger than zero.  It should 
also be noted that the diagonal of the weights matrix, the values Wii, are usually set 
to zero. 

The weights matrix used in cluster analysis is often standardized so that the 
elements of each row sum to one (row standardization).  This procedure serves to 
equalize the weight given each observation in the analysis with respect to its num-
ber of neighbors.  The elements of this standardized matrix are calculated as  
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Standardization should not be carried out in cases when the weights have mean-
ingful interpretation with regards to the analysis (Anselin 1988).  For example, 
standardizing inverse distance matrices will distort the relative spatial relation-
ships between units and cloud interpretation of the clustering index.  The effects of 
standardization are examined and an alternative to row standardization is provided 
by Tiefelsdorf et al. (1999).  A more complete examination of the spatial weights 
matrix with references to many alternative forms and several reviews is given by 
Getis and Aldstadt (2004). 
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Join-count statistic.   The join count statistic is a measure of clustering for a binary 
classification of data.  These values could be visualized as a two-category chorop-
leth map.  The two classes are usually referred to as black (B) and white (W).  A 
join is another name for the contiguity relationship of two areas sharing a bound-
ary.  The statistic value is the number of joins of a given type.  Each boundary 
may connect two black units (BB), two white units (WW) or one unit of each type 
(BW).  Cliff and Ord (1973) define the number of BW joins as the general cross 
product statistic 
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where xi equal to one corresponds to B and xi equal to zero corresponds to W.  Fol-
lowing from the definition of join, the weights, Wij are usually restricted to a bi-
nary contiguity representation.  Under a free sampling assumption, the expected 
number of BW joins in a random spatial distribution is  

 

E [BW]  = 2 Jpq  (B.4.5) 

  
where J is the total number of joins. p is the probability that a unit is coded B and 
is often estimated as the proportion of units that are in the class B.  q is the prob-
ability that a unit is coded W and is equal to one minus p.  The number of joins 
may be calculated from the binary contiguity weights as  
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If the classes are clustered together, there would be fewer observed BW joins than 
expected.  Likewise, if the pattern is dispersed or similar to a checkerboard pat-
tern, there would be more BW joins than expected in a spatially random pattern.  
The variance of the BW statistic under both free and non-free sampling are derived 
in Cliff and Ord (1973) along with an extension to the case when there are more 
than two classes. 

Moran’s I.  Moran’s I is a well known test for spatial autocorrelation (Moran 
1950).  The index is similar to covariance and correlation statistics.  The measure 
of similarity between values at two locations i and j is the product of the deviation 
between the value at each location and the estimate of the global mean x . This 
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product is weighted by the spatial proximity of the two locations, and the sum of 
the resulting values for all pairs of locations is the spatial autocovariance.  The 
standardized index is given as 
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The expected value for a spatially random distribution is minus one over (n–1). 
This quantity tends towards zero as the sample size increases.  Values greater than 
this indicate clustering of units with high and or low values.  Values that are 
smaller than the expected value indicate negative association between proximate 
locations.  Unlike the Pearson’s correlation coefficient, Moran’s I is not bounded 
between negative one and one, but usually falls within this interval (Bailey and 
Gatrell 1995).  A correlogram displays the Moran’s I value calculated for a num-
ber of increasing distances.  The distances are most often mutually exclusive dis-
tance bands or orders of contiguity.  The correlogram can be used to determine the 
extent of spatial autocorrelation and at what distance spatial autocorrelation is 
maximized. 

Cliff and Ord (1973) derive the distribution of Moran’s I under the null hy-
pothesis for two different sampling assumptions.  Under the randomization as-
sumption the n observed values are fixed, but they are relocated randomly among 
the locations in a random fashion.  The normality assumption assumes that the 
values at each location are drawn from independent and identical normal distribu-
tions.  Underlying both of these assumptions is the additional assumption of sta-
tionarity.  In the spatial context, stationarity implies that the mean and variance of 
the variable of interest is constant throughout the study region.  Cliff and Ord 
(1973) prove that under both the randomization and normality assumptions 
Moran’s I is asymptotically normally distributed.  When n is large, a reliable sig-
nificance value can be computed based on this distribution.  Tiefelsdorf and Boots 
(1995) show that the rate of convergence to normality is a function of the spatial 
weights matrix and the distribution of the data values as well as sample size.  A 
Monte Carlo approach, as outlined by Besag and Newell (1991), is often used to 
generate significance values under either the randomization or normality assump-
tions. 
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Adjusting for heterogeneous variance. When the spatial units vary significantly in 
size, the assumption of constant variance is violated.  Specifically, units with large 
populations are less likely to deviate from the global mean with respect to units 
with small populations (Haining 2003).  Walter (1992) demonstrates that variation 
in size of population at risk can result in incorrectly rejecting the null hypothesis.  
Several methods have been proposed to test the spatial randomness hypothesis 
when the background population is heterogeneous (Waller and Gotway 2004).  
Oden (1995) proposed a version of Moran’s I, Ipop , that is based on individual 
level data.  Inference is again based on the randomization assumption. However, 
the randomization refers to the status of individuals.  This is most often applied in 
studies of disease clustering where cases are denoted as one and the remaining in-
dividuals are denoted zero.  Tango (1995) proposed the excess events test (EET) 
that is defined as 
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where ci is the number of cases in unit i, ni is the population of unit i, and C is the 
total number of cases in the study region. Like Ipop a large variation from the ex-
pected number of cases within a region contribute to large statistics, and Ipop is an 
affine transformation of EET (Oden et al. 1998; Tango 1998). Tango suggested an 
exponentially  decreasing  function  of  distance  as  the  weight  between  units 
exp (–dij /λ), where dij is the distance between locations i and j, and λ is a measure 
of the spatial scale of clustering.  The maximized excess events test (MEET) 
searches over a plausible range of λ for the minimum p-value (Tango 2000).  This 
methodology examines clustering at a number of scales while accounting for mul-
tiple testing.  Assunção and Reis (1999) propose an Empirical Bayes method for 
standardizing rates when variances are not stable.  In this approach xi is 
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In the accompanying simulation study, the authors determine that the standardized 
index is more powerful than the traditional Moran’s I.   Assunção and Reis (1999) 
also compare their method to Oden’s Ipop which is powerful in detecting rate het-
erogeneity within units, but is not as useful for detecting spatial correlation of 
rates. 

Geary’s c. Geary’s c is an alternative measure of spatial clustering that takes 
the familiar cross-product form (Geary 1954).  The similarity of two locations is 
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quantified as the difference between the values at each location squared.  This 
leads to the statistic 
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Two values that are similar will have a small contribution to the global value, 
therefore low values of c are indicative of a clustered pattern.  The expected value 
of a random pattern is one, and c ranges between zero and two.  Cliff and Ord 
(1973) derived the variance under the randomization and normalization assump-
tions. 

Getis-Ord G.  The Getis-Ord G statistic quantifies the relationship between 
two locations as the product of the values at the locations (Getis and Ord 1992).  
The statistic is 

 

.

1 1

1 1

∑∑

∑∑

= =

= == n

i

n

j
ji

n

i

n

j
jiij

xx

xxW
G

 
(B.4.12)

 
Use of the general G requires that the variable of analysis is positive valued with a 
natural origin.  The expected value under a random pattern is 
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G values greater than the expected value result from a pattern that is dominated by 
concentrations of high values because the product of neighboring units is large.  A 
low G value results from a pattern dominated by clusters of low values.  Accep-
tance of the null does not necessarily imply a random pattern, but may result in the 
case that clusters of both high and low values exist in the study region.  The G sta-
tistic differs from the other indexes discussed in this section in that it is not strictly 
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a measure of clustering, but provides an indication of the type of clustering that is 
present in the study region. 

Point data methods 

A second set of methods is used to analyze phenomena that are mapped as points.  
These could be the location of a set of objects or the locations of a set of events.    
Complete spatial randomness (CSR) describes the pattern of points that would oc-
cur by chance in a completely undifferentiated environment.  The process that 
generates this pattern is called the homogeneous planar Poisson point process.  In 
this process points are generated in a study are under the conditions: (a) each loca-
tion in the study area has an equal probability of receiving a point; and (b) the se-
lection of a location for a point is independent of the location of existing points.  
As with areal data, patterns may deviate from CSR by being either clustered or 
dispersed.  In a clustered pattern, points are on average closer than expected in 
CSR.  In a dispersed pattern, points are uniformly distributed throughout the study 
area. 

The CSR hypothesis is limiting and rejection of this null may not be meaning-
ful.  There are few instances when the homogeneous and independent probability 
of occurrence is plausible.  To avoid this limiting assumption, comparative analy-
sis of two or more point patterns is conducted.  This allows for examination of 
clustering above and beyond what would be expected due to spatial variation in 
the probability of occurrence.  The aim is often to determine whether some attrib-
ute is clustered in a population given its heterogeneous distribution.  When analy-
zing one or more types of events or objects, the point patterns are often referred to 
as marked point patterns. 

Quadrat analysis.  Quadrat analysis is one of the first techniques used to test 
the CSR hypothesis.  Quadrat analysis involves partitioning the study area into a 
number of scattered or contiguous equal sized quadrats and was originally deve-
loped in the plant ecology literature (Greig-Smith 1952).  The number of events in 
each cell is tabulated and a frequency table of these cell counts is computed.  A 
goodness-of-fit test is then performed to determine if the frequencies are signifi-
cantly different from those expected under a Poisson process.  An excess number 
of low and high cell counts indicate a clustered pattern.  An excess number of cells 
with average density indicate a dispersed pattern.  The results are dependent on the 
size of the quadrats, and often the analysis is repeated for a range of quadrat sizes 
(Boots and Getis 1988).  The general clustering methods described above are also 
used to analyze the pattern of events aggregated into quadrats. 

Nearest neighbor analysis. Nearest neighbor analysis also has it origins in the 
plant ecology literature.  These methods are based on the distance between each 
point and its closest neighbor.  Clark and Evans (1954) derived the expected value 
and variance of the average nearest neighbor distance in a CSR pattern.  The use 
of the mean nearest neighbor distance provides an easy to interpret summary sta-
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tistic, but is a crude representation of a point pattern.  For instance, a few very 
large nearest neighbor distances associated with isolated points could obscure an 
otherwise clustered pattern.  Refined nearest neighbor analysis overcomes this is-
sue by examining the entire distribution of nearest neighbor distances.  The test 
statistic is the maximum difference between the observed nearest neighbor dis-
tance frequency distribution and the distribution expected under the null hypothe-
sis (Diggle 1990).  A rigorous analysis of a point data set can also include the 
analysis of higher order neighbors.   

Ripley’s K function. One problem with quadrat analysis and nearest neighbor 
analysis is that they examine only one scale of interaction at a time (Bailey and 
Gatrell 1995).  Most commonly these techniques detect clustering at short dis-
tances.  Advances in computational capabilities have enabled the examination of 
all inter point distances.  Ripley’s K function can be computed over a range of dis-
tances and be used to identify the scales over which clustering occurs (Ripley 
1976).  The estimator is defined as 
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where R is the size of the study area.  The weights matrix is binary and equal to 
one when points i and j are within distance d, and zero otherwise. A standardized 
measure that simplifies interpretation is given as 
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The expected value of ˆ( )L d under CSR is d. A value greater than d indicates clus-
tering and a value less than d indicates dispersion.  The statistical significance of 
the results is determined through Monte Carlo simulations under an appropriate 
null hypothesis (Besag and Diggle 1977). 

The points outside the study region are unobserved and cannot be included in 
the summation.  In order to correct for this edge effect, points near the boundary 
may be given a larger weight in the analysis.  Ripley (1976) provided one such 
correction for rectangular study areas (see Chapter B.3). The boundary problem is 
also overcome by transforming or duplicating the existing dataset to create points 
outside the boundary.  A comparison of the various edge correction methods is 
provided by Yamada and Rogerson (2003). 

Ripley’s K function is a form of second order analysis because it is examining 
the interaction or dependence between points. This is in contrast to the intensity of 
points, which are termed first-order effects. There is an implicit assumption that 
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the density of points is uniform within the study area (Diggle 2003).  When the 
density of points is heterogeneous within the study area, this first-order effect may 
be captured in the K function. To avoid this ambiguity the distances of analysis 
should be limited so that they are small relative to the size of the study area.  One 
rule of thumb is to limit the maximum distance of analysis to no longer than one-
half the length of the shorter side of a rectangular study area. 

Bivariate point patterns.  The methods above have only considered points of a 
single type.  Bivariate point pattern methods may be used to answer questions 
concerning the spatial dependence of two types of events.  One set of points may 
also be used as a control group to correct for the variations in density within the 
study area.  This type of analysis is especially relevant to epidemiological studies 
where inhomogeneous populations at risk are the norm. 

The cross K function is a useful tool for examining the relationship between 
two sets of events (Bailey and Gatrell 1995).  The estimator is given as  

 

∑∑
= =

=
1 2

1 121
12 )(ˆ

n

i

n

j
ijWnn

RdK  (B.4.16)

 
where n1 and n2 are the number of each type of points.  The result can be standard-
ized in the same manner as above (see Eq. (B.4.15)).  In this case, a value greater 
than d indicates that attraction between the two types of events and a value lower 
than d indicates repulsion between the two types of events. Significance is calcu-
lated through randomization.  In this case, the patterns are preserved in their origi-
nal form, but they are shifted relative to one another. These shifts may be per-
formed using a toroidal transformation of the study area. 

Spatial randomness may not always be an important hypothesis to test.  Very 
often the potential locations of an event are limited within the study area.  Exam-
ples include crimes which are geocoded to the nearest available street address or 
cases of disease which are distributed among the population at risk.  This type of 
heterogeneity can be accounted for using bivariate point pattern analysis.  Cuzick 
and Edwards (1990) presented a method based on the number of nearest neighbors 
of each type of point.  The method depends on a scale parameter, k, that indicates 
the extent of analysis in terms of the number of nearest neighbors.  The method 
was designed to detect clusters in epidemiological datasets, and the events of in-
terest are usually cases of disease.  The second set of events is called controls and 
is selected as being representative of the population at risk.  The statistic is given 
as  
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where n1 is the number of cases, and mi(k) is the number of cases among the k 
nearest neighbors.  When cases are clustered, the resulting statistic will be large.  
Tk will be small when the cases are dispersed and therefore, surrounded by con-
trols.  Jacquez (1994) developed a modification to the Cuzick and Edwards’ test 
that can be used to evaluate aggregate data as well.   

A form of the K function can be employed in the same situation (Diggle and 
Chetwynd 1991).  The statistic becomes the difference between the two univariate 
K functions, 
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where 1

ˆ ( )K d  and 2
ˆ ( )K d  are the K functions for each set of points.  If the events 

of type one are distributed randomly in relation to the remaining points, the differ-
ence will be approximately zero.  A positive difference indicates that points of 
type one are more clustered than points of type two.  A negative value indicates 
that points of type one are more dispersed than points of type two.  The signifi-
cance of both Tk and Diff (d) can be examined under the random labeling null hy-
pothesis.  The designation of event type is randomly permuted or shuffled among 
the points for each realization in a Monte Carlo procedure. 

B.4.3   Local measures of spatial clustering 

When the null hypothesis of spatial randomness is rejected by a general test for 
spatial clustering two additional questions are raised: where are the clusters and 
what is their spatial extent.  Local clustering statistics are used to answer these 
questions.  It should be noted, however, that there may be significant local cluster-
ing even in the case that the general test results in acceptance of the null hypothe-
sis.  Local measures can be either tests of clustering or focused tests.   

Areal data methods 

As with global clustering statistics, the local tests take a general form.  A local 
clustering statistic is the product of a spatial weights vector and a similarity vector.  
It is represented in summation notation as  
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Several of the global methods presented in Section B.4.2 have a local equivalent 
that is the ith unit’s contribution to the global statistic. 

Getis-Ord Gi and Gi
* .  Getis and Ord (1992) present a local clustering test that 

is based on the concentration of values in the neighborhood of a unit.  The original 
statistic was given as 
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The authors derive the expected value and variance of Gi when Wij are elements of 
a binary spatial weights matrix.  Most often the weights are based on proximity 
with the value at all units within a given distance being summed in the numerator.  
The Gi

* statistic includes the contribution of the ith unit in the calculation of local 
concentration.  This amounts to adding the value xi to both the numerator and de-
nominator in Eq. (B.4.20). The Gi

* matches the usual definition of cluster as a con-
tiguous and non-perforated set of units.  In this original formulation, the statistics 
are intended for use with variables that possess a natural origin.   

Modified versions of the Gi and Gi
* statistics are presented by Ord and Getis 

(1995).  The newer formulation standardizes the statistic by subtracting the ex-
pected value and dividing the difference by the standard error.  This eases inter-
pretation as the result can be interpreted as approximately following a standard 
normal distribution.  A positive value indicates clustering of high values and a 
negative value indicates a cluster of low values.  This update also allows for the 
use of non-binary weights matrices and variables without a natural origin.  The 
standardized Gi

*  statistic is given in Chapter B.3. 
The Moran scatter plot and local Moran’s I.  The Moran scatter plot was in-

troduced by Anselin (1996) as an exploratory spatial data analysis (ESDA) tool for 
assessing local patterns of spatial association (see also Chapter B.1).  This bivari-
ate scatter plot places the unit values (xi) on the horizontal axis and the spatial lag 
(lagi) for the same variable on the vertical axis (see Fig. B.4.1).  The spatial lag is 
the spatially weighted average of the values at neighbouring units, and is calcu-
lated as 
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The axes of the plot are drawn so that they cross at the average value of xi and lagi, 
respectively.  The four quadrants of the plot separate the spatial association into 
four components.  The first letter in the quadrant labels indicates whether the 
value of xi is higher (H) or lower (L) than the average of all values.  Correspond-
ingly, the second letter in the quadrant labels indicates whether the value of lagi is 
higher (H) or lower (L) than the average of all the spatial lags.  Units that fall into 
the quadrants labelled ‘HH’ and ‘LL’ represent clustering of high and low values 
respectively.  The remaining quadrants contain units that have negative associa-
tion with their neighbours and can be considered as spatial outliers.  A spatial out-
lier may arise from a cluster consisting of just one unit.  The Moran scatter plot is 
a useful visualization tool for assessing spatial pattern and spatial clustering. 

 

Fig. B.4.1. The Moran scatter plot 

The significance of extreme points in the Moran scatter plot can be assessed using 
local Moran’s I or Ii (Anselin 1995).  For each region, Ii is calculated as 
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As discussed in Chapter B.3, Ii represents a decomposition of the global Moran’s 
I.  This form of local method is called a Local Indicator of Spatial Association 
(LISA).  Anselin (1995) also presents the formulation of the local Geary’s c or ci.  
Statistical significance can be determined through the provided expected value and 
variance or by Monte Carlo procedure.  A positive Ii indicates clustering of high or 
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low values.  A negative Ii indicates a spatial outlier.  Several results are, therefore, 
reported for each unit.  These include the statistic value, the significance value, 
and the label of corresponding quadrant of the Moran scatter plot. 

Local clustering of categorical data. In the case of global clustering statistics, 
the methods for categorical data preceded the methods for metric data.  This was 
not the case for local methods of pattern analysis.  Boots (2003, 2006) details the 
issues in this research area and presents ESDA methods for describing and under-
standing patterns of categorical data. 

Accounting for multiple and dependent testing 

Local spatial statistics are often used in an exploratory mode to test for clustering 
at each location in the study area simultaneously.  In this case, the issue of multi-
ple and dependent testing is a concern when assessing the significance of cluster-
ing.  Multiple testing problems arise whenever more than one hypothesis test is 
carried out using the same dataset.  The probability of rejecting the null hypothesis 
at least once when it is true in all cases is much higher than the nominal type I er-
ror rate, α.  The dependence part of the problem is a result of nearby local tests re-
lying on many of the same data values.  The results of these tests are, therefore, 
correlated.  Failure to account for these effects results in over identification of 
clusters by local spatial statistics (Anselin 1995; Ord and Getis 1995). 

The Bonferroni correction is commonly used to account for multiple testing 
(Warner 2007).  In this approach, a new critical value is calculated for the individ-
ual tests by dividing the overall level of type I error by the number of tests.  For 
example, if an overall significance level of 0.05 is desired for 20 simultaneous 
tests, a significance level of 0.0025 is used in each separate test.  Caldas de Castro 
and Singer (2006) demonstrate the usefulness of a less conservative approach 
called the false discovery rate (FDR).  FDR controls for the rate of false positives 
among  the  nominally  significant  results  and  was  introduced by Benjamini and  
Hochberg (1995). It is based on the distribution of significance values for a set of 
tests, and is therefore adaptive to the characteristics of each dataset.  Simulation 
studies performed by Caldas de Castro and Singer (2006) compared uncorrected 
local statistics with the Bonferroni and FDR corrected versions.  FDR was supe-
rior in properly identifying the location and extent of spatial clusters. Another 
common approach to account for multiple testing is to examine just the most ex-
treme value of all the individual tests (Baker 1996; Tango 2000).  This approach 
provides a satisfying solution in a general test of clustering, but it does not address 
each local test individually. 

Local spatial tests are most often evaluated under the assumption that there is 
no global spatial autocorrelation.  Some attempts have been made to relax this as-
sumption and evaluate clustering in the presence of spatial autocorrelation.  One 
technique, that of Ord and Getis (2001), is described in Chapter B.3 of this hand-
book.  Goovaerts and Jacquez (2004) present a geostatistical technique for gener-
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ating datasets under a realistic null hypothesis.  These models include both spatial 
autocorrelation and heterogeneous populations in the examinations of clustering. 

Cluster detection algorithms 

A second set of local methods are the automated search procedures and their asso-
ciated test statistics.  These computational techniques involve testing a large num-
ber of regions within the study area for spatial clustering.  These methods have 
primarily been applied to spatial analysis of epidemiological data.  They are flexi-
ble in that they can, for the most part, be applied to both point and aggregate data.  
In the case of aggregate data, the location associated with spatial units is most of-
ten taken as the centroid of the unit.  They differ from the methods presented 
above in that they are not limited to a fixed definition of neighborhood, and thus 
cluster size, but are designed to detect clusters of varying sizes.  It should be 
noted, however, that the test statistics discussed in the previous section could be 
used in conjunction with the search procedures outlined below. 

Geographical Analysis Machine (GAM).  The Geographical Analysis Ma-
chine (GAM) was the first automated approach to finding cluster locations in spa-
tial patterns (Openshaw et al. 1987).  The original GAM involves searching a 
large number of circles across the study area.  The circles are centered on a grid, 
and the radius of these circles is allowed to vary over a suitable range of values.  
The number of cases in each circle is counted and the significance of the count is 
evaluated.  A Monte Carlo procedure is used, and the circles that fall within a 
given threshold are retained.  The resulting set of circles is then mapped to show 
cluster centers.  One weakness of the GAM is the lack of control for multiple test-
ing (Besag and Newell 1991).  The GAM did, however, show the utility of a geo-
computational approach to cluster detection and has inspired several modifications 
and improvements.  Each of the methods described below has built on the founda-
tion of the GAM.  There have also been several improvements to the GAM proce-
dure itself.  One example is the method of Conley et al. (2005).  This technique 
uses genetic algorithms to speed search times and reduce over-reporting of cluster 
sizes. 

Besag and Newell’s method. One additional shortcoming of the original GAM 
is that the circles examined are based on a distance only approach.  If the popula-
tion at risk varies, then circles of the same size contain different size populations.  
This variation in population at risk must be included in the analysis.  The Besag 
and Newell (1991) method overcomes this difficulty by requiring the expected 
cluster size, say k, as a user input.  Each unit with at least one case of disease is 
examined as a potential center of clustering.  The circle is expanded in order of 
nearest neighbor distance until at least k cases are included within the circle.  The 
inference is then based on the number of units, Li, containing k cases.  The signifi-
cance of each potential cluster is evaluated using the Poisson cumulative distribu-
tion function under the uniform risk null hypothesis 
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where li is the observed number of units containing k cases, and μ is the expected 
number of cases within those units. μ is calculated as the product of the global risk 
and the population at risk within the set of units under examination.  Fotheringham 
and Zhan (1996) compare GAM, Besag and Newell’s method and their own modi-
fication of the GAM search algorithm.  All methods are deemed successful at de-
tecting clusters, but Besag and Newell’s method is the least likely to result in false 
positives.  Additionally, Fotheringham and Zhan (1996) provide a formulation of 
Besag and Newell’s method for use with point data, as the original presentation 
was based on areal spatial units. 

The SaTScan procedure.  The SatScan procedure is another cluster finding 
procedure inspired by the GAM (Charlton 2006). Like the GAM, SaTScan 
searches a large number of circles and examines the number of cases in relation to 
the population at risk (Kulldorff 2004).  Most analysts choose to examine clusters 
that are centered on cases or region centroids as in the Besag and Newell method, 
but any number of potential clusters could be examined.  At each center, the size 
of the circle is increased until a user defined maximum cluster size is reached.  
The maximum cluster size could be given in terms of geographic area or popula-
tion at risk.  The minimum cluster size does not need to be specified.  During the 
search procedure, the likelihood that each cluster has occurred by change is evalu-
ated using the spatial scan statistic.  Kulldorff (1997) derived the spatial scan sta-
tistic for count or marked point pattern data.  Variants of the spatial scan statistic 
appropriate for other types of data have also been developed (Huang et al. 2007; 
Jung et al. 2007).  The spatial scan statistic based on the Poisson distribution is 
employed for aggregate case data.  A uniform risk null hypothesis is evaluated.  
L(R) is the likelihood that there is a cluster in a region R, and L0 is the likelihood 
under the null.  A likelihood ratio test statistic is given by 
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if cR > µR, and one otherwise.  Here C is the total number of cases for the popula-
tion, cR is the number of cases in region R, and µR is the expected number of cases 
in the region R.  The most likely cluster or clusters are those with the largest like-
lihood ratio values.  An exact p-value is calculated using a Monte Carlo proce-
dure.  A primary advantage of the spatial scan statistic is that it takes multiple test-
ing into account.  A version of the SaTScan procedure that examines elliptical 
regions as potential clusters is presented by  Kulldorff et al. (2006). 
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Finding arbitrarily shaped clusters. To this point, each of the cluster detection 
methods discussed are limited to either a prespecified and fixed definition of 
neighborhood or the examination of a large number of circles or ellipses.  In most 
cases there is little reason to expect that spatial clustering would take a regular 
shape.  To overcome this limitation, a variety of tests have been developed to lo-
cate irregularly shaped clusters.  Each of these approaches uses a definition of 
proximity equivalent to the binary contiguity matrix.  Spatial units are treated as 
nodes on a connected graph.  The resulting clusters are not limited to being regular 
shapes, but must be contiguous regions or connected sub-graphs. 

Tango and Takahashi (2005) proposed an examination of all possible con-
nected sub-graphs up to a pre-selected maximum cluster size.  This approach 
works well for clusters containing a small number of units, but is not feasible for 
finding larger clusters.  Two approaches use stochastic optimization techniques to 
overcome this shortcoming.  Duczmal and Assunção (2004) employ simulated an-
nealing, and Duczmal et al. (2007) a genetic algorithm.  These techniques are not 
restricted to a maximum cluster size, but they require additional inputs, known as 
hyper parameters, that govern the search process.   

Aldstadt and Getis (2006) proposed an iterative region growing approach to 
finding arbitrarily shaped clusters called AMOEBA.  To begin this procedure a 
single unit is selected as the seed location.  All possible combinations of contigu-
ous units are examined and the set that maximizes the clustering statistic is re-
tained.  The algorithm then continues by examining the units at each order of con-
tiguity until the addition of units no longer increases the test statistic.  At this point 
a cluster based on the first seed location is delimited.  The procedure can be re-
peated using every location as the seed location.  The significance of each delim-
ited cluster is evaluated using a Monte Carlo procedure.  The iterative approach 
ensures that low value units will not be included in clusters of high values.  This 
prohibits the linking of two or more disjoint clusters as one, which is possible in 
the other approaches. 

Focused clustering methods 

Focused clustering tests start with a predetermined set of foci, and examine the 
likelihood that each of these foci is the center of a cluster.  Foci are most often 
represented as points, but they may also be linear or areal features.  The most 
common application of these tests is the examination of disease clusters in prox-
imity to a pollution source.  The null hypothesis is that disease risk is not elevated 
in proximity to the foci.  It bears repeating that the potential sources should be 
identified before the initiation of these focused tests.  If potential foci are selected 
based on their proximity to areas of raised incidence identified through cluster de-
tection procedures, the inference is biased toward rejection of the null hypothesis 
(Waller and Gotway 2004).  This is known as the ‘Texas sharpshooter fallacy.’  
The name comes from the Texan that shoots into the side of a barn and then paints 
a target centered on the hits so that it appears he is a sharpshooter. 
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The Lawson-Waller score test. Waller et al. (1992) and Lawson (1993) independ-
ently developed a score tests for focused clustering.  The global risk can be esti-
mated as the total number of cases, C, divided by the total population at risk, n.  
The resulting score statistic is a local version of Tango’s EET statistic.  The score 
statistic for a focus i is given as 
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where cj is the number of cases in unit j, nj is the population of unit j.  Here, the 
spatial weight can take a variety of forms.  A distance decay function depicts the 
setting where exposure decreases as distance to the foci increases.  A binary 
weight may also be used to indicate that all units within a given distance are ex-
periencing similar exposure.  Under the constant risk null hypothesis, the expected 
value of the statistic is zero.  The variance of Ti is  
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The standardized statistic 
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can then be compared to the standard normal distribution.  Monte Carlo tests may 
be more appropriate when there is a small number of regions or for a vary rare 
disease (Waller et al. 1992).  A method of determining the exact distribution of Ti 
is provided by Waller and Lawson (1995).  Rogerson (2005) defines both a global 
test and a local clustering statistic based on the score test. 

Other focused clustering tests. Stone (1988) developed a group of tests based 
on the first isotonic regression estimator.  This method assumes that the relation-
ship between exposure and risk is monotonic, but the relationship does not have to 
take a parametric form.  This flexibility is unique among focused clustering tests. 
Bithell (1995) provided a set of tests that are called linear risk score tests.  These 
tests are based on the notion of the relative risk function.  Under this alternative 
hypothesis, relative risk of disease declines as distance to the focus increases.  The 
test statistic is the sum of these estimated relative risk values.  This test is com-
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monly performed using the rank of distances to neighboring units.  In this case the 
risk becomes a function of relative location as opposed to exact location.  Tango 
(2002) provides an extended score test that allows for non-monotonic relative risk 
functions.  The extended score test would be most useful in the situation where 
exposure is expected to peak at some distance form the putative source. 

A focused clustering test for individual or point level data is provided by Dig-
gle (1990) and refined by Diggle and Rowlingson (1994).  This method can be ap-
plied to inhomogeneous point patterns when the locations of disease cases and a 
representative control group are known.  The method is flexible in terms of the 
functional form of the spatial risk, but the type of model must be specified.                    
The parameters of the kernel are estimated using non-linear binary regression.  
The regression framework allows for straightforward inclusion of covariates when 
they are available.  If the kernel function is log-linear or a step function, the model 
reduces to logistic regression (Diggle and Rowlingson 1994). 

B.4.4   Concluding remarks 

The choice of clustering method depends on several factors.  The first considera-
tion is whether the method is appropriate for the available data type.  Beyond this 
practical consideration it is of primary importance that the method evaluates an 
appropriate null and alternative hypotheses (Waller and Gotway 2004).  Some null 
hypotheses that have been mentioned are spatial randomization, constant risk, and 
random labeling.  Possible alternative hypotheses include variations of regional, 
local, or focused clustering.  Beyond these criteria, an analyst might consider the 
power of the test in choosing between appropriate methods.  In the case of spatial 
clustering, power refers to the probability of rejecting the null hypothesis given 
that the data have been generated under the alternative hypothesis.  Monte Carlo 
methods are useful in this regard, and can be used to generate data under a variety 
of hypotheses.  Kulldorff et al. (2003) developed a set of benchmark data, gener-
ated under a variety of alternative hypotheses, that can be used to evaluate and 
compare methods.  A later paper compares a large set of methods using the 
benchmark data (Song and Kulldorff 2003). The power of a test can also be af-
fected by the properties of the data and choice of parameters for clustering meth-
ods (Waller et al. 2006).  For example, the power can vary widely based on the 
choice of spatial weights (Song and Kulldorff 2005).  Takahashi and Tango (2006) 
provide a modified test for power that takes into account not only the ability to re-
ject the null hypothesis but also whether the detected clusters are of the correct 
size and in the proper location. A discussion on method choice and statistical 
power can be found in Waller and Gotway (2004). 

There was a time when, due to a lack of clustering methodologies, researchers 
could be excused for applying techniques without strict adherence to assumptions.  
For the most part,  this is no longer the case.  There are now  tools available to 
handle most data types and a variety of hypotheses.  The research in this field will 
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progress by improving existing methods and developing new ones.  These deve-
lopments combined with the rapid innovation in software for spatial data analysis, 
as covered in Part A of this handbook, will increase the utility of spatial clustering 
analysis as a research tool. 
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B.5    Spatial Filtering 

Daniel A. Griffith 

B.5.1  Introduction 

In spatial statistics and spatial econometrics, spatial filtering is a general methodo-
logy supporting more robust findings in data analytic work, and is based upon a 
posited linkage structure that ties together georeferenced data observations. Con-
structed mathematical operators are applied to decompose geographically struc-
tured noise from both trend and random noise in georeferenced data, enhancing 
analysis results with clearer visualization possibilities and sounder statistical in-
ference. In doing so, nearby/adjacent values are manipulated to help analyze at-
tribute values at a given location. Spatial filtering mathematically manipulates 
data in order to correct for potential distortions introduced by such factors as arbi-
trary scale, resolution and/or zonation (i.e., surface partitioning).  

The primary idea is that some spatial proxy variables extracted from a spatial 
relationship matrix are added as control variables to a model specification. The 
principal advantage of this methodology is that these control variables, which 
identify and isolate the stochastic spatial dependencies among georeferenced ob-
servations, allow model building to proceed as if these observations were inde-
pendent. 

Population counts data from the 2005 census of Peru, by district, for the 108 
districts forming the Cusco Department are presented here to empirically illustrate 
the various spatial filtering approaches; an ArcGIS shapefile furnishes area meas-
ures for these districts. Population density, which ranges from 0.8 to 11,512.8 per 
unit area here, tends to be skewed, with a natural lower bound of zero, and few 
areal units with relatively sizeable concentrations. Accordingly, analyses based 
upon the normal probability model require application of a Box-Cox power trans-
formation to better align the empirical population density frequency distribution 
with a bell-shaped curve; here the transformation is  
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This population density forms an elongated mound map pattern with a single peak. 
The highest density is in the city of Cusco, which has existed for more than 500 
years, with the next-highest densities stretching along an economic corridor 
formed by the Vilcanota River valley; the lowest densities are in the most rural 
areas of this Department. This population density tends to covary specifically with 
elevation variability, selevation. Here the Box-Cox transformation is  
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The bivariate correlation for these two transformed variables is –0.48345, which is 
statistically significant. 

(a) 

 

(b) 

 

Fig. B.5.1. Geographic distributions across the Cusco Department of Peru; magnitude is di-
rectly related to gray tone darkness. (a): transformed population density. (b): transformed 
elevation standard deviation 

The geographic distributions (see Table B.5.1 and Fig. B.5.1) of both transformed 
population density and elevation variability display moderate, positive, and statis-
tically significant spatial autocorrelation. 
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Table B.5.1. Transformed population density and elevation variability:  
spatial autocorrelation in terms of MC and GR 

Attribute MC zMC GR 

Y: population density 0.51461 8.85 0.41358 
X: elevation standard deviation 0.45545 7.98 0.46650 

Notes: MC denotes the Moran Coefficient, and GR denotes the Geary Ratio 

B.5.2   Types of spatial filtering 

A limited number of implementations of this methodology currently exist for geo-
referenced data analysis purposes, and include autoregressive linear operators (à 
la Cochrane-Orcutt type of prewhitening), Getis’s Gi-based specification (Getis 
1990, 1995), linear combinations of eigenvectors extracted from distance-based 
principal coordinates of neighboring matrices (PCNM; Borcard et al. 2002, 2004; 
Dray et al. 2006), and topology-based spatial weights matrix eigenfunctions (Grif-
fith 2000, 2002, 2003, 2004). The first of these is written in terms of a variance 
component, whereas the other three are written in terms of a mean response com-
ponent, allowing especially the last two to be incorporated into generalized linear 
model (GLM) specifications. 

One technical advantage of the latter three types of spatial filter is that prob-
ability density/mass function normalizing factors no longer are problematic. These 
constants ensure that the probability density/mass function integrates/sums to one. 
They are a function of the eigenvalues of matrix C for the normal probability 
model. They are intractable for the binomial and Poisson probability models, re-
quiring Markov Chain Monte Carlo (MCMC) techniques to calculate parameter 
estimates for these models. Another advantage is that the basis for the control vari-
ables does not change unless the spatial relationship matrix is changed. In other 
words, any attribute variables geographically distributed across a landscape tagged 
to the same geocoding scheme can be treated with the same spatial filtering. One 
disadvantage is that, for example, eigenfunctions may need to be extracted nu-
merically from perhaps very large n-by-n matrices. Fortunately, the asymptotic 
analytically eigenfunctions for a regular square tessellation forming a rectangular 
region (for example, a remotely sensed image) are known. 

Various studies (for example, Getis and Griffith 2002; Griffith and Peres-Neto 
2006) report that results obtained with these different spatial filter approaches es-
sentially are equivalent. 

Autoregressive linear operators 

Impulse-response function filtering of time series data predates a parallel approach 
for spatial filtering, and motivated the development of spatial autoregressive linear 
operators (Tobler 1975), whose error term is correlated with some response vari-
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able, Y. Consider the simultaneous spatial autoregressive (SAR) model specifica-
tion 

 

εC IXβY 1)( −−+= ρ  (B.5.3) 

 
where X is a n-by-(P+1) matrix of covariates, β is a (P+1)-by-1 vector of regres-
sion coefficients, ρ is a spatial autocorrelation parameter, n is the number of areal 
units, I is an n-by-n identity matrix, and C is a topology-based n-by-n geographic 
connectivity/weights matrix (for example, cij = 1 if areal units i and j are 
nearby/adjacent, and cij = 0 otherwise; cii = 0). Here these spatial filters take the 
matrix form (I –ρ C). The parameter ρ is estimated for Y (denoted ρ̂ , and then 
used in the two multiplications (I – ρ̂ C)Y, for the n-by-1 vector of response val-
ues, and (I – ρ̂ C)X, for the n-by-(p+1) vector of p covariates and intercept term.  

This spatial filter is almost always coupled with the normal probability model, 
and if properly specified, renders independent and identically distributed random 
error terms. Smoothing occurs in that each dataset value is rewritten as the differ-
ence between the observed value and a linear combination of neighboring values. 

The pure spatial autoregressive (SAR) maximum likelihood parameter esti-
mates for the transformed population density (pd) and elevation standard deviation 
(selevation) attribute variables are, respectively, 0.79164 and 0.77455. According to 
their corresponding pseudo-R2 calculations, positive spatial autocorrelation latent 
in the transformed population density variable accounts for roughly 60 percent, 
whereas that in the transformed selevation accounts for roughly 55 percent, of its 
geographic variability. The bivariate correlation coefficient calculated for the spa-
tially filtered variate pair, (I – 0.79164 W)Y and (I – 0.77455 W)X, where matrix 
W is the row-standardized version of matrix C, and both of which continue to con-
form closely to a normal distribution, decreases in absolute value to – 0.42070. Al-
though both variables have roughly the same level of positive spatial autocorrela-
tion, this decrease is rather modest because their map patterns are noticeably 
different (see Fig. B.5.1). 

Getis’s Gi specification 

This specification involves a multistep procedure exploiting Ripley’s second-order 
statistic or the range of a geostatistical semivariogram model coupled with the 
Getis-Ord (1992) Gi statistic, and converts each spatially autocorrelated variable 
into a pair of synthetic variates, one capturing spatial dependencies and one cap-
turing non-spatial systematic and random effects. Regressing a response variable 
on the set of constructed spatial and a-spatial variates allows geographically struc-
tured noise to be separated from trend and random noise in georeferenced data. 
But it is restricted to non-negative random variables having a natural origin. 
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The primary pair of equations is given by 
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and 
 

yL =Y Y∗−  (B.5.5) 

 
where d denotes distance separating location j from location i, the denominator is 
Gi(d), the numerator is E[Gi(d)], Y* is the a-spatial variable realization, and Ly is 
the spatial variable. Distance d is selected such that Gi(d), which initially tends to 
increase with increasing distance, begins to decrease. 

Figure B.5.2(a) displays the areal unit centroids for the Cusco region. Figure 
B.5.2(b) indicates that a 3-parameter gamma distribution (parameter estimates: 
shape = 0.7533, scale = 0.6984, and threshold = 0.0297) furnishes a good descrip-
tion of the set of distances. Figure B.5.2(c) illustrates the concavity of the Eq. 
(B.5.4) trajectories across the distance range of [0, 3.996]. Of note is that some 
trajectories encounter local peaks that are not global peaks. The number of geo-
graphic connections used for the transformed population density Gi(d) is 3,262, 
whereas that for the transformed elevation standard deviation is 4,787; in contrast, 
the number of connections in matrix C is 570. 

Figure B.5.3 portrays the maps of the synthetic spatial variates given by Eq. 
(B.5.5). The correlation between the two a-spatial synthetic variates is –0.20744, 
indicating that spatial autocorrelation dramatically inflates the observed coeffi-
cient. The regression equations may be written as follows: 

 

Y = a + b1 Ly + b2  X
* + b3 Lx + e. (B.5.6) 

 
The variance in Y, the transformed population density, is accounted for as follows: 
11.41 percent by Ly, the synthetic spatial variate; 15.39 percent by X*, the syn-
thetic a-spatial covariate; and, 6.46 percent by Lx, the synthetic spatial covariate. 
Moderate multicollinearity is present in this model specification, but with virtually 
no impact of the regression coefficient variance inflation factors (VIFs). 
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(b)  (a) 

 

(c) 

 
Fig. B.5.2. The Cusco Department of Peru:  
(a) geographic distribution of areal unit centroids; (b) a three-parameter gamma distribution 
description of the di values for Gi(d) – the black line denotes the empirical, and the gray 
line denotes the theoretical, cumulative distribution function (CDF); (c) four selected areal 
unit trajectories for identifying the di values for transformed population density – solid 
black circle denotes the smallest di, black asterisk denotes the largest di, and gray circles 
denote median dis 

(a) 

 

(b) 

 

Fig. B.5.3. Geographic distributions across the Cusco Department of Peru of Gi(d)-based 
spatial variates; magnitude is directly related to gray tone darkness:  (a) extracted from the 
transformed  population density;  (b)  extracted  from the transformed elevation standard 
deviation 
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Linear combinations of distance matrix-based eigenvectors 

Dray et al. (2006) specify the PCNM transformation procedure that depends on 
mathematical expressions, known as eigenfunctions, of a truncated inter-location 
distance matrix, where the truncation value is the maximum distance that main-
tains all sampling units being connected using a minimum spanning tree. The 
PCNM specification relates to semivariogram modeling. Distance-based eigenvec-
tor maps with large eigenvalues (that is, strong positive spatial autocorrelation) 
tend to have only a few large clusters of values on a map and represent global 
trends [for example, Fig. B.5.4(b)]. Eigenvectors with intermediate size eigenval-
ues tend to have a number of moderate-sized clusters of values on a map and rep-
resent regional trends [for example, Fig. B.5.4(c) and Fig. B.5.4(d)]. And, eigen-
vectors with small eigenvalues tend to have numerous small clusters of values on 
a map and represent patchiness and hence more local trends across a landscape 
[for example, Fig. B.5.4(e)]. Moreover, distance-based eigenvector maps capture a 
range of geographic scales encapsulated in a given georeferenced dataset, portray-
ing increasing fragmentation as the corresponding eigenvalues decrease in magni-
tude. 

This specification utilizes eigenvectors extracted from the modified geo-
graphic weights matrix (I – 11T / n) W (I – 11T / n) where 1 is an n-by-1 vector of 
ones, and T denotes the matrix transpose operation. The elements of the n-by-n 
geographic weights matrix W are defined as follows: 
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where t is the maximum distance for a minimum spanning tree connecting all n lo-
cations (for example, Fig. B.5.4(a)). Here the great circle distance value for t is  
16.022 km. 

The eigenvalues associated with the PCNM eigenvectors do not have a simple 
relationship with their affiliated MCs (see Table B.5.1); some non-zero eigen-
values even represent weak negative spatial autocorrelation. Employing an ad-
justed value  of   MC/MCmax   > 0.25,   where  MCmax  denotes  the  maximum  MC 
value, reduces the candidate set of eigenvectors for constructing PCNM spatial fil-
ters to 15 (that is, eigenvectors E1 to E12, E14, E16 and E17). The spatial autocorre-
lation contained in a response variable Y may be described with these eigenvectors 
as follows 
 

Y = Yμ 1 + k kE β  + Yε  (B.5.8) 
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where Ek is an n-by-K matrix of selected eigenvectors (using stepwise regression 
techniques), Yμ  is the mean of variable Y (because all of the eigenvectors have a 
mean of zero), kβ  is a K-by-1 vector of regression coefficients, and Yε  is a ran-
dom error term that is iid N(0, 2

εσ ). For transformed population density in the 
Cusco Department, Eq. (B.5.8) contains seven eigenvectors that account for 52.42 
percent of its geographic variation. The zMC (z-score for the MC under a null hy-
pothesis of zero spatial autocorrelation) value decreases from 8.79 to 2.83, and re-
siduals continue to mimic a normal distribution, with MC = 0.76944 (GR = 
0.25051) for the spatial filter. 

  
 

(b) 

 

(c) 

 

(a) 
 

 

(d) 

 

(e) 

 

Fig. B.5.4. The Cusco Department of Peru; magnitude in the choropleth maps is directly re-
lated to gray tone darkness: (a) the minimum spanning tree connecting the areal unit cen-
troids; (b) E1, MC/MCmax = 1; (c) E3, MC/MCmax = 0.78; (d) E9, MC/MCmax = 0.52; (e): E14, 
MC/MCmax = 0.25 

The correlation between the two sets of residuals for Eq. (B.5.8), after the respec-
tive spatial filters have been subtracted from transformed population density and 
transformed selevation, is –0.39203, indicating that spatial autocorrelation dramati-
cally inflates the observed bivariate correlation coefficient. This inflation prima-
rily  is  attributable  to  the  three   common  eigenvectors,   whose  correlation is  
–0.91928; but it is suppressed by the presence of two sets of unique eigenvectors, 
whose correlations are exactly zero. 
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Table B.5.2. Spatial autocorrelation contained in the 30 PCNM eigenvectors with non-zero    
eigenvalues 

Eigenvalue      MC      GR Eigenvalue MC GR 
6.757698 0.879567 0.199937 1.115993 0.255954 0.644689 
5.387761 0.830660 0.257939 0.986066 0.246825 0.870757 
4.428140 0.683353 0.326650 0.968562 0.192463 0.462175 
3.891251 0.687340 0.395729 0.890959 0.168454 0.909110 
3.390504 0.586984 0.444859 0.779474 0.098354 1.126354 
2.960842 0.611523 0.439971 0.714815 0.151115 0.818756 
2.796129 0.523140 0.534097 0.664565 –0.034844 1.188295 
2.389961 0.350517 0.691055 0.578630 –0.109281 1.295845 
2.285282 0.458341 0.611829 0.540622 0.045193 1.032415 
2.176693 0.495837 0.470299 0.386237 0.003223 0.917556 
1.932853 0.407144 0.637691 0.291445 –0.127027 1.275769 
1.467388 0.355678 0.725449 0.228748 –0.025737 1.200260 
1.359360 0.196455 0.720122 0.213037 –0.036185 1.254641 
1.345400 0.220722 0.719404 0.158005 0.043036 1.033882 
1.164052 0.209691 0.768738 0.083016 –0.067713 1.261137 

Linear combinations of topological matrix-based eigenvectors 

This specification (see Tiefelsdorf and Griffith 2007) is a transformation proce-
dure that also depends on eigenvectors extracted from the adjusted geographic 
weights matrix  (I – 11T / n) C (I – 11T / n), a term appearing in the numerator of 
the MC spatial autocorrelation index. This decomposition also could be based 
upon the GR index, and rests on the following property: the first eigenvector, say 
E1, is the set of real values that has the largest MC achievable by any set for the 
spatial arrangement defined by the geographic connectivity matrix C; the second 
eigenvector is the set of real values that has the largest achievable MC by any set 
that is uncorrelated with E1; the third eigenvector is the third such set of real val-
ues; and so on through En, the set of real values that has the largest negative MC 
achievable by any set that is uncorrelated with the preceding (n–1) eigenvectors. 
As such, these eigenvectors furnish distinct map pattern descriptions of latent spa-
tial autocorrelation in georeferenced variables, because they are both orthogonal 
and uncorrelated. Their corresponding eigenvalues, which can be easily converted 
to MC values, index the nature and degree of spatial autocorrelation portrayed by 
each eigenvector.  

As with PCNM, the resulting spatial filter is constructed from some linear 
combination of a subset of these eigenvectors. The candidate set can begin with all 
eigenvectors portraying the same nature (that is, positive or negative) of spatial 
autocorrelation as is measured in a response variable. Next, those eigenvectors 
representing inconsequential levels of spatial autocorrelation (that is, with very 
small eigenvalues) should be removed from this candidate set. Finally, a stepwise 
regression procedure can be used to select those eigenvectors that account for the 
spatial autocorrelation in the response variable. This stepwise selection can be 
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based upon, say, the conventional R2-maximiation criterion, or a residual MC 
minimization criterion. 

In practice, this spatial filter specification replaces the autoregressive spatial 
filter with its eigenfunction counterpart, and its single autoregressive parameter 
with a set of parameter estimates, one for each eigenvector, removing those from 
the model whose estimates essentially are zero. 

Table B.5.3. Eigenvector spatial filter regression results using a 10 percent level of signifi-
cance selection criterion 

Population density (Y) and elevation standard deviation (X), 
for the Cusco Department, Peru (n = 108) Component 

Transformed Y Transformed X 

Common eigenvectors  R2 = 0.4645 R2 = 0.5189 
Unique eigenvectors  R2 = 0.1543 R2 = 0.0565 
All selected eigenvectors R2 = 0.6188 R2 = 0.5753 
Residual MC zMC ≈  –0.23 zMC ≈  –0.19 
Shapiro-Wilk (S-W) statistic 0.987 (prob = 0.393) 0.986 (prob = 0.313) 
MC for spatial filters 0.4719 0.4019 

Spatial filters were constructed for the two Cusco transformed attribute variables, 
where the candidate eigenvector set was restricted to those 24 vectors portraying 
positive spatial autocorrelation and having a MC/MCmax > 0.25; the maximum 
possible MC value for Cusco’s topological surface partitioning, MCmax, is 1.09315, 
the MC value for the principal eigenvector. The resulting spatial filters appear in 
Fig. B.5.5, each portraying strong positive spatial autocorrelation, and each 
closely reflecting its parent map (see Fig. B.5.1). Summary measures for them are 
reported in Table B.5.2. The bivariate correlation coefficient between (X – FX) and 
(Y – FY), where Fj denotes the spatial filter for variable j, and both of which con-
tinue to  conform  closely to a  normal distribution, decreases in absolute value to 
–0.42688. Here spatial autocorrelation roughly accounts for, respectively, 62 per-
cent and  58 percent  of the geographic  variability in  these transformed attribute 
variables. The filtered residuals contain negligible spatial autocorrelation. Al-
though both variables have roughly the same level of positive spatial autocorrela-
tion, the correlation coefficient decrease is rather modest because their map pat-
terns are noticeably different: their spatial filters have nine eigenvectors in 
common, and seven that are specific to one or the other of them. The decomposi-
tions highlighted here may be written as 

 

Y = Yμ 1 + 
Ycc βE  + 

YY uu βE  + Yε  (B.5.9) 

 

X = Xμ 1 + 
Xc cE β  + 

XX uu βE  + Xε  (B.5.10)
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where E is an n-by-H matrix for X and an n-by-K matrix for Y (with H and K not 
necessarily equal) of selected eigenvectors, subscripts c and u respectively denote 
common and unique sets of eigenvectors, β  is a vector of regression coefficients, 
and Yε  and Xε  respectively are the iid N (0, 2

jε
σ ), j = X or Y, a-spatial variates 

for variables X and Y. As with PCNM, the linear combinations of eigenvectors are 
the spatial filters. 

(a) 

 

(b) 

 

Fig. B.5.5. Typology-based spatial filters for the Cusco Department of Peru; eigenvector 
values are directly related to gray tone darkness: (a) for transformed population density; (b) 
for transformed elevation standard deviation 

Now the bivariate correlation coefficient can be rewritten as the following 
weighted combination of different correlation coefficients, where the weights are 
the square roots of relative variance term products (see Table B.5.2) 
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where resid denotes the residuals, R2 is a linear regression multiple correlation co-
efficient, and the subscripts X and Y denote with which variable a term is associ-
ated. The zero correlation arises because the unique sets of eigenvectors are or-
thogonal and uncorrelated. Substituting the corresponding Cusco case study values 
into this equation (see Table B.5.1; some rounding error is present) yields 

–0.48345 = – 0.43904 )0.57530.6188)(11( −− – 0.60486 .5189)(0.4645)(0  

                   – 0.10384 ).575300.1543)(1( −  + 0.11396 (1 0.6188)(0.0565)−  

                   + 0 .0565)(0.1543)(0 . 

This decomposition equation like that for PCNM, emphasizes that common eigen-
vectors tend to increase the magnitude of a correlation coefficient, whereas unique 
eigenvectors tend to suppress it. 

B.5.3  Eigenfunction spatial filtering and generalized 
linear models 

A spatial filter can be constructed for GLM specifications again using a stepwise 
selection technique. By doing so, MCMC techniques can be avoided when esti-
mating model parameters in the presence of spatial autocorrelation; rather, stan-
dard GLM procedures can be used. 

Because population is a count variable, it can be treated as a Poisson random 
variable, and the area variable in the denominator of a population density can be 
converted to a GLM offset variable (that is, its coefficient is set to one and not es-
timated) by including its logarithm as a special covariate (that is, an offset) in a 
model specification. For the Cusco Departmental data, the GLM estimation, in-
cluding log(selevation) as a covariate, yields the spatial filter appearing in Fig. B.5.6, 
whose MC = 0.86030 (zMC = 14.94) and GR = 0.31022. This spatial filter has nine 
eigenvectors, six of which are contained in the set of eleven for the corresponding 
normal-approximation spatial filter. Including the previously specified trans-
formed selevation as a covariate in the normal approximation specification increases 
its R2 to 0.6821. Switching to the correct probability function here results in a 
more parsimonious model whose predicted values better align with actual popula-
tion density across the entire range of density values [see Fig. B.5.6(b) and Fig. 
B.5.6(c)]. 
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(b) 

 

 (a) 

 

(c) 

 

Fig. B.5.6. Generalized linear model (GLM) results: (a) the population density GLM spatial 
filter; eigenvector values are directly related to gray tone darkness; (b) scatterplot of the 
predicted versus the observed pd; (c) scatterplot of the predicted versus the observed pd 
with the four largest values set aside. The solid black line denotes observed pd, open circles 
denote GLM-predicted pd, and asterisks denote back-transformed normal approximation 
predicted pd 

B.5.4  Eigenfunction spatial filtering and geographically 
weighted regression 

Eigenfunction spatial filters allow geographically varying coefficient models to be 
specified, along the lines of geographically weighted regression (GWR). Interac-
tion terms can be created by multiplying each variable in a set of covariates by 
each eigenvector in a candidate set. In other words, these interaction variates are 
cross-products of each synthetic spatial variate and each covariate. Again stepwise 
regression can be used to select the relevant variables. The stepwise procedures 
can be used to select from the candidate eigenvector set (which relates to the inter-
cept term), the set of covariates, and the set of interaction terms. Once the subset 
has been identified, it can be grouped into sets having a common covariate so that 
this covariate can be factored from each set. What remains for each set is a linear 
combination of the synthetic spatial variates used to construct a cross-product, 
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which when added together constitutes geographically varying coefficients. The 
affiliated equation may be written as follows: 

 

Y = f( Yμ 1 + E1 β 1 + X  Ex β x )) (B.5.12)

 
where f denotes some function (for example, the natural antilogarithm, e, for the 
Poisson probability model), the subscript 1 denotes the eigenvector and the regres-
sion coefficient associated with the intercept term, the subscript X denotes eigen-
vectors and their regression coefficients associated with the slope coefficient,    
and  denotes the Hammard matrix product (that is, element-by-element matrix 
multiplication). 

 (a) 

 

(b) 

 

Fig. B.5.7. Geographically varying coefficients for the GLM population density model;  
coefficient magnitudes are directly related to gray tone darkness: (a) spatially varying  
intercept term; (b) spatially varying slope coefficient 

Consider the preceding GLM model describing population density across the 
Cusco Department. The geographically varying intercept can be rewritten as 
 

8.8834 – 4.7838 E1 – 4.3226 E3 + 48.3641 E4 + 1.8258 E6 – 2.0448 E12 + 

2.1773 E13 – 2.7006 E14 – 1.6251 E16 – 1.7334 E19 .  

 
Meanwhile, the geographically varying slope coefficient can be rewritten as  

 
–0.9446 – 8.7899 E4 – 0.3106 E10 – 0.4664 E11 + 0.7628 E15 . 
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This is the term that is factored from the set of cross-product terms (i.e., each ei-
genvector multiplied by selevation); each element of this term is multiplied by its cor-
responding log(selevation) value. The geographic distributions of the spatially vary-
ing coefficients appear in Fig. B.5.7. Because eigenvector E4 is common to both 
coefficient expressions, and it dominates the intercept term, the correlation be-
tween these two geographically varying coefficients is very high (–0.98036). Be-
cause each of the eigenvectors has a mean of zero, these two geographically vary-
ing coefficients are centered on their respective global values [that is, the intercept 
constant, and the slope coefficient for log(selevation), itself]. Furthermore, because 
the coefficient variability is a function of the eigenvectors, these geographically 
varying coefficients contain (as well as account for) spatial autocorrelation in the 
response variable Y. 

Table B.5.4. Geographically varying coefficients: spatial autocorrelation  
in terms of MC and GR  

Coefficient MC zMC GR 
Intercept 0.92345 16.02 0.22664 
Log(selevation) slope 0.92090 15.98 0.23104 

Notes: MC denotes the Moran Coefficient, and GR denotes the Geary Ratio 

Each coefficient contains statistically significant, weak positive spatial autocorre-
lation. 

B.5.5  Eigenfunction spatial filtering and geographical 
interpolation 

Spatial interpolation is a problem frequently encountered in spatial analysis. Its so-
lution exploits spatial autocorrelation in order to predict an unknown value at 
some location from known values at nearby locations. The redundant information 
interpretation of spatial autocorrelation, which relates to the amount of geographic 
variance it accounts for within an attribute variable, supports this interpolation. 

The best imputation of a missing response value is its expected value given a 
set of available data. In other words, it equals the prediction equation estimated 
with a set of observed data. This value can be calculated by inserting a binary in-
dicator variable into a regression equation, where this variable is assigned a value 
of minus one for the single observation with a missing response value, and a zero 
for all other observations. The regression coefficient calculated for this indicator 
variable is an imputation. For a Poisson model specification, this requires the 
missing response variable value to be replaced with a one  
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Imputed values for population density across the Cusco Department were calcu-
lated and are portrayed in Fig. B.5.8. The expected values were computed with the 
covariate log(selevation) coupled with a spatial filter. Of note is that Fig. B.5.8(a) is 
very similar to Fig. B.5.6(b); more variability appears here because each density 
value is not used in the calculation of the GLM, increasing the uncertainty in its 
prediction. Nevertheless, given their alignment with the ideal line in Fig. B.5.8, 
the imputed values obtained here appear to be reasonable. 

 (a) 

 

(b) 

 

Fig. B.5.8. Generalized linear model (GLM) imputation results: (a) scatterplot of the im-
puted versus the observed population densities (pd); (b) scatterplot of the imputed versus 
the observed population densities (pd) with the four largest values set aside. The solid black 
line denotes observed pd, and the open circle denotes GLM-imputed pd 

B.5.6  Eigenfunction spatial filtering and spatial 
interaction data 

Recent work has returned attention to the role spatial autocorrelation plays in the 
estimation of model parameters describing spatial interaction data. LeSage and 
Pace (2008) propose a formulation that is autoregressive-based, and relates to the 
autoregressive linear operator spatial filter. Fischer and Griffith (2008) compare 
this autoregressive linear operator specification with an eigenfunction spatial filter 
specification. One finding is that the spatial autocorrelation involved transcends 
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that latent in attribute variables representing characteristics of origins/destinations.  
Rather, the spatial autocorrelation relates to flows leaving nearby origins and ar-
riving in nearby destinations. This conceptualization is reminiscent of the hierar-
chical component affiliated with geographic diffusion. This topic is at the research 
frontiers of spatial filtering work. 

B.5.7  Concluding remarks 

Spatial filtering methodology seeks to account for spatial autocorrelation in geo-
referenced data in a way that enables conventional statistical estimation techniques 
to be exploited. It also allows impacts of spatial autocorrelation to be uncovered in 
a more data analytic manner. Two geographically distributed attribute variables 
for the Cusco Department of Peru – 2005 population density and elevation varia-
tion – are used here to illustrate this contention, with special reference to their 
bivariate correlation coefficient. The naive correlation coefficient is –0.48345. Ad-
justing this value for the presence of positive spatial autocorrelation results in a 
decrease in its absolute value; in other words, positive spatial autocorrelation tends 
to inflate correlation coefficients. But this reduction is a function of the spatial fil-
ter specification  employed. The autoregressive linear operator, PCNM, and eigen-
function  spatial  filtering  results  are very  comparable.  They  are,  respectively, 
–0.42070, –0.39203, and –0.43904. This finding is not surprising, because all 
three of these methodologies share a common mathematical foundation. In con-
trast, the Gi(d)-based spatial filtering yields a value of –0.20744. Part of its devia-
tion from the other three results may well be attributable to its more restrictive as-
sumptions. 

Spatial filtering can be employed not only with the normal probability model, 
but also with the entire family of probability models affiliated with generalized 
linear models. It also supports spatial interpolation, and offers a vehicle for ad-
dressing spatial autocorrelation in geographic flows data. 
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B.6  The Variogram and Kriging 

Margaret A. Oliver 

B.6.1  Introduction 

Spatial statistics and geostatistics have developed to describe and analyze the 
variation in both natural and man-made phenomena on, above or below the land 
surface.  Spatial statistics includes any of the formal techniques that study entities 
that have a spatial index (Cressie 1993). Geostatistics is embraced by this general 
umbrella term, but originally it was more specifically concerned with processes 
that vary continuously, i.e. have a continuous spatial index. The term geostatistics 
applies essentially to a specific set of models and techniques developed largely by 
Matheron (1963) in the 1960s to evaluate recoverable reserves for the mining in-
dustry. These ideas had arisen previously in other fields; they have a long history 
stretching back to Mercer and Hall (1911), Youden and Mehlich (1937), Kolmo-
gorov (1941), Gandin (1965), Matérn (1960) and Krige (1966). Geostatistics has 
since been applied in many different fields, such as agriculture, fisheries, hydrol-
ogy, geology, meteorology, petroleum, remote sensing, soil science and so on. In 
most of these fields the data are fragmentary and often sparse, therefore there is a 
need to predict from them as precisely as possible at places where they have not 
been measured. This chapter covers two of the principle techniques of geostatistics 
that solve this need for prediction; the variogram and kriging.  

B.6.2   The theory of geostatistics 

A brief summary only is given here of the theory that underpins geostatistics (for 
more detail see Journel and Huijbregts, 1978; Goovaerts, 1997; Webster and 
Oliver 2007). Most spatial properties vary in such a complex way that the varia-
tion cannot be defined deterministically. To deal with this spatial uncertainty a dif-
ferent approach from the traditional deterministic methods of spatial analysis was 
required that relies on a stochastic or probabilistic approach. The basis of modern 
geostatistics is to treat the variable of interest as a random variable. This implies 
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that at each point x in space there is a series of values for a property, Z(x), and the 
one observed, z(x), is drawn at random according to some law, from some prob-
ability distribution. At x, a property Z(x) is a random variable with a mean, μ and 
variance, σ2. The set of random variables, Z(x1), Z(x2), …, is a random process, 
and the actual value of Z observed is just one of potentially any number of realiza-
tions of the random process. In classical statistics this set of observed values, the 
realization, is the population. 

To define the variation of the underlying random process, we can take into ac-
count the fact that the values of regionalized variables at places near to one an-
other tend to be related. As well as estimating the mean and variance of the prop-
erty, we can also estimate the spatial covariance to describe this relation between 
pairs of points. The covariance for the random variables is given by 

 
)}]()({)}()([{)( 221121 xxZxxZE,xxC μμ −−=  (B.6.1) 

 
where μ(x1) and μ(x2) are the means of Z at x1 and x2, and E denotes the expected 
value. This solution is unavailable, however, because the means are unknown as 
there is only ever one realization of Z at each point. To proceed we have to invoke 
assumptions of stationarity.  

Stationarity 

Under the assumptions of stationarity certain attributes of the random process are 
the same everywhere. We assume that the mean, μ = E[Z(x)], is constant for all x, 
and so μ(x1) and μ(x2) can be replaced by μ, which can be estimated by repetitive 
sampling. When x1 and x2 coincide, Eq. (B.6.1) defines the variance (or the a pri-
ori variance of the process), σ ² = E [{Z(x) – µ}²], which is assumed to be finite 
and, as for the mean, the same everywhere. When x1 and x2 do not coincide, their 
covariance depends on their separation and not on their absolute positions, and 
this applies to any pair of points xi, xj separated by the lag h = xi – xj (a vector in 
both distance and direction), so that 

 
)(])}({)}({[}])({})({[)( 2 hChxZxZExZxZExxC jiji =−+=−−= μμμ  (B.6.2) 

 
which is also constant for a given h. This constancy of the first and second mo-
ments of the process constitutes second-order or weak stationarity. Equation 
(B.6.2) indicates that the covariance is a function of the lag and it describes quan-
titatively the dependence between values of Z with changing separation or lag dis-
tance. The autocovariance depends on the scale on which Z is measured; therefore, 
it is often converted to the dimensionless autocorrelation by 

 



B.6     The variogram and kriging      321 

)0()()( ChCh =ρ  (B.6.3) 
 
where 2)0( σ=C is the covariance at lag zero.  

Intrinsic variation and the variogram 

The mean often appears to change across a region and then the variance will ap-
pear to increase indefinitely as the extent of the area increases. The covariance 
cannot be defined because there is no value for μ to insert into Eq. (B.6.2). This is 
a departure from weak stationarity. Matheron’s (1965) solution to this was the 
weaker intrinsic hypothesis of geostatistics. Although the general mean might not 
be constant, it would be for small lag distances and so the expected differences 
would be zero as follows:  
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and the expected squared differences for those lags define their variances  
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The quantity γ(h) is known as the semivariance at lag h, or the variance per point 
when points are considered in pairs. As for the covariance, the semivariance de-
pends only on the lag and not on the absolute positions of the data. As a function 
of h, γ (h) is the semivariogram or more usually the variogram.  

If the process Z (x) is second-order stationary, the semivariance and covari-
ance are equivalent: 
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However, if the process is intrinsic only there is no equivalence because the co-
variance function does not exist. The variogram is valid, however, and therefore it 
can be applied more widely than the covariance function. This makes the 
variogram a valuable tool and as a consequence it has become the cornerstone of 
geostatistics.  

B.6.3  Estimating the variogram 

This section describes two methods for estimating the variogram from data, 
Matheron’s method of moments and the residual maximum likelihood (REML) 
method, together with the main features that variograms are likely to have.   
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L

The method of moments estimator 

The empirical semivariances can be estimated from data,  z(x1), z(x2), …, by  
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where z(xi) and z(xi+h) are the actual values of Z at places (xi) and (xi+h), and m(h) 
is the number of paired comparisons at lag h. By changing h, an ordered set of 
semivariances is obtained; these constitute the experimental or sample variogram. 
Equation (B.6.7) is the usual formula for computing semivariances; it is often re-
ferred to as Matheron’s method of moments (MoM) estimator. The way that this 
equation is implemented as an algorithm depends on the configuration of the data. 
For a regular transect the lag becomes a scalar, h = |h|, for which the semivari-
ances can be computed only at integral multiples of the sampling interval. The 
number of paired comparisons decreases one at a time as the lag interval is in-
creased. The maximum lag should be set to no more than a third of the length of 
the transect.  For a regular grid, semivariances can be calculated along the rows 
and columns of the grid and the lag increment is the grid interval. For irregularly 
sampled data in one or more dimensions, or to compute the omnidirectional 
variogram of data on a regular grid, the separations between pairs of points are 
placed into bins with limits in both separating distance and direction, Fig. B.6.1. In 
this figure, 0L is the nominal lag interval of length h, w is the width of the bin, 
α /2 is the angular tolerance and θ is one of a set of directions. To calculate the 
variogram over all directions, the omnidirectional variogram, α /2 is set to 180º 
and θ is set to zero. 

 

 
Fig. B.6.1. Discretization of the lag into bins for irregularly scattered data 

         x1 

x2 

α/2 

θ 
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The choice of narrow bins tends to give rise to erratic variograms, whereas wide 
bins tend to smooth and result in a loss of detail. You can see the effect of this in 
Fig. B.6.4. For a grid, it is usual to choose the grid interval as the nominal lag in-
terval and for irregularly scattered data, the average distance between sampling 
points.  

Webster and Oliver (1992) have shown that at least 100 sampling points are 
required to estimate the MoM variogram reliably. For many situations these are 
more data than can be afforded, for example where the costs of sampling and or 
sample analysis are considerable. In other situations this sample size might result 
in a closer  sample  spacing  than  is  needed  to  resolve  the variation  adequately; 
this occurs where the property of interest has a large scale of spatial variation rela-
tive to the  extent  of the  study area.  This  would result in  over-sampling and  a 
waste of resources. Pardo-Igúzquiza (1997) suggested the maximum likelihood 
(ML) approach as an alternative to Matheron’s estimator. He also suggested that 
where the number of data is relatively small (a few dozen), the ML variogram es-
timator offers an alternative that gives an estimate of the variogram parameters 
and of their uncertainty (Pardo-Igúzquiza 1998, pp. 462-464).  

The residual maximum likelihood (REML) variogram estimator  

By contrast to the MoM approach, the ML methods are parametric and they also 
assume that the process, Z, is second-order stationary. Following the notation of 
Kerry and Oliver (2007), it is assumed that the data, z(xi), i = 1, …, n, a realization 
of this process, follow a multivariate Gaussian distribution with the joint probabil-
ity density function (pdf) of the measurements defined by 
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where z is a vector that contains the n data, θ  contains the parameters of the co-
variance matrix, V  is the n-by-n variance-covariance matrix, and Xβ represents 
the trend. The matrix V can be factorized as 

 

V = σ 2A (B.6.9) 

 

where σ 2 is the variance and A is the autocorrelation matrix. The pdf can then be 
rewritten as 
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where θ  is the set of covariance parameters excluding the variance. The parame-
ters, β, σ2, θ, are estimated in such a way that they minimize the negative log-
likelihood function given by 
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In the ML approach the drift parameter, β, is estimated at the same time as the set 
of covariance parameters.  

Simultaneous estimation of the trend and covariance parameters in the ML 
approach results in biased covariance parameter estimates (Matheron 1971; Ki-
tanidis and Lane 1985). Residual maximum likelihood (REML) developed by Pat-
terson and Thompson (1971) avoids this problem because instead of working with 
the original data, it uses linear combinations of the data. These latter, known as 
generalized increments, filter out the trend. The generalized increments, g, can be 
represented as  

 
g = Λ z (B.6.12) 

 

where the matrix Λ is derived from the projection matrix 

 
P = I – X(XTX)–1XT (B.6.13) 

 

by dropping p rows in Λ because there are p generalized increments that are line-
arly dependent on others (Kitanidis 1983). The matrix P has the property that  

 

PX = 0 (B.6.14) 
 
then 
 

Pz = PXβ + Pe = Pe (B.6.15) 
 

which filters out the trend regardless of what the coefficients β are. The e are the 
residuals. Then 

 
E(g) = 0 (B.6.16) 

 
and 

 
E(g gT) = ΛVΛT. (B.6.17) 
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The increments, g, are assumed to be Gaussian and the covariance parameters are 
estimated by minimization of the negative log-likelihood function (NLLF), given 
by 
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The covariance parameters, θ, can include the nugget variance (see below for the 
definition), long- and short-range distance components for isotropic and anisot-
ropic situations, together with the anisotropy ratio for the latter. Pardo-Igúzquiza’s 
(1997)  MLREML  program  computes these parameters for three covariance 
models, the spherical, exponential and Gaussian.  

For both the ML and REML approaches there is no experimental variogram, 
and as a consequence there is no smoothing of the spatial structure because there 
is no ad hoc definition of lag classes (bins). This is particularly advantageous for 
irregularly spaced data. 

Features of the variogram 

Continuity. Most environmental variables are continuous, therefore we should ex-
pect γ(h) to pass through the origin at h = 0 [Fig. B.6.2(a)]. In practice, however, 
the variogram often appears to approach the ordinate at some positive value as h 
approaches zero, Fig. B.6.2(b), which suggests that the process is discontinuous. 
This discrepancy is known as the nugget variance. For properties that vary con-
tinuously the nugget variance usually includes some measurement error, but 
mostly comprises variation that occurs over distances less than the shortest sam-
pling interval. Figure B.6.2(c) is a pure nugget variogram which usually indicates 
that the sampling interval is too large to resolve the variation present. 

Monotonic increasing. Figure B.6.2(a) and (b) shows that the semivariance in-
creases with increasing lag distance. This indicates that at short distances the val-
ues of the Z(x) are similar, but as the lag distance increases they become increas-
ingly dissimilar on average. The monotonic increasing slope indicates that the 
process is spatially dependent.  

Sill and range. Figure B.6.2(b) shows a variogram that reaches an upper bound af-
ter the initial slope; this bound is known as the sill variance. It is the a priori vari-
ance, σ2, of the process. A bounded variogram describes a process that is second-
order stationary. The distance at which the variogram reaches its sill is the range, 
i.e. the range of spatial dependence. Places further apart than the range are spa-
tially independent, Fig. B.6.2(b).  
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Hole effect and periodicity.  The variogram may decrease from its maximum to a 
local minimum and then increase again.  This maximum is equivalent to a mini-
mum in the covariance function in which it appears as a ‘hole’.  It suggests fairly 
regular repetition in the process. A variogram that fluctuates in a periodic way 
with increasing lag distance indicates greater regularity of repetition.   
 
 
    (a)                                            (b)                                       (c) 

 
Fig. B.6.2. Three idealized variogram forms: (a) unbounded; (b) bounded; and (c) is the 
spatially correlated component [c0 is nugget variance, a is the range of spatial dependence, c 
+ c0 is the sill variance, and c pure nugget] 
 

Unbounded variogram.  If the variogram increases indefinitely with increasing lag 
distance as in Fig. B.6.2(a), the process is intrinsic only.  

Anisotropy.  Spatial variation might not be the same in all directions. To explore 
data for any anisotropy, i.e. directional variation, the variogram must be computed 
in at least three directions. For a regular grid, it is usual to compute the variogram 
along the rows, columns and the principal diagonals. If there are four directions, 
start by setting the angular discretization to 22.5º, for example, and this angle can 
be decreased if there appears to be anisotropy. If the initial gradient or range of the 
variogram changes with direction and a simple transformation of the coordinates 
will remove it, then this is known as geometric anisotropy. An example of this is 
given in Fig. B.6.5 later in the case study; it shows the variogram of pH at 
Broom’s Barn Farm computed in four directions from data on a regular grid. If the 
sill variance fluctuates with changes in direction, this might indicate the presence 
of preferentially orientated zones with different means. This is known as zonal 
anisotropy. It can sometimes be dealt with by stratifying the area of interest and 
then computing the variogram from the residuals of the class means. This is some-
times called the pooled within-class variogram.  
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Nested variation. Variation in the environment often occurs at several spatial 
scales simultaneously, and patterns in the variation can be nested within one an-
other. This is usually evident when there are many data, for example from remote 
sensing etc. The experimental variogram will often appear more complex if more 
than one spatial scale is present; this can be seen in Fig. B.6.6. A combination of 
two or more simple models that are authorized can be used to model such a 
variogram. The simplest combined model is one with a nugget component. Spatial 
dependence may occur at two distinct scales and these can be represented in the 
variogram as two spatial components.  Models describing more than one spatial 
structure are often known as nested functions; the nested or double spherical 
model has been the most commonly fitted, Fig. B.6.6(b).  

B.6.4   Modeling the variogram 

The experimental MoM variogram comprises a set of discrete estimates at particu-
lar lag intervals, which are subject to error that arises largely from sampling fluc-
tuation. The underlying variogram, which represents the regional variation, is con-
tinuous. To obtain an approximation to this we can fit what are known as 
authorized functions that are conditional negative semi-definite (CNSD) to the ex-
perimental values. Functions that are CNSD will not give rise to negative vari-
ances when random variables are combined (see Webster and Oliver 2007 for 
more detail on this). There are a few principal features that the function must be 
able to represent: 

 
(i)    a monotonic increase with increasing lag distance from near the ordinate, 
(ii)   a constant maximum or asymptote (the sill), 
(iii)  a positive intercept on the ordinate (the nugget),  
(iv)  anisotropy. 

 
There are a few simple functions only that encompass the above features and that 
are CNSD. They can be divided into those that are bounded, which represent 
processes that are second-order stationary, and those that are unbounded that are 
intrinsic only. There are several functions, but here we shall focus on those that 
are fitted most commonly in the environmental sciences. The formulae for the se-
lected functions are given in their isotropic form, i.e. for h = |h | . A nugget vari-
ance, c0, has been included because most experimental variograms if extended to 
the ordinate would have a positive intercept. The Gaussian model is included in 
many popular geostatistical packages, but it is excluded here. Its use can give rise 
to unstable kriging equations because the model approaches the origin with zero 
gradient (the limit for random variation), and this function will be replaced with 
the stable exponential model (Wackernagel 2003). Webster and Oliver (2007) de-
scribe a wide range of suitable variogram functions.  
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Circular model. The equation for the circular function is 
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(B.6.19) 

 
where γ(h) is the semivariance at lag h, c is the a priori variance of the autocorre-
lated process, c0 is the nugget variance which represents the spatially uncorrelated 
variation at distances less than the sampling interval and measurement error, and a 
is the distance parameter, the range of spatial dependence or spatial autocorrela-
tion. Values at places less than this apart are correlated, whereas those further 
apart are not. The combined c0 + c is the sill of the model. Theoretically the 
semivariance at lag zero is itself zero, but in practice there are usually too few es-
timates of γ(h) near to the ordinate to fit a model through the origin. This function 
is CNSD in two dimensions. It curves tightly as it approaches the range (see Fig. 
B.6.4(i)). 

Spherical function. This is one of the two most widely fitted models in the envi-
ronmental sciences. Its equation is 
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The symbols have the same meaning as above. This model curves more gradually 
as the sill is reached than the circular one, see Fig. 6.4.4(c). This function is CNSD 
in three dimensions. It represents transition features that have a common extent 
that appear as patches, some with large values and other with small ones. The av-
erage diameter of the patches is represented by the range of the model.  

Pentaspherical function. This model curves more gently as it approaches its sill 
than the preceding models, see Fig. B.6.3(b). It is CNSD in three dimensions. The 
pentaspherical function has the equation 
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Exponential function. The exponential and spherical functions together account for 
a large proportion of the models fitted in the environmental sciences. Its equation 
is  
 

 exp1)( 0
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−+=

r
hcchγ  (B.6.22) 

 
where c0 and c have the same meanings as above, but the distance parameter is 
now r. The exponential model approaches its sill even more gently than the pre-
ceding models and also asymptotically so that it does not have a finite range. In 
practice, an effective range is assigned at the distance at which the function has 
reached 95 percent of c. The effective range, a’, is 3r. It is CNSD in three dimen-
sions. The exponential function also represents transition structures, but they now 
have random extents.  

Stable exponential. This is a useful substitute for the Gaussian function for ex-
perimental variograms that appear to approach the origin with a reverse curvature; 
they can be represented by the general equation 
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in which 1 < α < 2.  For the Gaussian function α  = 2, which is excluded because 
it represents differentiable variation in the process, which is not random. Webster 
and Oliver (2006) used the stable exponential function to describe topographic 
variation.  

Unbounded models. Variograms that are intrinsic only increase without bound as 
the lag distance increases. These can usually be fitted by power functions, which 
have the general equation including a nugget variance of  

 
γ (h) = c0 + whα (B.6.24) 

 
where w describes the intensity of the process, and the exponent, α, describes the 
curvature. If α <1, the curve is convex upwards; if it is one it is a straight line and 
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w is the gradient; and if α > 1 the curve is concave upwards. The exponent must 
lie strictly between zero and two. 

Modeling anisotropy. If the experimental variogram is anisotropic, then the varia-
tion is a function of distance, h, and direction, θ. Geometric anisotropy can be 
made isotropic by a linear transformation of the coordinates. The transformation is 
defined by reference to an ellipse 

 

)(sinB)(cosA)( 2222 φθφθ −+−=θΩ  (B.6.25) 

 

where A and B are the long and short diameters of the ellipse, respectively, and φ 
is its orientation, i.e. the direction of the long axis. For bounded models, Ω re-
places the distance parameter of the isotropic variogram as follows for the expo-
nential variogram (see Fig. B.6.5(b)). 
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and for the power function it replaces the gradient 
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Nested models. The nested spherical function is given by  
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(B.6.28) 

where c1 and a1 are the sill and range of the short-range component of the varia-
tion, and c2 and a2 are the sill and range of the long-range component. A nugget 
component can also be added as above (see Fig. B.6.6(b)).  
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B.6.5  Case study: The variogram 

We illustrate some of the principles of geostatistics with results from a recent 
study on precision farming for the British Home-Grown Cereals Authority (Oliver 
and Carroll 2004). The field (UK National Grid reference SU 458174) covers      
23ha on the Yattendon Estate, Berkshire, England. It is on part of the Chalk 
downland of southern England and has the typical undulating topography of this 
region. From the extensive set of survey data obtained during 2002 we have se-
lected topsoil (0–15 cm) available potassium. Data on yield of winter wheat were 
available for 2001 to illustrate nested variation. Table B.6.1 gives the summary 
statistics for these two variables.  

Sampling for the soil survey was at the nodes of a 30m × 30m grid, with addi-
tional observations at 15m intervals along short transects from randomly selected 
grid nodes. The sampling intervals were based on scales of variation determined 
from several years of yield data with the aim of ensuring that the variation in the 
soil (of which there was no prior knowledge) would be represented adequately and 
efficiently. At each site ten cores of soil were bulked from a support of 5m × 2m 
to form the sample; this helps to reduce the locally erratic variation that contrib-
utes to the nugget variance. There were 230 data points, which enabled any anisot-
ropy in the variation to be determined; this sample size is close to the 250 data 
recommended by Webster and Oliver (1992).    

 
Table B.6.1. Summary statistics 

Statistic Topsoil K [mg l-1] Yield 2001 [t  ha-1] 

Number   230     4060 
Mean   142.5       6.838 
Median   143.0       7.050 
Minimum     48.1       1.000 
Maximum   254.4            14.600 
Variance 1367.5       3.909 
Standard deviation     37.0       1.977 
Skewness      0.1            –0.298 

Experimental variograms were computed by Eq. (B.6.7) in four directions to re-
veal any anisotropy in the variation. The results for topsoil K are shown in Fig. 
B.6.3(a) for the directions 0°, 45°, 90° and 135°. There is little divergence among 
the different directions until lag 130m, after which the sills start to diverge. This 
suggests that there is zonal anisotropy in the variation of topsoil K in this field. 
Since the directional variograms are close together for the initial lags, the variation 
can be treated as isotropic for kriging, and the solid line shows the best fitting iso-
tropic exponential function to the omnidirectional variogram. 
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Fig. B.6.3.   (a)  Directional  variogram  computed  on  the  raw  data  (230 points) from the  
Yattendon Estate, and (b) directional variogram computed on the residuals from the class 
means.  The symbols  represent:  ∗ denotes 0º (E–W),   denotes 45º, × denotes 90º (N–S), 
▲ denotes 135º 

To illustrate the effect of sample size on the variogram, we subsampled the com-
plete set of data (230 sampling points) to give subsets of 94 and 47 data. Experi-
mental omnidirectional variograms were computed from the total data and two 
subsets for topsoil K. To explore the effect of different bin widths, variograms 
were computed for lag intervals of 15m (the sampling interval for the transects), 
20m (mid-way between the transect and overall grid interval) and 40m (for illus-
tration). Models were fitted to the experimental values using GenStat (Payne 
2008).   

Figure B.6.4 shows the experimental values as symbols and the fitted models 
as solid lines. The experimental variograms suggest that the 20m lag interval is a 
good comprise between the rather erratic result for the 15m interval and the loss of 
detail with the 40m lag interval. The experimental variograms also show the effect 
of decreasing the number of data; the variograms becomes more erratic and that 
computed from 47 data also shows a serious loss of variance. 

Table B.6.2 gives the models and their parameters fitted to the experimental 
variograms. These show how sensitive the model parameters are to changes in lag 
interval and number of data. For the 230 data, the main difference in the model pa-
rameters for the variograms computed with different lag intervals is in the nugget 
variance, which is zero for the 15m lag. This suggests that the data from the tran-
sect sampling have resolved the local variation in topsoil K well. This is an impor-
tant consideration when designing a sampling scheme. For a grid survey, it is 
worthwhile having some additional sampling points at shorter distances than the 
grid interval as in this survey because it helps to reduce the nugget variance. There 
were 40 sampling points at the shorter interval which is only 17 percent of the to-
tal data. 
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Fig. B.6.4. Experimental variograms (∗) computed by the method of moments (MoM) esti-
mator for lag distances of 20m, 15m and 40m, and for the complete data set of 230 sites 
[(a), (b) and (c), respectively], subset of 94 data [(d), (e), (f)] and subset of 47 data [(g), (h), 
(i)] for topsoil K on the Yattendon Estate. The solid line is the model fitted to the MoM 
variogram and the dashed line is the variogram estimated by residual maximum likelihood 
(REML)  

 
For the subsample of 94 data, the difference in model parameters from those for 
complete set of data is small; this indicates that Webster and Oliver’s (1992) rec-
ommendation of a minimum of 100 data is adequate to obtain a reliable 
variogram. The model parameters for the smallest data set are considerably differ-
ent from those of the complete set of data, suggesting that the variograms of the 
smallest data set are not an accurate reflection of the structure of the variation. For 
example,  the sill variances are markedly less and the ranges of spatial dependence 
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Table B.6.2. Variogram model parameters 

 Parameter 

Topsoil 
Property 

Model type Nugget 
variance 

Correlated  
component 

Range 
(m) 

    Sill 
variance 

MoM estimator      c0       c1 

      c2  
a1/m 

a2/m  

or r/m* 

 

K (230 sites) 
    Lag 20 m 
    Lag 15 m 
    Lag 40 m 

 
Spherical 
Exponential 
Spherical 

 
319.3 

    00 
355.6 

 
  1070.0 
  1441.0 
  1035.7 

 
142.9 
151.7 
148.4 

 
1389.3 
1441.0 
1391.3 

K residuals 
    Lag 20 m 

 
Pentaspherical 

 
145.5 

     
830.7 

   
90.8 

   
976.2 

K (94 sites) 
    Lag 20 m 
    Lag 15 m 
    Lag 40 m 

 
Exponential 
Exponential 
Spherical 

 
163.7 

    00 
338.9 

 
  1138.0 
  1282.0 
  1051.0 

 
  44.6 
  44.6 
146.4 

 
1301.7 
1109.0 
1389.9 

K (47 sites) 
   Lag 20 m 
   Lag 15 m 
   Lag 40 m 

 
Spherical 
Exponential 
Circular 

 
 0 

    00 
    00 

   
  1098.0 
  1109.0 
  1100.0 

 
   85.3 
   30.5 
   79.6 

 
1098.0 
1109.0 
1100.0 

pH Broom’s Barn Exponential 
Anisotropic  
Exponential 

    00 
    00 

        0.37 
        0.38 

   89.70 
   69.54 
 114.50 

0.37 
 φ=1.09 

Yield 1995 
 

Double  
Spherical 

    1.76         1.04 
        1.16  

   44.19 
 277.50  

0.8882 

REML estimator      
REML 230 Spherical 334.5   1273.5  170.6 1608.0 
REML 94 Exponential 300.0  1262.6    74.0  1562.6 
REML 47 Spherical     1.9  1171.1    95.7 1173.0 

Notes:   is the spatially correlated variance of the long-range spatial component,  is the range of the 
long-range spatial component, * is the distance parameter of the exponential function; to obtain a work-
ing range a′ =3r 

are shorter. Table B.6.2 shows that the models are all bounded functions indicat-
ing that the variation has a patchy distribution. 

Variograms were also computed by REML for the 20m grid interval, and are 
shown as the dashed line in Fig B.6.4(a), (d) and (g). The variograms estimated by 
REMLfor the two larger data sets are not as similar to those computed by MoM as 
one might expect. The sill variances are larger than the variance of the data. The 
range of the exponential model for the subset of 94 data is also much longer than 
that for the MoM variogram. The variograms estimated by REML and MoM are 
more similar to one another for the smallest data set, yet it is for these data that 
one would expect the greatest difference in model parameters. Although Kerry and 
Oliver (2007) showed a distinct advantage in computing variograms by REML for 
small sets of data, this is not particularly evident in the study described here.  

The experimental variogram computed from the yield data of a crop of winter 
wheat (2001) shows a complex structure [see Fig. B.6.6(a)]. The best fitting model 
was a spherical function with two spatial components; one with a range of 44m 



B.6     The variogram and kriging      335 

and the other of 278m. Figure B.6.6(b) shows the experimental variogram with the 
fitted model; the nugget, short- and long-range components of the model are also 
shown separately. 

Anisotropy.  Figure B.6.3(a) shows the directional variogram for topsoil K. It is 
evident that the sill variances disperse after a lag of about 130m. Zonal anisotropy 
cannot be dealt with by a simple transformation of the coordinates. If the region 
can be stratified into zones, then this is one way in which zonal anisotropy can be 
resolved. The variogram models suggest that the variation is patchy, which could 
arise from zones that are preferentially orientated and with different means. A 
classification of these data had been done previously (see Frogbrook and Oliver 
2007 for details), therefore the class means were subtracted from the values of K 
for the appropriate class.  

The directional variogram was then computed on the residuals from the class 
means, Fig. B.6.3(b). The directional variogram is shown by the symbols for the 
four directions and the isotropic models fitted to the omnidirectional variograms 
by the solid black line for both the raw data and the residuals. Stratification has ef-
fectively removed the zonal anisotropy – some scatter remains in the different di-
rections but this is to be expected from sampling fluctuations. The model parame-
ters have also changed considerably; the best fitting model is now a pentaspherical 
function with a sill variance of less than 1000 and a range of 91m. The model now 
has a much shorter range of spatial dependence, Table B.6.2, and so the variogram 
has been plotted to a maximum lag of 150m to take into account this difference. 
There is no marked evidence of anisotropy over distances less than the range.  

 

 
Fig. B.6.5. Directional variogram computed on the pH data from Broom’s Barn Farm (433 
sampling points): (a) with the best fitting isotropic model (solid line), and (b) with an iso-
tropic exponential function (the solid lines show the envelope of this function). The sym-
bols represent: ∗ denotes 0º (E–W),  denotes 45º, × denotes 90º (N–S), ▲ denotes 135º, and 
the solid lines are the isotropic models fitted to the omnidirectional variograms 
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To illustrate geometric anisotropy we have used the data for pH from Broom’s 
Barn Farm. This is an experimental sugar beet farm near to Bury St. Edmunds, 
Cambridgeshire, UK (see Webster and Oliver 2007, for more detail on these data). 
Figure B.6.5(a) shows the directional variogram which illustrates how the 
semivariances in the different directions start to diverge after a lag of 80m. The 
solid line is the best fitting isotropic model, an exponential function (Table B.6.2). 
Figure B.6.5(b) shows the directional variogram with the fitted anisotropic expo-
nential function. The two lines show the envelope of this function and Table B.6.2 
gives the parameters of the fitted function. The direction of maximum variation 
and of the shorter range is about 60º (where 0º is E–W) and the direction of mini-
mum variation is perpendicular to this.   

Nested variation.  Figure B.6.6(a) shows the experimental variogram for yield 
2001 at the Yattendon Estate; it appears to have a complex structure.  Several 
models were fitted and the one with the smallest residual sums of squares was a 
nested spherical function, which is shown as the solid line fitted to the experimen-
tal values in Fig. B.6.6(b). The model parameters for yield 2001 are given in Table 
B.6.2. To illustrate the individual components of this model, we have shown them 
separately in Fig. B.6.6(b) as lines with different ornament.  The complex struc-
ture identified from the experimental variogram is evident as two markedly differ-
ent ranges of spatial variation of 44m and 278m.  

 

 
Fig. B.6.6. Variogram of yield 2001 for the Yattendon Estate: (a) experimental variogram 
(symbols), and (b) the experimental variogram with the fitted double spherical model (solid 
line); the ornamented lines represent the individual model components 
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B.6.6   Geostatistical prediction: Kriging 

Kriging is a method of optimal prediction or estimation in geographical space, of-
ten known as a best linear unbiased predictor (BLUP). It is the geostatistical 
method of interpolation for random spatial processes. Matheron (1963) first used 
the term ‘kriging’ for the method in recognition of D. G. Krige’s contribution to 
improving the precision of estimating concentrations of gold and other metals in 
ore bodies. Krige (1951) had observed that he could improve estimates of ore 
grades in mining blocks by taking into account the grades in neighbouring blocks.  
Matheron (1963) expanded Krige’s empirical ideas and put them into the theoreti-
cal framework of geostatistics. However, Matheron’s developments were not in 
isolation; the mathematics of simple kriging had been worked out by A. N. Kol-
mogorov in the 1930s (Kolmogorov 1939, 1941), by Wold (1938) for time series 
analysis and later by Wiener (1949). Cressie (1993) gives a brief history of the ori-
gins of kriging.  

Kriging provides a solution to a fundamental problem faced by environmental 
scientists of predicting values from sparse sample data based on a stochastic 
model of spatial variation. Most properties of the environment (soil, vegetation, 
rocks, water, oceans and atmosphere) can be measured at any of an infinite num-
ber of places, but for economic reasons they are measured at relatively few. Sev-
eral mathematical methods of interpolation are available, for example, Thiessen 
polygons, triangulation, natural neighbour interpolation, inverse functions of dis-
tance, least-squares polynomials (trend surfaces) and splines. Most of these me-
thods take account of systematic or deterministic variation only and disregard the 
errors of prediction. Kriging, on the other hand, overcomes the weaknesses of 
these mathematical interpolators. It makes the best use of existing knowledge by 
taking account of the way a property varies in space through the variogram or co-
variance function. Kriging also provides not only predictions but also the kriging 
variances or errors. It can be regarded simply as a method of local weighted mov-
ing averaging of the observed values of a random variable, Z, within a neighbour-
hood, V. Kriging can be done for point (punctual kriging) or block supports of 
various size (block kriging), depending upon the aims of the prediction, even 
though the sample information is often for points. 

Since its original formulation, kriging has been elaborated to tackle increas-
ingly complex problems in disciplines that use spatial prediction and mapping. It 
is used in mining,  petroleum engineering,  meteorology, soil science, precision 
agriculture, pollution control, public health, monitoring fish stocks and other ani-
mal densities, remote sensing, ecology, geology, hydrology and other disciplines. 
As a consequence, kriging has become a generic term for a range of BLUP least-
squares methods of spatial prediction in geostatistics. The original formulation of 
kriging, now known as ordinary kriging (Journel and Huijbregts 1978), is the most 
robust method and the one most often used.  
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Types of kriging 

Ordinary kriging assumes that the mean is unknown and that the process is locally 
stationary. Simple kriging, which assumes that the mean is known, is used little 
because the mean is generally unknown. However, it is used in indicator and dis-
junctive kriging in which the data are transformed to have known means. Log-
normal kriging is ordinary kriging of strongly positively skewed data transformed 
by logarithms to approximate a lognormal distribution. Kriging with trend enables 
data with a strong deterministic component (non-stationary process) to be ana-
lyzed;  

Matheron (1969) originally introduced universal kriging for this purpose, but 
the state-of-the-art is empirical-BLUP (Stein 1999), which uses the REML 
variogram (Lark et al. 2006). Matheron (1982) developed factorial kriging or 
kriging analysis for variation that is nested. It estimates the long- and short-range 
components of the variation separately, but in a single analysis. Ordinary co-
kriging (Matheron 1965) is the extension of ordinary kriging to two or more vari-
ables that are spatially correlated. If some property that can be measured cheaply 
at many sites is spatially correlated or coregionalized with others that are expen-
sive to measure and recorded at many fewer sites, the latter can be estimated more 
precisely by cokriging with the spatial information from the former.  

Disjunctive kriging (Matheron 1973) is a non-linear parametric method of 
kriging. It is valuable for decision-making because the probabilities of exceeding 
(or not) a predefined threshold are determined in addition to the kriged estimates. 
Indicator kriging (Journel 1982) is a non-linear, non-parametric form of kriging in 
which continuous variables are converted to binary ones (indicators). It can handle 
distributions of almost any kind and can also accommodate ‘soft’ qualitative in-
formation to improve prediction. Probability kriging was proposed by Sullivan 
(1984) because indicator kriging does not take into account the proximity of a 
value to the threshold, but only its geographic position.  Bayesian kriging was in-
troduced by Omre (1987) for situations in which there is some prior knowledge 
about the drift or trend. 

Ordinary kriging 

Ordinary kriging is by far the most widely used type of kriging. It is based on the 
assumption that the mean is unknown. Consider that a random variable, Z, has 
been measured at sampling points, xi,  i = 1, … n, and we want to use this informa-
tion to estimate its value at a point x0 (punctual kriging) with the same support as 
the data by 
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),( Bxiγ

where n usually represents the data points within the local neighbourhood, V, and 
is much less than the total number in the sample, N, and λi are the weights. To en-
sure that the estimate is unbiased the weights are made to sum to one 
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and the expected error is E[ )()(ˆ
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where γ (xi, xj) is the semivariance of Z between points xi and xj, γ(xi, x0) is the 
semivariance between the ith sampling point and the target x0. The semivariances 
are derived from the variogram model because the experimental semivariances are 
discrete and at limited distances. 

Kriged predictions are often required over areas (block kriging) that are larger 
than the sample support of the data. The estimate is a weighted average of the 
data, z(x1), z(x2), …, z(xn), at the unknown block,  

 

∑
=

=
n

i
ii xzBZ

1
).()(ˆ λ  (B.6.32) 

 
The estimation variance of )(BZ  is: 
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where            is the average semivariance between data point xi and the target 
block B, and  

–
y (B, B) is the average semivariance within B, the within block vari-

ance.  
Equation (B.6.31) for a point leads to a set of n + 1 equations in the n + 1 un-

knowns 
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(B6.35) 

 

the Lagrange multiplier, ψ, is introduced to achieve minimization. The kriging 
equations in matrix form for punctual kriging are 

 

Aλ = b (B.6.36) 

 
where A is the matrix of semivariances between data points, γ(xi, xj), b  is the vec-
tor of semivariances between data points and the target, γ (xi, x0) and λ is the vec-
tor of weights and the Lagrange multiplier. The kriging weights are obtained as 
follows by inverting matrix A, 

 

λ = A–1 b. (B.6.37) 

 
The weights, λi, are inserted into Eq. (B.6.29) to give the prediction of Z at x0. The 
kriging (prediction or estimation) variance is then  
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and in matrix form 
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Punctual kriging is an exact interpolator – the kriged value at a sampling site is the 
observed value there and the estimation variance is zero. The equivalent kriging 
system for blocks is 
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and the block kriging variance is obtained as  
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and in matrix form 

 

).,()( T2 BBbB γλσ −=  (B.6.43) 

 
Block kriging results in smoother estimates and smaller estimation variances over-
all because the nugget variance is contained entirely in the within-block variance, 
γ ( , )B B , and it does not contribute to the block kriging variance.  

For many environmental applications kriging is most likely to be used for in-
terpolation and mapping. The values of the property are usually estimated at the 
nodes of a fine grid, and the variation can then be displayed by isarithms or by 
layer shading. The estimation variances or standard errors can also be mapped 
similarly: they are a guide to the reliability of the estimates, where sampling is ir-
regular, such a map may indicate if there are parts of a region where sampling 
should be increased to improve the estimates. 

Kriging weights 

The kriging weights depend on the variogram and the configuration of the sam-
pling. The way in which the data points within the search radius are weighted is 
one feature that makes kriging different from classical methods of prediction 
where the weights are applied arbitrarily. Webster and Oliver (2007) illustrate how 
the weights vary according to changes in the nugget: sill ratio, the range, type of 
model, sampling configuration and the effect of anisotropy. The weights are par-
ticularly sensitive to the nugget variance and anisotropy. Weights close to the 
point or block to be estimated carry more weight than those further away, which 
shows that kriging is a local predictor. As the nugget: sill ratio increases the 
weights near to the target decrease and those further away increase. For a pure 
nugget variogram, the kriging weights are all the same and the estimate is simply 
the mean of the values in the neighbourhood. The effect of the range is more com-
plex than for the nugget: sill ratio because it is also affected by the type of 
variogram model. In general, however, as the range increases the weights increase 
close to the target. For data that are irregularly distributed, points that are clustered 
carry less weight individually than those that are isolated.  

The fact that the points nearest to the target generally carry the most weight 
has practical implications. It means that the search neighbourhood need contain no 
more than 16–20 data points, which in turn means that matrix A in the kriging sys-
tem need never be large.  
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Factorial kriging 

If the variogram of Z(x) is nested, it can be represented as a combination of S indi-
vidual variograms 

 

)()()()( 21 hhhh Sγγγλ +++= L  (B.6.44) 

 
where the superscripts refer to the component variograms. If we assume that the 
processes represented by these components are uncorrelated, then Eq. (B.6.44) can 
be written as  
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where gk(h) is the kth basic variogram function and bk is a coefficient that meas-
ures the relative contribution of the variance gk(h) to the sum.  

The components on the right-hand side of Eq. (B.6.45) correspond to S ran-
dom functions that in sum form Z(x), which can be represented as  
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in which μ is the mean of the process. Each Zk(x) has an expectation zero, and the 
squared differences are 

 

{ }{ }[ ]
⎪
⎩

⎪
⎨

⎧ =
=+−+−

.otherwise0

'  if)(
)()()()( ''

2
1

kkhgb
hxZxZhxZxZE

kk

kkkk  
(B.6.47) 

 
The last component, ZS(x) could be intrinsic only, so that gS(h) in Eq. (B.6.45) is 
unbounded with gradient bS. This equation expresses the mutual independence of 
the S random functions, and enables the values of the contributing processes to be 
estimated separately by factorial kriging. Each spatial component Z k(x) is esti-
mated as a linear combination of the observations, z(xi), i =  1, …, n 
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The k

iλ are weights assigned to the observations, but now they must sum to zero, 
not to one, to ensure that the estimate is unbiased and to accord with Eq. (B.6.46).  
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Subject to this condition, they are chosen to minimize the kriging variance. This 
leads to the kriging system 
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where ψ k(x0) is the Lagrange multiplier for the kth component. This system of 
equations is solved for each spatial component, k, to find the weights, k

iλ , which 
are then inserted into Eq. (B.6.48) for that component. Estimates are made for 
each spatial scale, k, by solving Eq. (B.6.49).  
     Kriging is usually done in small moving neighbourhoods centred on x0, as for 
ordinary kriging. Thus, from a theoretical point of view, it is necessary only that 
Z(x) is locally stationary. Equation (B.6.46) can then be rewritten as  
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where μ(x) is a local mean that can be considered as a long-range spatial compo-
nent. We need to krige the local mean, which is again a linear combination of the 
data: 

 

∑=
n

j
jj xzx ).()(ˆ mean

0 λμ  (B.6.52) 

 
The weights are obtained by solving the kriging system: 
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Estimating the long-range component can be affected by the size of the moving 
neighbourhood (Galli et al. 1984). To estimate a spatial component with a given 
range, the distance across the neighbourhood should be at least equal to that range. 
If the sampling is intensive and the range is large, there are so many data within 
the chosen neighbourhood that only a small proportion of them is retained for 
kriging,  and those  are all  near to the target. Although modern computers can 
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handle many data at a time, the inversion of such large matrices can be unstable.   
Further, only the nearest few data to the target contribute to the estimate because 
they screen the more distant data. Consequently, the neighbourhood used is 
smaller than the one specified, which means that the range of the component esti-
mated is smaller than that determined from the variogram. Galli et al. (1984) sug-
gested a way of overcoming this shortcoming by selecting only a proportion of the 
data within the specified neighbourhoods. Such a selection is arbitrary, and Jaquet 
(1989) proposed an alternative that involves adding the estimate of the local mean 
to the estimated long-range component. Following Oliver et al. (2000), this is the 
solution we have adopted for the case study below.  

B.6.7  Case study: Kriging 

The case study describes applications of ordinary kriging with an isotropic vario-
gram model and with an anisotropic one where there are directional differences in 
the variation. Factorial kriging is applied to explore variation that is described best 
by a nested variogram function. 

Ordinary kriging 

The complete set of data and the two data subsets of topsoil potassium from Yat-
tendon are used to illustrate ordinary kriging. Predictions were made at unsampled 
places at the nodes of a 5m × 5m grid by ordinary punctual and block kriging. A 
minimum of seven and a maximum of 20 points were the limits set for the number 
of data in the neighbourhood. For block kriging, estimates were made over blocks 
of 10m × 10m. The parameters of the variogram models fitted to the MoM ex-
perimental variograms of each data set for the 20m lag (Table B.6.2) were used 
with the respective data for kriging. The kriged predictions were mapped in 
Gsharp. Figure B.6.7 shows the maps of block kriged estimates; those from punc-
tual kriging are not shown as they appear so similar. The map based on the 230 
data, Fig. B.6.7(a), shows the detail in the variation of topsoil K from the intensive 
sampling. The areas of small concentrations are where the soil is more sandy and 
the largest concentrations are in a dry valley that extends from NW to SE across 
the field where the soil contains more clay and silt. The map based on the sample 
size of 94, Fig. B.6.7(b), which is close to Webster and Oliver’s (1992) minimum 
recommended size for computing an accurate variogram, shows  the main features 
of the variation in topsoil K, albeit with some loss of detail. From a management 
perspective this map would form a sound basis to manage applications of K in this 
field. This smaller sample size represents a saving of almost 60 percent in sam-
pling effort. Figure B.6.7(c) is the block kriged map based on 47 data and the loss 
of detail is evident. It is clear that to reduce the sample size to this level would be 
unadvisable for managing K applications in this field. 
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Fig. B.6.7. Maps of block kriged predictions of topsoil potassium at the Yattendon Estate 
for:  (a) complete set of 230 data, (b) subset of 94 data, and (c) subset of 46 data 
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Fig. B.6.8. Maps of block kriged kriging variances for topsoil potassium at the Yattendon 
Estate for: (a) total of 230 data, (b) subset of 94 data, and (c) subset of 46 data 
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Figure B.6.8 (a), (b) and (c) shows the maps of block kriging variances for the 
three sizes of sample (230, 94 and 47, respectively); they show clearly how the 
variances of the predictions increase markedly with fewer data. The large kriging 
variances in the central part of the field in Fig. B.6.8(a) and (b) indicate an area 
with no sampling points where there is a copse. Figure B.6.8(a) shows that the 
smallest errors are along the short transects where the sampling was most inten-
sive. Figure B.6.8(b) and (c) also shows that the kriging variances are smallest 
close to sampling points. The large variances around the field margins show the 
edge effects where there were fewer data from which to predict. These maps show 
that economizing on sampling to a sample size of 47 results in a loss of accuracy 
in the  predictions that could  have  implications for  subsequent  management. 

Figure B.6.9 shows the map of kriging variances from punctual kriging of the 
complete data set. Although the maps of estimates for punctual and block kriging 
were almost indistinguishable, the maps of kriging variance are quite different. 
The punctual kriging variances are much larger because the nugget variance sets a 
lower limit to the kriging variance. For block kriging the nugget variance disap-
pears from the block kriging variance [see Eqs. (B.6.31) and (B.6.37)]. The larger 
is the proportion of nugget variance, the greater is the difference between the 
block and punctual kriging variances.   

Kriging with an anisotropic model 

The pH data from Broom’s Barn Farm were used with the anisotropic exponential 
model for ordinary punctual kriging on a 10m × 10m grid. Figure B.6.10 shows 
the map of predictions. It is evident that there is more variation in pH from SSE to 
NNW than at right angles to this as the model in Table B.6.2 above describes. 
 

 

 

 

 

 

Fig. B.6.9. Map of punctually kriged kriging variances for topsoil potassium at the Yatten-
don Estate for the complete set of 230 data 
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Fig. B.6.10. Map of punctually kriged predictions for topsoil pH at the Broom’s Barn Farm 

Nested variation: factorial kriging 

The yield of winter wheat for 2001 from the Yattendon Estate is used to illustrate 
factorial kriging; its variogram (see Fig. B.6.6 and Table B.6.2) shows that there is 
more than one scale of variation present. Predictions were made at the nodes of a 
5m × 5m grid as for topsoil K at Yattendon. The parameters of the double spheri-
cal model were used for ordinary kriging first; Fig. B.6.11(a) is the map of predic-
tions. The pattern of variation appears complex because of the long- and short-
range components of the variation. These components were then extracted sepa-
rately and predicted by factorial kriging. Figure B.6.11(b) is the map of the long-
range predictions. It is similar to that from ordinary kriging but it is less noisy be-
cause the short-range  variation is no  longer present. The regions of the field with 
large and small yields are clear in both maps. Many of the areas with large yield 
correspond to areas of large topsoil K concentrations [see Fig. B.6.11(a)]. The 
map of the short-range predictions, Fig. B.6.11(c) is quite different from the other 
two maps. It shows a much smaller scale of variation with a strong regular pattern. 

This component of the variation appears to relate to the lines of management 
within the field in a NE–SW direction. The larger values are probably between the 
tramlines where the soil has suffered less compaction from machinery. There is 
some weak evidence of variation perpendicular to these lines that might reflect 
tramlines of previous operations. These management effects that have given rise to 
the short-range variation are not evident in the map of ordinary kriged predictions, 
Fig. B.6.11(a).  
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Fig. B.6.11. Maps of wheat yield for 2001 at the Yattendon Estate for: (a) ordinary kriged 
predictions, (b) predictions of the long-range component of the variation, and (c) predic-
tions of the short-range component of the variation 
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For intensive data such as those from yield monitors, digital elevation models and 
satellites, factorial kriging is a valuable technique to explore the variation at dif-
ferent spatial scales. In this way it might be possible to gain some insight into the 
underlying processes that are responsible for variation at the different spatial 
scales.     
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Part C 
 

Spatial Econometrics 



C.1   Spatial Econometric Models 

James P. LeSage and R. Kelley Pace 

C.1.1  Introduction 

Spatial regression models allow us to account for dependence among observa-
tions, which often arises when observations are collected from points or regions 
located in space. The spatial sample of observations being analyzed could come 
from a number of sources. Examples of point-level observations would be indi-
vidual homes, firms, or schools. Regional observations could reflect average re-
gional household income, total employment or population levels, tax rates, and so 
on. Regions often have widely varying spatial scales (for example, European Un-
ion regions, countries, or administrative regions such as postal zones or census 
tracts).  

Each observation is linked to a location which in the case of point-level sam-
ples could be latitude-longitude coordinates. For region-level observations we can 
rely on latitude-longitude coordinates of a point located within the region, perhaps 
a centroid point.  

It is commonly observed that sample data collected for regions or points in 
space are not independent, but rather positively spatially dependent, which means 
that observations from one location tend to exhibit values similar to those from 
nearby locations.  

The data generating process (DGP) that produced the sample data determines 
the type of spatial dependence. Of course, we never truly know the DGP, so alter-
native approaches to applied modeling situations have been advocated. One ap-
proach is to rely on flexible model specifications that can accommodate a wide 
range of different possible data generating processes. For example, LeSage and 
Pace (2009) advocate use of the spatial Durbin model (SDM), since it nests a 
number of other models as special cases.  

A second approach would be to rely on economic or other types of theory to 
motivate the DGP. For example, Ertur and Koch (2007) use a theoretical model 
that posits physical and human capital externalities as well as technological inter-
dependence between regions. They show that this leads to a reduced form growth 
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regression that should include an average of growth rates from neighboring re-
gions as an explanatory variable in the model.  

A third approach might be to rely on a purely econometric argument that fa-
vors use of particular models to protect against heterogeneity, omitted variables or 
other types of problems that arise in applied practice. For example, LeSage and 
Pace (2008) show that in the case of spatial interaction models of the type dis-
cussed in Chapter C.3, omitted variables or latent unobservable influences will 
lead to a model that includes a spatial lag of the dependent variable.  

A fourth approach is to formally incorporate our uncertainty regarding the 
DGP into the estimation and inference procedure, which is illustrated in Chapter 
C.4. This involves drawing conclusions about the phenomena being modeled from 
a host of different model specifications, where each model is probabilistically 
weighted according to its consistency with the sample data evidence.  

Conventional regression models commonly used to analyze cross-section and 
panel data assume that observations are independent of one another. In the case of 
spatial data samples where each observation represents a point or region located in 
space, this means that nearby regions are no more closely related than those more 
distant. A fundamental tenant of regional analysis is that regions located nearby 
tend to be more similar than those separated by great distances. This means that 
positive spatial dependence seems more plausible than spatial independence when 
analyzing regional data samples.  

As an example, a conventional regression model that relates commuting times 
to work for region i  to the number of persons in region i assumes that these 
commuting times are independent of those for persons located in a neighboring 
region j. Since it seems unlikely that regions i and j do not share parts of the road 
network, we would expect this assumption to be unrealistic. In addition to lack of 
realism, ignoring a violation of independence between observations can produce 
estimates that are biased and inconsistent. We pursue a demonstration of this in 
the sequel.  

In our commuting time example, it may seem intuitively appealing to include 
an average of dependent variables observations from other nearby regions as a 
right-hand-side explanatory variable in the cross-sectional regression model. This 
could be formally implemented using a spatial indicator matrix that identifies 
neighboring observations in our sample. For example, in the case of regions lo-
cated on a regular lattice we might specify that neighboring observations are the 
eight regions surrounding each region (ignoring the fact that regions on the edge 
have less than eight neighbors). This is sometimes referred to as Queen-based con-
tiguity using an analogy to the board moves of the queen piece in the game of 
Chess. This would result in an extension of the regression model for observation i 
taking the form shown in Eq. (C.1.1), where the sample contains n observations.  
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In Eq. (C.1.1), the dependent variable for observation i is iy , the k explanatory 
variables are Xir, r = 1, …, k  with associated coefficients βr, and the disturbance 
term is iε .1 The n-by-n matrix W reflects the Queen’s contiguity relations between 
the n regions and we use ijW  to denote the (i,j)th element. The matrix W is defined 
so that each element in row i of the matrix W contains values of zero for regions 
that are not neighbors to region i, and values of 1/8 for the eight contiguous 
neighbors to region i. By definition we do not allow region i to be a neighbor to it-
self, leading to the matrix W having zeros on the main diagonal. This leads to the 
product: Σn

j=1Wij yi representing a scalar value equal to the average of values taken 
by the eight regions neighboring region i. The scalar ρ in model given by Eq. 
(C.1.1) is a parameter to be estimated that will determine the strength of the aver-
age (over all observations i = 1, …, n) association between the dependent variable 
values for regions/observations and the average of those values for their 
neighbors.  

There are of course numerous other ways to define the connectivity structure 
of the sample observations/regions embodied in the matrix W, details of which are 
beyond the scope of this chapter. In cases involving irregular lattices or point ob-
servations these become a consideration in specifying a spatial regression model. 
For example, one could use some fixed number of nearest neighbors for the case 
of irregular lattices, a number of neighbors selected using a distance cut-off or 
some other contiguity definition such as Rook-based contiguity in lieu of ‘Queen-
based’ contiguity described above. There is also flexibility in the way that weights 
are assigned to neighboring regions/observations. For example, weighting 
schemes based on the length of shared borders separating regions have been pro-
posed as well as weights exhibiting distance decay (LeSage and Pace 2009, Chap-
ter 4). Conventional wisdom is that the specification of the matrix W exerts a great 
deal of influence on estimates and inferences regarding the parameters of these 
models. However, LeSage and Pace (2009) argue that this is an incorrect conclu-
sion that has arisen from invalid interpretation of parameters from these models, a 
subject that we take up later.  

It should be clear that if the parameter ρ = 0, we have a conventional regres-
sion model: yi = Σk

r=1 Xir βr + εi , so a point of interest would be the statistical sig-
nificance of the coefficient estimate for ρ.  

We can write the model in Eq. (C.1.1) using matrix/vector notation as shown 
in Eq. (C.1.2), where y is an n-by-1 vector containing the dependent variable ob-
servations, W is our n-by-n spatial weight matrix that identifies the connectivity or 

                                                           
1 Without loss of generality, one of the variable vectors Xr could represent an intercept 

vector of ones. 
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neighbor structure of the sample observations, X is the n-by-k matrix of explana-
tory variables which may include an intercept term. The n-by-1 vector ε represents 
zero mean, constant variance, zero covariance, normally distributed disturbances, 
for example, ε ~ N(0, σ 2 In),  where we use In to denote an n-by-n identity matrix. 
The scalar parameter ρ and the k-by-1 vector β along with the scalar variance pa-
rameter σ 2 represent model parameters to be estimated. The associated DGP for 
this model which we label SAR is shown in Eq. (C.1.3), and the expected value or 
prediction from this model is shown in Eq. (C.1.4).  

 

ρ= + +y W y Xβ ε  (C.1.2) 

 

1 1( ) ( )n nρ ρ− −= − + −y I W X I Wβ ε  (C.1.3) 

 

1( ) ( )nE ρ −= −y I W Xβ  (C.1.4) 

 

ε ~ N (0, σ ² In) . (C.1.5) 

 
The expectation follows from the assumption that elements of the matrix W are 
fixed/non-stochastic as are observations in the matrix X. This results in E [In −  
ρW)–1 ε] = (In − ρW)–1 E [ε] = 0. 

There are of course other ways we could envision spatial dependence arising 
as part of the DGP and these lead to other extensions of the conventional regres-
sion model. For example, it may be the case that dependence arises only in the dis-
turbance process leading to the model in Eq. (C.1.6) (which we label SEM), asso-
ciated DGP in Eq. (C.1.7), and expectation in Eq. (C.1.8). 

 
y = X β + u 

 
 

u = ρW u + ε 

(C.1.6a) 
 
 

(C.1.6b) 

 

1( )n ρ −= + −y X I Wβ ε  (C.1.7) 
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( )E =y Xβ  (C.1.8) 

 

ε ~ N (0, σ ² In). (C.1.9) 

 
Another elaboration of the basic model is one we label SDM shown in Eq. 
(C.1.10) with associated DGP in Eq. (C.1.11) and expectation in Eq. (C.1.12). In 
setting forth the SDM model we need to separate out the intercept term from the 
explanatory variables matrix X because n n=Wι ι , where the n-by-1 intercept vec-
tor of ones is denoted by nι . This model includes spatial lags of the dependent 
variable is denoted by the matrix W y, and spatial lags of the explanatory variables 
denoted by the matrix product W X in addition to the conventional explanatory 
variables X. The matrix product W X creates an average of explanatory variable 
values from neighboring regions which are added to the set of explanatory vari-
ables. 
 

nρ α θ= + + + +y W y X W Xι β ε  (C.1.10)

 

( )1( )n nρ α θ−= − + + +y I W X W Xι β ε  (C.1.11)

 

( )1( ) ( )n nE ρ α θ−= − + +y I W X W Xι β  (C.1.12)

 

ε ~ N (σ 2 In) . (C.1.13)

 
There   are   also  models   based   on   moving   average  spatial  error   processes,  
u = (In − ρ W) ε   rather  than  the  autoregressive  spatial  error  process, u = (In − 
ρ W)–1 ε   which we have described here (see LeSage and Pace 2009).  

An important point to note is that the SEM model has an expectation equal to 
that from a conventional regression model where independence between the de-
pendent variable observations is part of the maintained hypothesis. In large sam-
ples, point estimates for the parameters β from the SEM model and conventional 
regression will be the same, but in small samples there may be an efficiency gain 
from correctly modeling spatial dependence in the disturbance process. In con-
trast, the SAR and SDM models which are sometimes referred to as spatial lag 
models (because they contain terms W y on the right-hand-side) produce expecta-
tions that differ from those of the conventional regression model. Use of least-
squares regression methods to estimate the parameters of these models will result 
in biased and inconsistent estimates for the parameters β as well as ρ.  
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C.1.2  Estimation of spatial lag models 

From the DGP associated with the SAR model, it should be clear that there is a 
Jacobian term involved in the transformation from ε to y. The log-likelihood func-
tion for the SAR model takes the form in Eqs. (C.1.14) – (C.1.16) (see Ord 1975), 
where ω is an n-by-1 vector containing eigenvalues of the matrix W. If ω contains 
only real eigenvalues, a positive definite variance-covariance matrix is ensured by 
conditions relating to the minimum and maximum eigenvalues of the matrix W. 
LeSage and Pace (2009, Chapter 4) provide a discussion of situations involving 
complex eigenvalues that can arise for certain types of spatial weight matrices W. 
Lee (2004) shows that maximum likelihood estimates are consistent for these 
models. 

 

2

T
2

2
||ln)(ln2ln

σ
ρσπ eeWI −−+−= n

nL  (C.1.14)

  

ρ= − −e y W y Xβ  (C.1.15)

 

[ ].)max(,)min( 11 −−∈ ωωρ  (C.1.16)

 
A simple manipulation of the SAR model shown in Eq. (C.1.2): y – ρWy = Xβ + ε 
suggests that the log-likelihood in Eq. (C.1.14) can be concentrated with respect to 
the parameters β and σ 2. This is accomplished using: β = (XTX)–1XT(In – ρ W)y  to 
replace this parameter vector in the full likelihood function. We also replace the 
parameter σ 2 with eTe = (y – ρ W y – X β)T (y – ρ W y – X β) n–1, where β  is as de-
fined above. Concentrating the full likelihood in this fashion results in a uni-
variate optimization problem over the parameter ρ . Since the parameter ρ  
has a well-defined range based on the eigenvalues of the matrix W, this is a well-
defined optimization problem. Given a maximum likelihood estimate for ρ , 
which  we label ρ∗ , we  can use  this estimate to recover maximum likelihood  
estimates  for the  parameters  β *= (XTX)–1 XT (In – ρ*W) y, and 2σ̂  = eTe = (y – ρ* 

W y – X β *)T(y – ρ* W y – X β *) n–1. 
Of course, similar likelihood functions exist for other spatial regression mod-

els such as the SEM, SDM and moving average processes. See LeSage and Pace 
(2009) for details regarding these and computationally efficient approaches to op-
timization. The most computationally challenging part of solving for maximum 
likelihood estimates using the concentrated log-likelihood function is evaluating 
the log-determinant for the n-by-n matrix: ln n ρ| − |I W , since the number of ob-
servations n can be large in spatial samples. There has been a great deal of re-
search on computationally efficient ways to calculate this term. As a brief over-
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view of the alternative approaches we note that Pace and Barry (1997) discuss use 
of sparse LU and Cholesky algorithms and set forth a vector expression for the 
concentrated log-likelihood as a gridded function of values taken by the parameter 
ρ  involved in the univariate optimization problem. Barry and Pace (1999) de-
scribe an approach to producing a statistical estimate of this term along with con-
fidence intervals for the estimate. There has been a great deal of literature on ap-
proximation approaches (see Pace and LeSage 2003, 2009b; Smirnov and Anselin 
2009). In cases involving regular lattices and a repeating pattern of connectivity 
relations (a regular locational grid such as arises in satellite remote sensing) be-
tween the spatial units of observation, analytical formulas can be used to calculate 
the determinant (LeSage and Pace 2009).  

An alternative to tackling what have been perceived as computational difficul-
ties associated with maximum likelihood estimation is to rely on an estimation 
method that is not likelihood-based. Examples include the instrumental variables 
approach of Anselin (1988, pp.81-90), the instrumental variables/generalized mo-
ments estimator from Kelejian and Prucha (1998, 1999), or the maximum entropy 
method of Marsh and Mittelhammer (2004). These alternative methods suffer 
from a number of drawbacks. One is that they can produce dependence parameter 
estimates (ρ in our discussion) that fall outside the interval defined by the eigen-
value bounds arising from the matrix W. In addition, inferential procedures for 
these methods can be sensitive to implementation issues such as the interaction be-
tween the choice of instruments and model specification, which are not always 
obvious to the practitioner.  

There are alternative model specifications such as the matrix exponential spa-
tial specification introduced by LeSage and Pace (2007) which they label MESS 
that can be estimated using maximum likelihood or Bayesian methods. This spa-
tial regression model specification can be used in situations where the model DGP 
is that of the SAR or SDM to produce equivalent estimates and inferences. The 
MESS model eliminates the troublesome determinant term from the likelihood 
function, allowing rapid maximum likelihood and Bayesian estimation of these 
models for large spatial samples. LeSage and Pace (2007) provide a closed-form 
solution for estimates of this model. It is also possible to produce a closed-form 
solution for maximum likelihood estimates of the SAR, SDM and SEM models 
discussed here, a recent innovation introduced by LeSage and Pace (2009). These 
approaches greatly reduce the motivation for reliance on non likelihood-based 
methods which have been traditionally advocated as a work-around for the per-
ceived computational difficulties of maximum likelihood estimation. These diffi-
culties have been largely resolved with the recent advances described in LeSage 
and Pace (2009).  
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The bias of least-squares 

As noted, one focus of inference is the magnitude and significance of the parame-
ter ρ , since this distinguishes the SAR model from conventional regression and 
provides information regarding the strength of spatial dependence between de-
pendent variable observations.  

To contrast the maximum likelihood estimate ρ∗  to that from least-squares 
which we label ρ̂ , consider the matrix expressions in Eq. (C.1.17).  
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(C.1.18)

If we assume zero covariance (or orthogonality) between W y and X, the inverse 
matrix in Eq. (C.1.18) becomes diagonal having a simple analytical inverse, lead-
ing to: ρ̂ =  (yT WT W y)–1 yT WT y. Of course, for the case of non-zero covariance 
between W y and X we could rely on a partitioned matrix inverse formulation to 
produce a similar, but more complicated result than the one we present here.  

We can show that the least-squares estimate for the parameter ρ  in this sim-
ple case of zero covariance is biased and inconsistent. This involved considering 
whether the definition of consistency: ˆplim( )ρ  = ρ,  holds true.  

 
ρ̂ = (yT WT W y)–1 yT WT y = (yT WT W y)–1 yT WT (ρ W y + X β + ε) 

= ρ + (yT WT W y)–1 yT WT X β + (yT WT W y)–1 yT WT ε 

= ρ + (yT WT W y)–1 yT WT ε (C.1.19)

 
where the last equation follows from zero covariance, yT WT X = 0. Now consider 
the probability limit (plim) of the expression:  plim (yT WT W y)–1 yT WT ε. 

The term: Q = plim (1 / n)(yT WT W y)–1 could obtain the status of a finite non-
singular matrix with reasonable restrictions/assumptions made in typical applica-
tions. Specifically, we must view W as non-stochastic sample data information 
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and assume that as the sample size increases the number of non-zero elements in 
each row of the matrix W has a finite limit. In addition, the parameter ρ  must 
obey the eigenvalue bounds to ensure bounded y.  

We turn attention to the term: R = plim (1 / n) yT WT ε. Using the model DGP: 
1( ) ( )n ρ −= − +y I W Xβ ε , we find  

 

R = plim (1 / n) yTWT ε  (C.1.20)

 

1plim(1 )[( ) ( )]nR n ρ −= / − +I W Xβ ε T WT ε (C.1.21)

 

R = plim (1 / n) εT (In – ρ WT)–1 WT ε (C.1.22)

 

.ˆ R+= ρρ  (C.1.23)

 
It should be clear that the plim (the probability limit operator) of the quadratic 
form in the disturbances shown in Eq. (C.1.22), will not equal zero except in the 
trivial case where 0ρ = , or if the matrix W is strictly triangular. As noted, under 
the simplifying assumption that Wy  and X are uncorrelated, the matrix inverse in 
Eq. (C.1.18) becomes diagonal having a simple analytical inverse, leading to: β̂ = 
(XT X)–1 XT y. It should be clear that a similar proof of inconsistency could be con-
structed for the least-squares estimate of this parameter vector. As already noted 
the maximum likelihood estimate should equal: ∗β  (XT X)–1 XT (In – ∗ρ W) y, 
which requires an unbiased estimate for .ρ  

Pace and LeSage (2009a) discuss the biases of OLS when applied to spatially 
dependent data in more detail. In a richer setting spatial dependence in the ex-
planatory variables as well as in the disturbances can further amplify the bias dis-
cussed here.  

Bayesian estimation 

An alternative to maximum likelihood estimation is Bayesian Markov Chain 
Monte Carlo (MCMC) estimation set forth in LeSage (1997) for the SAR model.2 
MCMC is based on the idea that a large sample from the Bayesian posterior distri-
bution of our parameters can be used in place of an analytical Bayesian solution 
where this is difficult or impossible. We designate the posterior distribution using 

                                                           
2 For an introduction to Bayesian methods in econometrics see Koop (2003). 



364      James P. LeSage and R. Kelley Pace 

p (θ ⏐ D),  where θ  represents the parameters ρ, β, 2σ  and D the sample data. If 
the sample from ( )p D|θ  were large enough, we could approximate the form of 
the posterior density using kernel density estimators or histograms, eliminating the 
need to know the precise analytical form of this complicated density. Simple sta-
tistics could also be used to construct means and variances based on the sampled 
values taken from the posterior.  

The parameters β  and 2σ  in the SAR model can be estimated by drawing se-
quentially from the conditional distributions of these two sets of parameters, a 
process known as Gibbs sampling because of its origins in image analysis, (Ge-
man and Geman 1984). The conditional distributions for these sets of parameters 
take the form of a multivariate normal distribution (for β) and inverse Gamma dis-
tribution (for 2σ ). Gibbs sampling has also been labeled alternating conditional 
sampling, which seems a more accurate description of the procedure.  

To illustrate how this works, assume for simplicity that we knew the true value 
for the parameter ρ . As already motivated in our discussion of concentrating the 
likelihood  function,  the  parameter vector  β  can  be  expressed  as:  β  = (XT X)–1  
XT (In – ρW) y, which is the mean of the normal conditional posterior distribution 
β ~ N [(XT X)–1 XT (In – ρ W) y, σ 2

 (XT X)–1]. We can use this mean expression in 
conjunction with the associated variance-covariance matrix: 2σ  (XT X)–1, to con-
struct a multivariate normal draw for the k-by-1 parameter vector β. We note that 
being able to condition on the parameter 2σ  (that is assume it is known) is what 
makes this calculation and multivariate normal draw simple. Similarly, the condi-
tional posterior distribution for the parameter 2σ  takes the form of an inverse 
Gamma distribution that we denote ( )IG a b,  with 2a n= / , and b = [(In – ρW) y 
− Xβ ]T [(In – ρW) y – Xβ ] /2. Again, the fact that we can treat the parameter vec-
tor β as known makes the calculations required to produce this draw simple.  

On each pass through the sequence of sampling from the two conditional dis-
tributions for β , σ 2, we collect the parameter draws which are used to construct a 
joint posterior distribution for these model parameters. (We are ignoring the pa-
rameter ρ  here, assuming it is known.) Gelfand and Smith (1990) demonstrate 
that sampling from the complete sequence of conditional distributions for all pa-
rameters in the model produces a set of estimates that converge in the limit to the 
true (joint) posterior distribution of the parameters. That is, despite the use of con-
ditional distributions in our sampling scheme, a large sample of the draws can be 
used to produce valid posterior inferences regarding the joint posterior mean and 
moments of the parameters.  

For the case of the SAR, SEM and SDM models, the conditional distribution 
for the spatial dependence parameter ρ  does not take the form of a known distri-
bution. However, LeSage (1997) describes an approach for sampling from the 
conditional distribution of this parameter using what has been labeled Metropolis-
Hastings sampling, (Metropolis et al. 1953; Hastings 1970). This allows us to es-
timate spatial regression models using MCMC sampling which involves produc-
ing samples from the complete sequence of conditional distributions for the model 
parameters β , 2σ  and ρ .  
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C.1.3  Estimates of parameter dispersion and inference 

In addition to maximum likelihood or Bayesian estimates for the parameters ρ, β  
and 2σ , we are often interested in inference regarding these. Bayesian MCMC es-
timation leads to large samples of draws for the model parameters that can be used 
to construct measures of dispersion used in Bayesian inference. Maximum likeli-
hood inference usually employs likelihood ratio (LR), Lagrange multiplier (LM), 
or Wald (W) tests. These are equivalent asymptotically, but can differ in small 
samples. The choice between these methods often comes down to computational 
convenience or personal preference.  

Pace and Barry (1997) propose likelihood ratio tests for hypotheses such as the 
deletion of a single explanatory variable that exploit the computational advantages 
of being able to rapidly evaluate the likelihood. Pace and LeSage (2003) discuss 
use of signed root deviance statistics which can be used to transform likelihood ra-
tio tests for single variable deletion to a form similar to t-tests.3 The signed root 
deviance is the square root of the deviance statistic with a sign matching the sign 
of the coefficient estimates β  (Chen and Jennrich 1996). These statistics behave 
similar to t-ratios for large samples, and can be used like a t-statistics for hypothe-
sis testing.  

Wald inference employs either an analytical or numerical version of the Hes-
sian or the related information matrix to produce a variance-covariance matrix for 
the estimated parameters. This can be used to construct conventional regression t-
statistics. An implementation issue is that constructing the analytical Hessian (or 
information matrix) involves computing the trace of a dense n-by-n matrix inverse 

1( )n ρ −−I W . LeSage and Pace (2009) provide a number of alternative ways to 
rapidly approximate elements of the Hessian.  

From a computational speed perspective the vector expressions from Pace and 
Barry (1997) for rapidly evaluating the log-likelihood function makes a purely 
numerical Hessian feasible for these models. However, there are some drawbacks 
to implementing this approach in software for general use, since practitioners of-
ten work with poorly scaled and multicollinear sample data. Such data can greatly 
degrade the accuracy of numerical estimates of the derivatives populating the Hes-
sian. A second point is that univariate optimization takes place using the likeli-
hood concentrated with respect to the parameters β  and 2σ , so a numerical ap-
proximation to the full Hessian from the maximum likelihood estimation 
procedure requires additional work. LeSage and Pace (2009) show how a single 
computationally difficult term within the analytical Hessian can be replaced with a 
numerical approximation. This allows the remaining analytical terms to be em-
ployed, increasing the accuracy and overcoming scaling problems.  

                                                           
3 Deviance is minus twice the log-likelihood ratio. 
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C.1.4  Interpreting parameter estimates 

Simultaneous feedback is a feature of the spatial regression model that comes 
from dependence relations embodied in spatial lag terms such as W y. These lead 
to feedback effects from changes in explanatory variables in a region that 
neighbors i, say region j, that will impact the dependent variable for observa-
tion/region i. This can of course be a valuable feature of these models if we are in-
terested in quantifying spatial spillover effects associated with the phenomena we 
are attempting to model.  

To see how these feedback effects work, consider the data generating process 
associated with the SAR model, shown in Eq. (C.1.24), to which we have applied 
the well-known infinite series expansion in Eq. (C.1.25) to express the inverse. 

 

1 1( ) ( )n nρ ρ− −= − + −y I W X I Wβ ε  (C.1.24)

 

1 2 2 3 3( )n nρ ρ ρ ρ−− = + + + +I W I W W W  … (C.1.25)

 

y = Xß  + ρWXß  + ρ2W2Xß  + … + ε + ρWε  + ρ2W2ε + ρ3W3ε + … (C.1.26) 

 
The model statement in Eq. (C.1.26) can be interpreted as indicating that the ex-
pected value of each observation iy  will depend on the mean value plus a linear 
combination of values taken by neighboring observations scaled by the depend-
ence parameter 2 3, , , ...ρ ρ ρ  

Consider powers of the row-stochastic spatial weight matrices W2, W3, … that 
appear in Eq. (C.1.26), where we assume that rows of the weight matrix W are 
constructed to represent first-order contiguous neighbors. The matrix 2W  will re-
flect second-order contiguous neighbors, those that are neighbors to the first-order 
neighbors. Since the neighbor of the neighbor (second-order neighbor) to an ob-
servation i includes observation i itself, 2W has positive elements on the diagonal. 
That is, higher-order spatial lags can lead to a connectivity relation for an observa-
tion i such that W 2Xβ  and W 2 ε will extract observations from the vectors Xβ   
and ε  that point back to the observation i itself. This is in stark contrast with the 
conventional independence relation in ordinary least-squares regression where the 
Gauss-Markov assumptions rule out dependence of iε  on other observations j, by 
assuming zero covariance between observations i and j in the data generating 
process.  
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Steady-state equilibrium interpretation 

One might suppose that feedback effects would take time, but there is no explicit 
role for passage of time in our cross-sectional model. Instead, we view the cross-
sectional sample of regions as the result of an equilibrium outcome or steady state 
of the regional process we are modeling. To elaborate on this point, consider a re-
lationship where y represents regional income at time t, denoted by yt, and this de-
pends on current period own-region characteristics Xt such as labor, human and 
physical capital and associated parameters β, plus observed income levels of 
neighboring regions from the past period, 1t − . This type of space-time depend-
ence could be represented by a space-time lag variable Wy t–1, leading to the 
model in Eq. (C.1.27). It seems reasonable to assume that regional characteristics 
such as labor, human and physical capital change slowly over time, so we make 
the simplifying assumption that these do not change over time, that is we set  Xt = 
X in Eq. (C.1.27).4  

 

ttt εβXyWy ++= −1ρ . (C.1.27)

 
Note that we can replace 1t−y  on the right-hand-side of Eq. (C.1.27) with 

1 2t tρ− −= +y W y XX β + ε t–1, and continue this type of recursive substitution and in 
the limit with large t and q produce (LeSage and Pace 2009): 

 

2 2 1 1lim ( ) lim q q q q
t n t qq t q t

E E …ρ ρ ρ ρ− −⎛ ⎞
⎜ ⎟ −⎝ ⎠→ →
⎡ ⎤= + + + + + +⎣ ⎦y I W W W X W y uβ  

1( ) .n ρ −= −I W Xβ  (C.1.28)

 
We conclude from this that the long-run expectation of the model in Eq. (C.1.27), 
can be interpreted as having a steady-state equilibrium that takes a form consistent 
with the data generating process for our cross-sectional SAR model. In other 
words, simultaneous feedback is a feature of the equilibrium steady-state for spa-
tial regression models that include spatial lags of the dependent variable. In the 
context of our static cross-sectional SAR model where we treat the observed sam-
ple as reflecting a steady state equilibrium outcome, these feedback effects appear 
as instantaneous, but they should be interpreted as showing a movement to the 
next steady state.  

                                                           
4 LeSage and Pace (2009) show that one can produce a similar result to that presented here 

if the explanatory variables Xt evolve over time in a number of ways. 
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Interpreting the parameters β  

LeSage and Pace (2009) point out that interpretation of the parameter vector β in 
the SAR model is different from a conventional least squares interpretation. In 
least-squares the rth parameter, β r , from the vector β, is interpreted as represent-
ing the partial derivative of y with respect to a change in the rth explanatory vari-
able from the matrix X, which we write as Xr. In standard least-squares regression 
where the dependent variable vector contains independent observations, changes 
in observation i of the rth variable which we denote Xir only influence observation 

iy , whereas the SAR model allows this type of change to influence yi as well as 
other observations yj, where j i≠ . This type of impact arises due to the interde-
pendence or connectivity between observations in the SAR model.  

To see how this works, consider the SAR model expressed as shown in         
Eq. (C.1.29).  

 

( )n ρ− = +I W y Xβ ε  (C.1.29)
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( ) ( )( )r n rS V β=W W I  (C.1.31)

 

1 2 2 3 3( ) ( )n nV ρ ρ ρ ρ−= − = + + + +W I W I W W W  … (C.1.32) 

 
To illustrate the role of ( )rS W , consider the expansion of the data generating 
process in Eq. (C.1.30) as shown in Eq. (C.1.33).  
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To make the role of ( )rS W  clear, consider the determination of a single depend-
ent variable observation yi shown in Eq. (C.1.34). 
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It follows from Eq. (C.1.34) that the derivative of iy  with respect to Xjr takes the 
form shown in Eq. (C.1.35), where we use ( )r ijS W  to represent the (i, j)th element 
from the matrix ( ).rS W  
 

.)( ijr
jr

i WSX
y

=
∂
∂  (C.1.35)

 
In contrast to the least-squares case, the derivative of iy  with respect to Xir usually 
does not equal βr, and the derivative of iy  with respect to Xjr for j ≠ i usually 
does not equal zero. Therefore, any change to an explanatory variable in a single 
region (observation) can affect the dependent variable in other regions (observa-
tions). This is of course a logical consequence of our simultaneous spatial depend-
ence model. A change in the characteristics of neighboring regions can set in mo-
tion changes in the dependent variable that will impact the dependent variable in 
neighboring regions. These impacts will continue to diffuse through the system of 
regions.  

Since the partial derivative impacts now take the form of a matrix, LeSage and 
Pace (2009) propose scalar summary measures for these impacts. These cumulate 
the impacts across all observations that arise from changes in all observations of 
the explanatory variables and then construct an average impact to simplify inter-
pretation.  

The scalar summary measures of impact are based on the idea that the own de-
rivative for the  ith  region takes the form in Eq. (C.1.36),  representing the  i th  
diagonal element of the matrix ( )rS W , which we denote ( )r iiS W .  
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Of course,  the cross-derivative  would  take  the  form shown in  Eq. (C.1.35)  for 
i ≠ j, so we can construct scalars by averaging over elements of the matrix 

( ).rS W  Averaging over the main diagonal elements of the matrix produces a sca-
lar summary that reflects own-derivatives while averaging over off-diagonal ele-
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ments reflect cross-derivatives. The total impact arising from a change in explana-
tory variable Xr is reflected by all elements of the matrix ( ).rS W  This can be de-
composed into direct and indirect or spatial spillover impacts that sum to a total 
impact arising from a change (on average across all observations) in the variable 

Xr . 
Formally, the LeSage and Pace (2009) definitions for the scalar summary 

measures of impact are 
 

(a) Average Direct Impact. The impact of changes in the i th observation of Xr –
which we denote Xir – on iy  could be summarized by measuring the average 
of main diagonal elements ( )r iiS W , from the matrix ( ).rS W  

(b) Average Total Impact. The sum across the ith row of ( )rS W  represents the to-
tal impact on individual observation iy  resulting from changing the rth ex-
planatory variable by the same amount across all n observations (for example,  
Xr + διn where δ  is the scalar change). On the other hand, the sum across the 
i th column reflects the total impact on all iy  arising from changing the r th 
explanatory variable by an amount in the jth observation (for example, Xjr + 
δ). Averaging either the sum of the row or column sums will produce the same 
number, which represents the total impact.  

(c) Average Indirect Impact. This is by definition the difference between the total 
and direct impacts. This summary impact measure reflects what are com-
monly thought of as spatial spillovers, or impacts falling on regions other than 
the own-region.  

 
LeSage and Pace (2009) point to an interpretative distinction between the average 
total impact summary measure that arises from averaging row-sums versus that 
from averaging columns-sums. Despite the equality of these two scalar summa-
ries, the average of row-sums could be viewed as reflecting the (average) Total 
Impact to an Observation, whereas the average column-sums are more appropri-
ately interpreted as the (average) Total Impact from an Observation.  

To elaborate on the distinction between these two interpretative viewpoints, 
consider a modeling situation where interest centers on how a financial crisis in a 
single country/observation spills over to produce contagion in financial markets of 
other countries (Kelejian et al. 2006). This situation can be viewed as a change in 
the jth observation/country (for example, Xjr + δ) impact on all countries yi, i = 1, 
…, n, or the (average) Total Impact from an Observation.  

In contrast, if interest centers on how a rise in human capital levels across all 
regions by some amount will (on average) influence a single region’s growth rate, 
then we are working with the (average) Total Impact to an Observation interpreta-
tive viewpoint (Dall’erba and LeGallo 2007).  

It is easy to see that the numerical values of the summary measures for the two 
forms of average total impacts set forth above are equal, since the average of the 
column of row-sums ( )r r nc S= W ι , equal to n–1 ιT

n cr = n–1 ιT 
n   Sr(W) ι n. On the other 
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hand, the average of the row of column-sums rr = ιT
n  Sr (W), equals 1

r nn r− ι  which 
is also equal to n–1 ιT

n  Sr (W) ι n.  
The summary measure of total impacts,  n–1 ιT

n  Sr (W)ιn, for the SAR model 
take the simple form in Eq. (C.1.37) for a model that relies on a row-stochastic W 
matrix (where the row-sums equal one). 

 

n–1 ιT
n  Sr (W) ι n = n–1 ιT

n
1 1( ) (1 ) .n r n rρ β ρ β− −− = −I W ι  (C.1.37)

 
One point to note is that even the average direct impact for this model does not 
equal the coefficient βr as in the case of a conventional regression model. The dif-
ference between the coefficient estimate βr and the scalar summary measure of av-
erage direct impact arises from the feedback loop reflecting how initial changes in 

iy  give rise to impacts on neighboring regions jy  which in turn pass through 
neighboring regions and feedback to region i. Of course, the magnitude of this 
type of feedback will depend on aspects of the spatial regression model used and 
the resulting parameter estimates. For example, the nature of the connectivity 
structure W used in the model and the magnitude of the parameter estimates for ρ  
and β  both play a role in determining the impacts.  

Finally, we should bear in mind the discussion in Section C.1.4, indicating that 
we should interpret these scalar summary measures of impact as reflecting how 
changes in the explanatory variables work through the simultaneous dependence 
system over time to culminate in a new steady state equilibrium. For example, if 
we find that a ten percent increase in regional levels of human capital give rise to a 
five percent direct impact on regional income growth and a ten percent indirect 
impact, we would conclude that these changes would be associated with regional 
income levels in the new steady-state equilibrium. In the context of our static 
cross-sectional model we cannot make informative statements about the time that 
will be required to reach this new equilibrium. Another point is that the indirect 
impacts will often exceed the direct impacts because the scalar summary measures 
cumulate impacts over all regions in the model. LeSage and Pace (2009) provide 
ways  to decompose these  cumulative impacts into those falling on first-order, 
second-order and higher-order neighboring regions. These decompositions result 
in the more intuitive situation where direct impacts exceed indirect impacts falling 
on first-order, second-order and higher-order neighbors. However, the cumulative 
impact scalar summary measures add up impacts falling on neighbors of all or-
ders, which often results in indirect or spatial spillover impacts that exceed the di-
rect impacts.  

One applied illustration that uses these scalar summary impact estimates can 
be found in Chapter E.1. The application considers the direct, indirect and total 
impacts of changes  in human capital on  labor productivity levels in European 
Union regions. A number of other applications can be found in LeSage and Pace 
(2009) in a wide variety of applied contexts.  
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Inference regarding the impacts 

For inference regarding the significance of these impacts, we need to determine 
their empirical or theoretical distribution. Since the impacts reflect a non-linear 
combination of the parameters ρ  and β  in the case of the SAR model, working 
with the theoretical distribution is not particularly convenient. Given the model es-
timates as well as associated variance-covariance matrix along with the knowledge 
that maximum likelihood estimates are (asymptotically) normally distributed, we 
can simulate the parameters ρ  and β . These empirically simulated magnitudes 
can be used in expressions for the scalar summary measures to produce an empiri-
cal distribution of the scalar impact measures.  

For the case of Bayesian MCMC estimates we already have a sample of pa-
rameter draws for ρ  and β  which can be used in conjunction with the expressions 
for the scalar summary measures to produce a posterior distribution of the total, 
direct and indirect impact measures. Gelfand et al. (1990) show that this is a valid 
approach to derive the posterior distribution for non-linear combinations of model 
parameters.  

For the case of the SAR model, this is relatively straightforward requiring that 
we need only evaluate the expression: 1(1 )ρ β−− βr  to find the total impacts. Calcu-
lating the direct impacts requires that we work with the main diagonal of the ma-
trix 1( )n ρ −−I W  for which LeSage and Pace (2009) provide computationally effi-
cient methods. Recall that we would need to carry out these calculations thousands 
of times using the simulated parameter values or MCMC draws to determine the 
empirical measures of dispersion. These measures are used to determine the statis-
tical significance of direct, indirect and total impacts associated with the various 
explanatory variables in the model, in a fashion similar to use of t-statistics in 
conventional regression models. In more complicated models such as the SDM, 
the scalar summary measures of impact take more complicated forms, but LeSage 
and Pace (2009) provide computationally efficient approaches for evaluating these 
expressions.  

An applied illustration of a simulation approach to determining measures of 
dispersion for these scalar summary impact estimates can be found in Chapter E.1. 
Another illustration is given in LeSage and Fischer (2008) in the context of model 
averaging methods discussed in Chapter C.4.  

Spatial heterogeneity, spatial dependence, and impacts 

Many authors draw a distinction between models of spatial dependence and those 
of spatial heterogeneity. Typically, spatial dependence models estimate a parame-
ter for  each variable  while spatial  heterogeneity  models  effectively estimate an 
n-by-n matrix of parameters. The Casetti expansion method (Casetti 1997, see also 
Chapter C.6) and GWR (Fotheringham et al. 2002; see also Chapter C.5) exem-
plify this approach.  
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However, the distinction between models of spatial dependence and those of spa-
tial heterogeneity is not as clear as it might initially appear. To motivate this dis-
cussion, consider the usual linear model (C.1.38) with the parameters written in 
matrix form in Eqs. (C.1.39) to ( C.1.41). 

 

E (y) = X1 β1 + X2 β2 + … +Xk βk (C.1.38)

  

E (y) = Θ (1) X1 + Θ (2) X2 + … + Θ (k) Xk (C.1.39)

 
( ) 1, , 1, ,r
ii rB r … k i … nβ= = , =  

 
(C.1.40)

Θ (r) = B(r). (C.1.41)

 
Obviously, in the usual linear model the impact of changing the explanatory vari-
able is the same across observations and a change in the explanatory variable for 
one observation does not affect the others.  

What if we gave geometrically declining weights to the values of the parame-
ters at the neighbors, including parameters at the neighbors of neighbors, and so 
forth as shown in Eq. (C.1.42). Given the formula for the infinite series expansion, 
this leads to Eq. (C.1.43). Interestingly, the matrix of parameters implied by this 
process equals the matrix of impacts ( ( )rS W ) discussed previously. As before, we 
can view the expected value of the dependent variable as a sum of the impacts 
from all the explanatory variables as in Eq. (C.1.44). 

 

Θ(r) = In B
(r) +ρ W B(r) + ρ2 W2 B(r) + … (C.1.42)

 

Θ(r) = (In – ρ W )–1 B(r) = Sr (W) (C.1.43)

 

E (y) = S1 (W) X1 + S2 (W) X2 + … + Sk (W) Xk . (C.1.44)

 
To summarize, spatial dependence involving a spatial lag of the dependent vari-
able implies a form of spatial heterogeneity where the impacts measure the het-
erogeneity across observations. Error models, however, do not result in heteroge-
nous impacts over space. Therefore, the traditional distinction between spatial 
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heterogeneity and spatial dependence is meaningful in the case of error models but 
misleading in the case of spatial autoregressive models.  

C.1.5  Concluding remarks 

Spatial autoregressive processes represent a parsimonious way to model spatial 
dependence between observations that often arises in regional economic research. 
We have shown how basic regression models can be augmented with spatial auto-
regressive processes to produce models that incorporate simultaneous feedback 
between regions located in space. It was also shown that conventional regression 
model estimates that ignore this feedback are biased and inconsistent.  

Interpretation of estimates and inferences regarding the spatial connectivity re-
lationships modeled require interpretation based on a steady-state equilibrium 
view. These models produce a situation where changes in the explanatory vari-
ables lead to a series of simultaneous feedbacks that ultimately result in a new 
steady-state equilibrium. Because we are working with cross-sectional sample 
data, these model adjustments appear as if they are simultaneous, but we argued 
that these models can be viewed as containing an implicit time dimension.  

The availability of public domain software to implement estimation and infer-
ence for the models described here should make these methods widely accessible 
(Anselin 2006; Bivand 2002; LeSage 1999; Pace 2003).  
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C.2  Spatial Panel Data Models 

J. Paul Elhorst 

C.2.1  Introduction 

In recent years, the spatial econometrics literature has exhibited a growing interest 
in the specification and estimation of econometric relationships based on spatial 
panels. Spatial panels typically refer to data containing time series observations of 
a number of spatial units (zip codes, municipalities, regions, states, jurisdictions, 
countries, etc.). This interest can be explained by the fact that panel data offer re-
searchers extended modeling possibilities as compared to the single equation 
cross-sectional setting, which was the primary focus of the spatial econometrics 
literature for a long time. Panel data are generally more informative, and they con-
tain more variation and less collinearity among the variables. The use of panel 
data results in a greater availability of degrees of freedom, and hence increases ef-
ficiency in the estimation. Panel data also allow for the specification of more 
complicated behavioral hypotheses, including effects that cannot be addressed us-
ing pure cross-sectional data (see Hsiao 2005 for more details). 

Elhorst (2003) has provided a review of issues arising in the estimation of four 
panel data models commonly used in applied research extended to include spatial 
error autocorrelation or a spatially lagged dependent variable: fixed effects, ran-
dom effects, fixed coefficients, and random coefficients models. In addition, Mat-
lab routines to estimate the fixed effects and random effects models have been 
provided at his website, see <www.regroningen.nl/elhorst> or <http://www.rug.nl/ 
staff/j.p.elhorst/projects>. Many studies have applied these routines by now to es-
timate regional labor market models, economic growth models, public expendi-
tures or tax setting models, and agricultural models. These applications have led to 
new insights, developments and extensions, but also to new questions and misun-
derstandings. This chapter reviews and organizes these recent methodologies. It 
deals with the possibility to test for spatial interaction effects in standard panel 
data models, the estimation of fixed effects and the determination of their signifi-
cance levels, the possibility to test the fixed effects specification against the ran-
dom effects specification of panel data models extended to include spatial error 
autocorrelation or a spatially lagged dependent variable using Hausman's specifi-
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Software Tools, Methods and Applications, DOI 10.1007/978-3-642-03647-7_19,
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cation test, the determination of the variance-covariance matrix of the parameter 
estimates of these extended models, the determination of goodness-of-fit measures 
and the best linear unbiased predictor when using these models for prediction pur-
poses. For reasons of space, attention is limited to models with spatial fixed ef-
fects or spatial random effects. The concluding section also briefly discusses the 
possibility to test for endogeneity of one or more of the explanatory variables and 
the possibility to include dynamic effects. 

C.2.2  Standard models for spatial panels 

First, a simple pooled linear regression model with spatial specific effects is con-
sidered, but without spatial interaction effects 

 

itiitit µy ε++= βX  (C.2.1)

 
where  i   is  an  index  for   the  cross-sectional   dimension  (spatial  units),   with  
i = 1, ..., N,   and  t  is  an  index   for  the  time   dimension   (time  periods),  with  
t = 1, ..., T. yit is an observation on the dependent variable at i and t, Xit an 1-by-K 
row vector of observations on the independent variables, and β a matching K-by-1 
vector of fixed but unknown parameters. εit is an independently and identically 
distributed error term for i and t with zero mean and variance σ 2, while µi denotes 
a spatial specific effect. The standard reasoning behind spatial specific effects is 
that they control for all space-specific time-invariant variables whose omission 
could bias the estimates in a typical cross-sectional study. 

When specifying interaction between spatial units, the model may contain a 
spatially lagged dependent variable or a spatial autoregressive process in the error 
term, known as the spatial lag and the spatial error model, respectively. The spatial 
lag model posits that the dependent variable depends on the dependent variable 
observed in neighboring units and on a set of observed local characteristics 

 

∑
=

+++=
N

j
itiitjtijit µWy

1
εδ βXy  (C.2.2)

 
where δ is called the spatial autoregressive coefficient and Wij is an element of a 
spatial weights matrix W describing the spatial arrangement of the units in the 
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sample. It is assumed that W is a pre-specified non-negative matrix of order N.1 
According to Anselin et al. (2006, p.6), the spatial lag model is typically consid-
ered as the formal specification for the equilibrium outcome of a spatial or social 
interaction process, in which the value of the dependent variable for one agent is 
jointly determined with that of the neighboring agents. In the empirical literature 
on strategic interaction among local governments, for example, the spatial lag 
model is theoretically consistent with the situation where taxation and expendi-
tures on public services interact with taxation and expenditures on public services 
in nearby jurisdictions (Brueckner 2003).  

The spatial error model, on the other hand, posits that the dependent variable de-
pends on a set of observed local characteristics and that the error terms are corre-
lated across space 

 

itiitit µy φ++= βX  (C.2.3a) 

itjt

N

j
ijit W εφρφ += ∑

=1

 
(C.2.3b) 

 
where itφ  reflects the spatially autocorrelated error term and ρ is called the spatial 
autocorrelation coefficient. According to Anselin et al. (2006, p.7), a spatial error 
specification does not require a theoretical model for a spatial or social interaction 
process, but, instead, is a special case of a non-spherical error covariance matrix. 
In the empirical literature on strategic interaction among local governments, the 
spatial error model is consistent with a situation where determinants of taxation or 
expenditures on public services omitted from the model are spatially autocorre-
lated, and with a situation where unobserved shocks follow a spatial pattern. A 
spatially autocorrelated error term may also be interpreted to reflect a mechanism 
to correct rent-seeking politicians for unanticipated fiscal policy changes (Allers 
and Elhorst 2005). 

In both the spatial lag and the spatial error model, stationarity requires that 
1/ωmin < δ < 1/ωmax and 1/ωmin < ρ < 1/ωmax , where ωmin and ωmax denote the small-
est (i.e., most negative) and largest characteristic roots of the matrix W. While it is 
often suggested in the literature to constrain δ or ρ to the interval (–1, +1), this 
may be unnecessarily restrictive. For row-normalized spatial weights, the largest 
characteristic root is indeed +1, but no general result holds for the smallest charac-
teristic root, and the lower bound is typically less than –1. See also the lively dis-

                                                           
1  The regularity conditions W should satisfy in a cross-sectional setting have been derived 

by Lee (2004), but some of these regularity conditions may change in a panel data setting 
(Yu et al. 2007). 
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cussion at GeoDa's Openspace mailing list about the bounds on the spatial lag co-
efficient. 

As an alternative to row-normalization, W might be normalized such that the 
elements of each column sum to one. This type of normalization is sometimes 
used in the social economics literature (Leenders 2002). Note that the row ele-
ments of a spatial weights matrix display the impact on a particular unit by all 
other units, while the column elements of a spatial weights matrix display the im-
pact of a particular unit on all other units (see Chapter C.1 for a more detailed dis-
cussion of this issue). Consequently, row normalization has the effect that the im-
pact on each unit by all other units is equalized, while column normalization has 
the effect that the impact of each unit on all other units is equalized. 

If W0 denotes the spatial weights matrix before normalization, one may also 
divide the elements of W0 by its largest characteristic root ω0,max to get W = 
(1/ω0,max)W0, or normalize W0 by W = D–1/2W0 D

–1/2, where D is a diagonal matrix 
containing the row sums of the matrix W0. The first operation may be labeled ma-
trix normalization, since it has the effect that the characteristic roots of W0 are also 
divided by ω0,max, as a result of which ωmax=1, just like the largest characteristic 
root of a row- or column-normalized matrix. The second operation has been pro-
posed by Ord (1975) and has the effect that the characteristic roots of W are iden-
tical to the characteristic roots of a row-normalized W0. Importantly, the mutual 
proportions between the elements of W remain unchanged as a result of these two 
alternative normalizations. This is an important property when W represents an in-
verse distance matrix, since scaling the rows or columns of an inverse distance 
matrix so that the weights sum to one would cause this matrix to lose its economic 
interpretation for this decay (Anselin 1988, pp.23-24). One concomitant advantage 
of spatial weights matrices that do not lose their property of symmetry as a result 
of normalization is that notation, in some cases, is considerably simplified and that 
computation time will speed up (Elhorst 2001, 2005a).  

Two main approaches have been suggested in the literature to estimate models 
that include spatial interaction effects. One is based on the maximum likelihood 
(ML) principle and the other on instrumental variables or generalized method of 
moments (IV/GMM) techniques. Although IV/GMM estimators are different from 
ML estimators in that they do not rely on the assumption of normality of the er-
rors, both estimators assume that the disturbance terms εit are independently and 
identically distributed for all i and t with zero mean and variance σ2. The Jarque-Bera 
(1980) test may be used to investigate the normality assumption when applying 
ML estimators.2 One disadvantage of IV/GMM estimators is the possibility of 

                                                           
2  This test has a chi-squared distribution with one degree of freedom. In addition, the Jar-

que-Bera test may be used to test for serial independence and homoskedasticity of the re-
gression residuals. These tests have a chi-squared distribution with p degrees of freedom 
when testing for p-order serial autocorrelation, and q degrees of freedom when testing for 
homoskedasticity, one degree for every variable that might explain heteroskedasticity. 
Although informative, it should be noted that these tests were not developed in the con-
text of a model with spatial interaction effects. 
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ending up with a coefficient estimate for δ or for ρ outside its parameter space 
(1/ωmin,1/ωmax). Whereas this coefficient is restricted to its parameter space by the 
Jacobian term in the log-likelihood function of ML estimators, it is unrestricted 
using IV/GMM since these estimators ignore the Jacobian term.  

Franzese and Hays (2007) compare the performance of the IV estimator and 
the ML estimator of panel data models with a spatially lagged dependent variable 
in terms of unbiasedness and efficiency, but unfortunately without considering 
spatial fixed or random effects. They find that the ML estimator offers weakly 
dominant efficiency and generally solid performance in unbiasedness, although it 
sometimes falls a little short of IV on unbiasedness grounds at lower values of δ.  

The main focus in this chapter will be on ML estimation, because the number 
of studies considering IV/GMM estimators of spatial panel data models is still 
relatively sparse. One exception is Kelejian et al. (2006), who considered IV esti-
mation of a spatial lag model with time period fixed effects. They point out that 
this model cannot be combined with a spatial weights matrix whose non-diagonal 
elements are all equal to 1/(N–1). In this situation, the spatially lagged dependent 
variable can be written in vector form as 
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which is asymptotically proportional and thus collinear with the time period fixed 
effects as N goes to infinity. Another exception is Kapoor et al. (2007), who con-
sidered the GMM estimator of a spatial error model and time period random ef-
fects. However, neither of these studies considered spatial fixed or random effects, 
while just these effects often appear to be important in panel data studies. 

One shortcoming of the spatial lag model and the spatial error model is that 
spatial patterns in the data may be explained not only by either endogenous inter-
action effects or correlated error terms, but also by endogenous interaction effects, 
exogenous interaction effects and correlated error terms at the same time (Manski 
1993). The best strategy would, therefore, seem to be to include the spatially 
lagged dependent variable, the K spatially lagged independent variables, and the 
spatially autocorrelated error term simultaneously.3 However, Manski (1993) has 
also pointed out that at least one of these 2+K spatial interaction effects must be 
excluded, because otherwise their interaction parameters are not identified. In ad-

                                                           
3  In his keynote speech at the First World Conference of the Spatial Econometrics Asso-

ciation 2007, Harry Kelejian advocated models that include both a spatially lagged de-
pendent variable and a spatially autocorrelated error term, while James LeSage in his 
Presidential Address at the 54th North American Meeting of the Regional Science Asso-
ciation International 2007 advocated models that include both a spatially lagged depend-
ent variable and spatially lagged independent variables. 
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dition to this, the spatial weights matrix of the spatially lagged dependent variable 
must be different from the spatial weights matrix of the spatially autocorrelated er-
ror term, an additional requirement for identification when applying ML estima-
tors (Anselin and Bera 1998). One ostensible advantage of IV/GMM estimators is 
that the same spatial weights matrix can be used to estimate a model extended to 
include a spatially lagged dependent variable and a spatially autocorrelated error 
term (Kelejian and Prucha 1998; Lee 2003). However, these estimators on their 
turn are unable to estimate models with spatially lagged independent variables, 
since they use these variables as instruments.  

Alternatively, one may first test whether spatially lagged independent vari-
ables must be included and then whether the model should be extended to include 
a spatially lagged dependent variable or a spatially autocorrelated error term 
(Florax and Folmer 1992; Elhorst and Freret 2009) or adopt an unconstrained spa-
tial Durbin model and then test whether this model can be simplified (Elhorst et al. 
2006; Ertur and Koch 2007). An unconstrained spatial Durbin model with spatial 
fixed effects takes the form 
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where γ, just as β, is a K-by-1 vector of fixed but unknown parameters. The hy-
pothesis H0: γ = 0 can be tested to investigate whether this model can be simplified 
to the spatial lag model and the hypothesis H0: γ + δβ = 0 whether it can be sim-
plified to the spatial error model. A simulation study by Florax et al. (2003) 
showed that the specific-to-general approach outperforms the general-to-specific 
approach when using cross-sectional data. However, one objection to this study is 
that the comparison between the two approaches is invalid because the null rejec-
tion frequencies have not been standardized (Hendry 2006). Another objection is 
that the model that has been used as point of departure did not include spatially 
lagged independent variables. Hence, a more careful elaboration of the relative 
merits of both approaches when using spatial panel data remains a topic of further 
research. 

C.2.3  Estimation of panel data models 

The spatial specific effects may be treated as fixed effects or as random effects. In 
the fixed effects model, a dummy variable is introduced for each spatial unit, 
while in the random effects model, µi is treated as a random variable that is inde-
pendently and identically distributed with zero mean and variance σμ

2 . Further-
more, it is assumed that the random variables µi and εit are independent of each 
other.  
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Throughout this chapter it is assumed that the data are sorted first by time and then 
by spatial units, whereas the classic panel data literature tends to sort the data first 
by spatial units and then by time. When yit and Xit of these T successive cross-
sections of N observations are stacked, we obtain an NT-by-1 vector for y and an NT-
by-K matrix for X. 

Fixed effects model 

If the spatial specific effects are treated as fixed effects, the model in Eq. (C.2.1) 
can be estimated in three steps. First, the spatial fixed effects µi are eliminated 
from the regression equation by demeaning the dependent and independent vari-
ables. This transformation takes the form 
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Second,  the transformed regression equation y*

it = X*
it β + ε *

it is estimated by OLS: 
β = (X*T X*)–1 X*T y* and σ 2= (y* – X* β)T (y*–X* β) /(NT–N–K). This estimator is 
known as the least squares dummy variables (LSDV) estimator. The main advan-
tage of the demeaning procedure is that the computation of β involves the inver-
sion of a K-by-K matrix rather than (K+N)-by-(K+N) as in Eq. (C.2.1). This would 
slow down the computation and worsen the accuracy of the estimates considerably 
for large N. 

Instead of estimating the demeaned equation by OLS, it can also be estimated 
by ML. Since the log-likelihood function of the demeaned equation is  
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the ML estimators of β and σ 2 are β = (X*T X*)–1 X*T y* and σ 2 = (y* – X*β)T (y*–
X*β) / NT, respectively. In other words, the ML estimator of σ 2 is slightly different 
from the LSDV estimator in that it does not correct for degrees of freedom. The 
asymptotic variance matrix of the parameters is (see Greene 2008, p.519) 
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Finally, the spatial fixed effects may be recovered by 
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It should be stressed that the spatial fixed effects can only be estimated consis-
tently when T is sufficiently large, because the number of observations available 
for the estimation of each µi is T. Also note that sampling more observations in the 
cross-sectional domain is no solution for insufficient observations in the time do-
main, since the number of unknown parameters increases as N increases, a situa-
tion known as the incidental parameters problem. Fortunately, the inconsistency of 
µi is not transmitted to the estimator of the slope coefficients β in the demeaned 
equation, since this estimator is not a function of the estimated µi. Consequently, 
the incidental parameters problem does not matter when β are the coefficients of 
interest and the spatial fixed effects µi are not, which is the case in many empirical 
studies. Finally, note that the incidental parameters problem is independent of the 
extension of the model with spatial interaction effects. 

In case the spatial fixed effects µi do happen to be of interest, their standard er-
rors may be computed as the square roots of their asymptotic variances (see 
Greene 2008, p.196) 

 

.)())((ˆˆ)ˆ( T

1 1

11*T*12
2

∑ ∑
= =

−+=
T

t

T

t
itTitTi TµAsyVar XXXXσσ  (C.2.10) 

 
An alternative and equivalent formulation of Eq. (C.2.1) is to introduce a mean in-
tercept α, provided that Σi µi = 0. Then the spatial fixed effect µi represents the de-
viation of the ith spatial unit from the individual mean (see Hsaio 2003, p.33). 

To test for spatial interaction effects in a cross-sectional setting, Anselin et al. 
(1996) developed Lagrange multiplier (LM) tests for a spatially lagged dependent 
variable, for spatial error correlation, and their counterparts robustified against the 
alternative of the other form.4 These tests have become very popular in empirical 
research. Recently, Anselin et al. (2006) also specified the first two LM tests for a 
spatial panel 

 

                                                           
4  Software programs, such as SpaceStat and GeoDa, have built-in routines that automati-

cally report the results  of these tests.  Matlab routines  have been made available by 
Donald Lacombe at ≤http://oak.cats.ohiou.edu/~lacombe/research.html≥. 
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where the symbol ⊗ denotes the Kronecker product, IT denotes the identity matrix 
and its subscript the order of this matrix, and e denotes the residual vector of a 
pooled regression model without any spatial or time-specific effects or of a panel 
data model with spatial and/or time period fixed effects. Finally, J and WT  are de-
fined by 

 

( ){ }2T1TT

2
ˆˆ)(])([ˆ)(

ˆ
1 σ
σ WTNTT TTJ +⊗−⊗= − βXWIXXXXIβXWI  (C.2.12)

)( TWWWW +=traceTW  (C.2.13)

 
where trace denotes the trace of a matrix. In view of these formulas, the robust 
counterparts of these LM tests for a spatial panel will take the form 
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Note that the performance of these tests when having panel data instead of cross-
sectional data and when having a model extended to include spatially lagged inde-
pendent variables must still be investigated. 

Applied researchers often find weak evidence in favor of spatial interaction 
effects when time period fixed effects are also accounted for. The explanation is 
that most variables tend to increase and decrease together in different spatial units 
along the national evolution of these variables over time. The labor force partici-
pation rate and its evolution over the business cycle is one of the best examples 
(Elhorst 2008a). In the long term, after the effects of shocks have been settled, 
variables return to their equilibrium values. In equilibrium, neighboring values 
tend to be more similar than those further apart, but this interaction effect is often 
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weaker than its counterpart over time. The mathematical explanation is that time 
period fixed effects are identical to a spatially autocorrelated error term with a 
spatial weights matrix whose elements are all equal to 1/N, including the diagonal 
elements. When this spatial weights matrix would be adopted, one obtains 
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which is equivalent to the demeaning procedure of Eq. (C.2.6) but then for fixed 
effects in time. Even though spatial weights matrices with non-zero diagonal ele-
ments are unusual in spatial econometrics, these expressions show that accounting 
for time period fixed effects is one way to correct for spatial interaction effects 
among the error terms. If, in addition to time period fixed effects, a spatial error 
term is considered with a spatial weights matrix with zero diagonal elements, the 
magnitude of this spatial interaction effect will automatically fall as a result.  

Applied researchers also often find significant differences among the coeffi-
cient estimates from models with and without spatial fixed effects. These models 
are different in that they utilize different parts of the variation between observa-
tions. Models with controls for spatial fixed effects utilize the time-series compo-
nent of the data, whereas models without controls for spatial fixed effects utilize 
the cross-sectional component of the data. As a result, some studies argue that 
models with controls for spatial fixed effects tend to give short-term estimates and 
models without controls for spatial fixed effects tend to give long-term estimates 
(Baltagi 2005, pp.200-201; Partridge 2005). A related problem of controlling for 
spatial fixed effects is that any variable that does not change over time or only var-
ies a little cannot be estimated, because it is wiped out by the demeaning trans-
formation. This is the main reason for many studies not controlling for spatial 
fixed effects.  

On the other hand, if one or more relevant explanatory variables are omitted 
from the regression equation, when they should be included, the estimator of the 
coefficients of the remaining variables is biased and inconsistent (Greene 2008, 
pp.133-134). This also holds true for spatial fixed effects and is known as the 
omitted regressor bias. One can test whether the spatial fixed effects are jointly 
significant by performing a Likelihood Ratio (LR) test of the hypothesis H0: µ1 = 
… = µN = α, where α is the mean intercept. The corresponding test statistic is –2s, 
where s measures the difference between the log-likelihood of the restricted model 
and that of the unrestricted model. The LR test has a chi-squared distribution with 
degrees of freedom equal to the number of restrictions that must be imposed on 
the unrestricted model to obtain the restricted model, which in this particular case 
is N–1. Thanks to the availability of the log-likelihood of the restricted as well as 
of the unrestricted model, the LR test can be carried out instead of, or in addition 
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to, the classical F-test spelled out in Baltagi (2005, p.13). It is another advantage 
of estimating models by ML. 

Random effects model 

A compromise solution to the all or nothing way of utilizing the cross-sectional 
component of the data is the random effects model. This model avoids the loss of 
degrees of freedom incurred in the fixed effects model associated with a relatively 
large N and the problem that the coefficients of time-invariant variables cannot be 
estimated. However, whether the random effects model is an appropriate specifica-
tion in spatial research remains controversial. When the random effects model is im-
plemented, the units of observation should be representative of a larger population, 
and the number of units should potentially be able to go to infinity. There are two 
types of asymptotics that are commonly used in the context of spatial observations: 
(a) the ‘infill’ asymptotic structure, where the sampling region remains bounded as 

∞→N . In this case more units of information come from observations taken 
from between those already observed; and (b) the ‘increasing domain’ asymptotic 
structure, where the sampling region grows as ∞→N . In this case there is a 
minimum distance separating any two spatial units for all N.  

According to Lahiri (2003), there are also two types of sampling designs: (a) 
the stochastic design where the spatial units are randomly drawn; and (b) the fixed 
design where the spatial units lie on a nonrandom field, possibly irregularly 
spaced. The spatial econometric literature mainly focuses on increasing domain 
asymptotics under the fixed sample design (Cressie 1993, p.100; Griffith and 
Lagona 1998; Lahiri 2003). Although the number of spatial units under the fixed 
sample design can potentially go to infinity, it is questionable whether they are 
representative of a larger population. For a given set of regions, such as all coun-
ties of a state or all regions in a country, the population may be said ‘to be sam-
pled exhaustively’ (Nerlove and Balestra 1996, p.4), and ‘the individual spatial 
units have characteristics that actually set them apart from a larger population’ 
(Anselin 1988, p.51). According to Beck (2001, p.272), ‘the critical issue is that 
the spatial units be fixed and not sampled, and that inference be conditional on the 
observed units’. In addition, the traditional assumption of zero correlation between 
µi in the random effects model and the explanatory variables, which also needs to 
be made, is particularly restrictive. 

An iterative two-stage estimation procedure may be used to obtain the ML es-
timates of the random effects model (Breusch 1987). Note that the random effects 
model also includes a constant term, as a result of which the number of independ-
ent variables is K+1. The log-likelihood of the random effects model in Eq. 
(C.2.1) is 
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where θ denotes the weight attached to the cross-sectional component of the data, 
with 0 ≤ θ ² = σ ² / (Tσ 2

µ + σ ²) ≤ 1, and the symbol • denotes a transformation of 
the variables dependent on θ 
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If θ = 0, this transformation simplifies to the demeaning procedure of Eq. (C.2.6) 
and hence the random effects model to the fixed effects model.  

Given θ, β  and σ 2  can be solved from their first-order maximizing condi-
tions: β = (X•T X•)–1 X•T y• and σ 2 = (Y• – X• β)T (Y• – X• β) / NT. Conversely, θ may 
be estimated by maximizing the concentrated log-likelihood function with respect 
to θ, given β and σ2,  

 

.ln))1()1((lnln 2
2

1 1 1' 1'

2
'

1
'

1
2 ][][ θθθ N

N

i

T

t

T

t

T

t
itTititTit

NT yyL +
⎭
⎬
⎫

⎩
⎨
⎧

−−−−−−= ∑∑ ∑ ∑
= = = =

βXX  

(C.2.19)

The use of  θ 2  instead of  θ   ensures  that  both  the  argument of  ln (θ 2) and of 
 √
⎯
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− 

 are positive (see Magnus 1982 for details). The asymptotic variance ma-
trix of the parameters is 
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One can test whether the spatial random effects are significant by performing a LR 
test of the hypothesis H0: θ = 1.5 This test statistic has a chi-squared distribution 
with one degree of freedom. If the hypothesis is rejected, the spatial random ef-
fects are significant. 

C.2.4  Estimation of spatial panel data models 

This section outlines the modifications that are needed to estimate the fixed effects 
model and the random effects model extended to include a spatially lagged de-
pendent variable or a spatially autocorrelated error. It is assumed that W is con-
stant over time and that the panel is balanced. Although the estimators can be 
modified for a spatial weights matrix that changes over time, as well as for an un-
balanced panel, their asymptotic properties, in the event of an unbalanced panel, 
may become problematic if the reason why data are missing is not known.  

Fixed effects spatial lag model 

According to Anselin et al. (2006), the extension of the fixed effects model with a 
spatially lagged dependent variable raises two complications. First, the endogene-
ity of  Σj Wij yjt  violates  the  assumption of  the  standard  regression  model that  
E [(Σj Wij yjt) εit] = 0. In model estimation, this simultaneity must be accounted for. 
Second, the spatial dependence among the observations at each point in time may 
affect the estimation of the fixed effects. 

In this section,  we derive the ML  estimator to account for the endogeneity of 
Σj Wij yjt. The log-likelihood function of the model in Eq. (C.2.2) if the spatial spe-
cific effects are assumed to be fixed is 
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where the second term on the right-hand side represents the Jacobian term of the 
transformation from ε  to y  taking into account the endogeneity of Σj Wij yjt 
(Anselin 1988, p.63).  

The partial derivatives of the log-likelihood with respect to µi are 

 

                                                           
5  θ = 1 implies 02 =μσ , since 2

μσ  may be calculated from θ by [(1 – θ ²)/θ ²] [σ ²/T]. 
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When solving µi from Eq. (C.2.22), one obtains 
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This equation shows that the standard formula for calculating the spatial fixed ef-
fects, Eq. (C.2.9), applies to the fixed effects spatial lag model in a straightforward 
manner. Corrections for the spatial dependence among the observations at each 
point in time, other than the addition of the spatially lagged dependent variable to 
these formulas, are not necessary.6 

Substituting the solution for µi into the log-likelihood function, and after rear-
ranging terms, the concentrated log-likelihood function with respect to β, δ and σ 2 
is obtained 
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where the asterisk denotes the demeaning procedure introduced in Eq. (C.2.6).  

Anselin and Hudak (1992) have spelled out how the parameters β, δ and σ 2 of 
a spatial lag model can be estimated by ML starting with cross-sectional data. This 
estimation procedure can also be used to maximize the log-likelihood function in 
Eq. (C.2.24) with respect to β , δ and σ 2. The only difference is that the data are 
extended from a cross-section of N observations to a panel of NT observations. 
This estimation procedure consists of the following steps. 

First, stack the observations as successive cross-sections for t = 1, …, T to ob-
tain NT-by-1 vectors for y* and (IT ⊗ W)y*, and an NT-by-K matrix for X* of the 
demeaned variables. Note that these calculations have to be performed only once 
and that the NT-by-NT diagonal matrix (IT ⊗ W) does not have to be stored. This 
would slow down the computation of the ML estimator considerably for large data 
sets. Second, let b0 and b1 denote the OLS estimators of successively regressing y* 

                                                           
6  Anselin et al. (2006) asked for a more careful elaboration of this. 
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and (IT ⊗ W)y* on X*, and e*
0 and e*

1  the corresponding residuals. Then the ML es-
timator of δ is obtained by maximizing the concentrated log-likelihood function 
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where C is a constant not depending on δ. Unfortunately, this maximization prob-
lem can only be solved numerically, since a closed-form solution for δ does not 
exist. However, since the concentrated log-likelihood function is concave in δ, the 
numerical solution is unique (Anselin and Hudak 1992). To speed up computation 
time and to overcome numerical difficulties one might face in evaluating ln | IN – 
δW|, Pace and Barry (1997) propose to compute this determinant once over a grid 
of values for the parameter δ ranging from 1/ωmin to one prior to estimation, pro-
vided that W is normalized. This only requires the determination of the smallest 
characteristic root of W. They suggest a grid based on 0.001 increments for δ over 
the feasible  range. Given these predetermined values for the log determinant of 
(IN – δW), they point out that one can quickly evaluate the concentrated log-
likelihood function for all values of δ in the grid and determine the optimal value 
of δ as that which maximizes the concentrated log-likelihood function over this 
grid.7 

Third, the estimators of β and σ 2 are computed, given the numerical estimate 
of δ, 

 

β = b0 – δ b1 = (X*T X*)–1 X*T [y* – δ (IT ⊗ W) y*] (C.2.26a) 
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Instead of the demeaned variables, one may also use the original variables y and 
X, since y*= Qy, (IT ⊗ W) y* = Q (IT ⊗ W) y, and X*= QX, where Q denotes the 
demeaning operator in matrix form 

 

NTTTNT IιιIQ ⊗−= T1  (C.2.27) 

 

                                                           
7  The computation of the log determinant may be carried out using the Matlab routine 

‘lndet’ from LeSage's website <www.spatial-econometrics.com> (LeSage 1999). 
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and ιT is a vector of ones whose subscript denotes the length of this vector. Since 
Q is a symmetric idempotent matrix, the estimator of β starting with the original 
variables may also be written as  

 
β = (XT QT Q X)–1 XT QT Q [y – δ (IT ⊗ W) y] =  
 
         (XT Q X)–1 XT Q [y – δ (IT ⊗ W) y]. (C.2.28)

 
Anselin et al. (2006) have pointed out that this estimator may also be seen as the 
GLS estimator of a linear regression model with disturbance covariance matrix 
σ2Q, but the difficulty of this interpretation is that Q is singular. Their conclusion 
that the singularity of Q also limits the practicality of this model has been contra-
dicted by Hsaio (2003, p.320), Magnus and Neudecker (1988, pp.271-273) and 
Baltagi (1989) in that Q may be replaced by its general inverse,8 which again pro-
duces (C.2.28).  

Finally, the asymptotic variance matrix of the parameters is computed for in-
ference (standard errors, t-values). This matrix has been derived by Elhorst and 
Freret (2009) and takes the form (since this matrix is symmetric the upper diago-
nal elements are left aside) 
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where 1)(~ −−= WWW δNI . The differences with the asymptotic variance matrix of 
a spatial lag model in a cross-sectional setting (see Anselin and Bera 1998; Lee 
2004) are the change in dimension of the matrix X* from N to NT observations and 
the summation over T cross-sections involving manipulations of the N-by-N spa-

                                                           
8  Q+  is called  the generalized  (Moore-Penrose)  inverse of  Q if it satisfies the conditions:  

Q Q+ Q = Q, Q+ Q Q+ = Q+, (Q+ Q)T = Q+ Q and (Q Q+)T = Q Q+ (Magnus and Neu-
decker 1988, p.32). 
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tial weights matrix W. For large values of N the determination of the elements of 
the variance matrix may become computationally impossible. In that case the in-
formation may be approached by the numerical Hessian matrix using the maxi-
mum likelihood estimates of β, δ and σ 2. 

Fixed effects spatial error model 

Anselin and Hudak (1992) have also spelled out how the parameters β , ρ and σ 2 
of a linear regression model extended to include a spatially autocorrelated error 
term can be estimated by ML starting with cross-sectional data. Just as for the spa-
tial lag model, this estimation procedure can be extended to include spatial fixed 
effects and from a cross-section of N observations to a panel of NT observations. 
The log-likelihood function of model in Eq. (C.2.3) if the spatial specific effects 
are assumed to be fixed is  
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Given ρ, the ML estimators of β and σ 2 can be solved from their first-order maxi-
mizing conditions, to get 

 
β = {[X* – ρ (IT ⊗ W) X*]T [X* – ρ (IT ⊗ W) X*]}–1 

 

[X* – ρ (IT ⊗ W) X*]T [y* – ρ (IT ⊗ W) y*] (C.2.31a) 
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=  (C.2.31b) 

 
where e (ρ) = y* – ρ (IT ⊗ W) y* – [X* – ρ (IT ⊗ W) X*] β. The concentrated log-
likelihood function of ρ takes the form 
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Maximizing this function with respect to ρ yields the ML estimator of ρ, given β 
and σ 2. An iterative procedure may be used in which the set of parameters β and 
σ 2 and the parameter ρ are alternately estimated until convergence occurs. The as-
ymptotic variance matrix of the parameters takes the form 
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where 1)(
~~ −−= WIWW ρN . The spatial fixed effects can finally be estimated by 
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Random effects spatial lag model 

The log-likelihood of model in Eq. (C.2.2) if the spatial effects are assumed to be 
random is 

 

2

1 1 1
2

12
2 2||ln)2(lnln ∑∑ ∑

= =

•
•

=

•

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−+−=

N

i

T

t
it

N

j
jtijitN

NT yWyTL βXWI δδπσ
σ

 

(C.2.35)

 
where the symbol • denotes the transformation introduced in Eq. (C.2.18) depend-
ent on θ. Given θ, this log-likelihood function is identical to the log-likelihood 
function of the fixed effects spatial lag model in Eq. (C.2.24). This implies that the 
same procedure can be used to estimate β, δ and σ2 as described above [Eqs. 
(C.2.25), (C.2.26a) and (C.2.26b)], but that the superscript * must be replaced by •. 
Given β, δ and σ2, θ can be estimated by maximizing the concentrated log-
likelihood function with respect to θ 
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2
22 ln)]()([lnln θθθ NTNTL +−= ee  (C.2.36)

 
where the typical element of e(θ) is 
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Again an iterative procedure may be used where the set of parameters β, δ and σ2 
and the parameter θ are alternately estimated until convergence occurs. This pro-
cedure is a mix of the estimation procedures used to estimate the parameters of the 
fixed effects spatial lag model and those of the non-spatial random effects model. 

The asymptotic variance matrix of the parameters takes the form  
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Random effects spatial error model 

The log-likelihood of model in Eq. (C.2.3) if the spatial effects are assumed to be 
random is (Anselin 1988; Elhorst 2003; Baltagi 2005) 
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where V=T φ IN + (BT B)–1 with φ = σ2

µ /σ2,9 B = IN – ρ W and e = y – X β. It is the 
matrix V that complicates the estimation of this model considerably. First, the 
Pace and Barry (1997) procedure to overcome numerical difficulties one might 
face in evaluating ln|B| = ln|IN – ρ W| cannot be used to calculate ln|V| = ln|T φ IN + 
(BT B)–1|. Second, there is no simple mathematical expression for the inverse of V. 
Baltagi (2006) solves these problems by considering a random effects spatial error 
model with equal weights, i.e., a spatial weights matrix W whose non-diagonal 
elements are all equal to 1/(N–1). Due to this setup, the inverse of V and a feasible 
GLS estimator of β can be determined mathematically. Furthermore, by consider-
ing a GLS estimator the term ln|V| in the log-likelihood function does not have to 
be calculated.  

Elhorst (2003) suggests to express ln|V| as a function of the characteristic 
roots of W based on Griffith (1988, Table 3.1) 
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Furthermore, he suggests to adopt the transformation 
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and the same for the variables Xit, where pij is an element of an N-by-N matrix P 
such that PT P = V–1. P can be the spectral decomposition of V–1, P = Λ–1/2R, where 
R is an N-by-N matrix of which the ith column is the characteristic vector ri of V, 
which is the same as the characteristic vector of the spatial weights matrix W (see 
Griffith 1988, Table 3.1), R = (r1, …, rN), and Λ  an N-by-N diagonal matrix with 
the ith diagonal element the corresponding characteristic root, ci = Tφ + (1 – ρωi)

–2. 

                                                           
9  Note that φ=σμ2/σ2 is different from θ2 in the random effects model and in the random effects 

spatial lag model. 
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A similar procedure has been adopted by Yang et al. (2006). It is clear that for 
large N the numerical determination of P can be problematic. However, Hunne-
man et al. (2007) find that if W is kept symmetric by using one of the alternative 
normalizations discussed in Section C.2.2, this procedure works well within a rea-
sonable amount of time for values of N up to 4,000. 

As a result of Eqs. (C.2.40) and (C.2.41), the log-likelihood function simpli-
fies to 
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where eo = yo – Xo β. β and σ2 can be solved from their first-order maximizing con-
ditions:  β = (XoT Xo)–1XoT yo and σ2=(yo – Xo β)T (yo–Xo β)/NT. Upon substituting β 
and σ 2 in the log-likelihood function, the concentrated log-likelihood function of ρ 
and ϕ is obtained 
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where C is a constant not depending on ρ and ϕ and the typical element of e (ρ, φ) 
is 
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The notation pij = p (ρ, φ)ij is used to indicate that the elements of the matrix P de-
pend on ρ and φ. One can iterate between β and σ 2 on the one hand, and ρ and φ 
on the other, until convergence. The estimators of β and σ 2, given ρ and φ, can be 
obtained by OLS regression of the transformed variable yo on the transformed 
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variables Xo. However, the estimators of ρ and φ, given β and σ 2, must be attained 
by numerical methods because the equations cannot be solved analytically.  

The asymptotic variance matrix of this model has been derived by Baltagi et al. 
(2007). They develop diagnostics to test for serial error correlation, spatial error 
correlation and/or spatial random effects. They also derive asymptotic variance ma-
trices provided that one or more of the corresponding coefficients are zero. One ob-
jection to this study is that serial and spatial error correlation are modeled sequen-
tially instead of jointly. Elhorst (2008b) demonstrates that jointly modeling serial 
and spatial error correlation results in a trade-off between the serial and spatial 
autocorrelation coefficients and that ignoring this trade-off causes inefficiency and 
may lead to non-stationarity. However, if the serial autocorrelation coefficient is 
set to zero, this problem disappears. Consequently, the asymptotic variance matrix 
that is obtained if the serial autocorrelation coefficient is set to zero exactly hap-
pens to be the variance matrix of the random effects spatial error model. 

One difference is that Baltagi et al. (2007) do not derive the asymptotic vari-
ance matrix of β, ρ, ϕ  and σ 2, but of β, ρ, σμ2 and σ 2. This matrix takes the fol-
lowing form10 
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where Γ  = (WT B + BT W) (BT B)–1  and  Σ = V-1 (BT B)–1. Since ϕ = σ 2

µ /σ 2, the 
asymptotic variance of ϕ can be obtained using the formula (Mood et al. 1974, 
p.181) 
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10  Note that the matrix Z0 in Baltagi et al. (2007, pp.39-40) has been replaced by 
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In conclusion, we can say that the estimation of the random effects spatial error 
model is far more complicated than that of the other spatial panel data models. 
Since a spatial error specification also does not require a theoretical model for a 
spatial or social interaction process, but is a special case of a non-spherical error 
covariance matrix, and the random effects models in spatial research is controver-
sial, the random effects spatial error model will probably be of limited value in 
empirical research. 

C.2.5  Model comparison and prediction 

This section sets forth Hausman’s specification test for statistically significant dif-
ferences between random effects models and fixed effects models, two goodness-
of-fit measures, one that includes the impact of spatial fixed or random effects and 
the impact of a spatial lag and one that does not, and the best linear unbiased pre-
dictor of the different models.  

Random effects versus fixed effects 

The random effects model can be tested against the fixed effects model using 
Hausman's specification test (Baltagi 2005, pp.66-68). The hypothesis being tested 
is H0: h = 0, where 

 

ddd 1T )]([ −= varh , and  ˆˆ
REFE ββd −=  1*T*21T2 )(ˆ)(ˆ)( −−•• −= XXXXd FEREvar σσ . 

(C.2.47) 
 
Note the reversed sequence with which d and var(d) are calculated. This test sta-
tistic has a chi-squared distribution with K degrees of freedom (the number of ex-
planatory variables in the model, excluding the constant term). Hausman's specifi-
cation test can also be used when the model is extended to include spatial error 
autocorrelation or a spatially lagged dependent variable. Since the spatial lag 
model  has one  additional  explanatory  variable,  one  might calculate d by d = 
[β

^T δ
^
]T

FE – [β
^T δ

^
]T

RE to obtain a test statistic that has a chi-squared distribution with 
K+1 degrees of freedom. To calculate var(d) in this particular case, one should ex-
tract the first K+1 rows and columns of the variance matrices in Eqs. (C.2.29) and 
(C.2.38). If the hypothesis is rejected, the random effects models must be rejected 
in favor of the fixed effects model. 
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Goodness-of-fit 

The computation of a goodness-of-fit measure in spatial panel data models is dif-
ficult because there is no precise counterpart of the R2 of an OLS regression model 
with disturbance covariance σ 2I to a generalized regression model with distur-
bance covariance matrix σ 2Ω (Ω  ≠ I). Most people use  
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where y  denotes the overall mean of the dependent variable in the sample and e is 
the residual vector of the model. Alternatively, eTΩ e can be replaced by the resid-
ual sum of squares of transformed residuals ~eT  ~ e. 

One objection to the measures in Eq. (C.2.48) is that there is no assurance that 
adding (eliminating) a variable to (from) the model will result in an increase (de-
crease) of R2. This problem is at issue in the fixed effects spatial error model, the 
random effects spatial lag model and the random effects spatial error model, be-
cause the coefficients ρ, θ or ϕ may change when changing the set of independent 
variables. The problem is not at issue in the fixed effects spatial lag model, even 
though it may be seen as a linear regression model with disturbance covariance 
matrix σ 2Q. This is because the demeaning procedure was only meant to speed up 
computation time and to improve the accuracy of the estimates of β. If the R2 is 
calculated after the spatial fixed effects have been added back to the model, it will 
have the same properties as the R2 of the OLS model. 

An alternative goodness-of-fit measure that meets the above objection is the 
squared correlation coefficient between actual and fitted values (Verbeek 2000, 
p.21) 
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where ^y is an NT-by-1 vector of fitted values. Unlike the R2, this goodness-of-fit 
measure ignores the variation explained by the spatial fixed effects. The argumen-
tation is that the estimator of β in the fixed effects model is chosen to explain the 
time-series rather than the cross-sectional component of the data, as well as that 
the spatial fixed effects capture rather than explain the variation between the spa-
tial units (Verbeek 2000, p.320). This is also the reason why the spatial fixed ef-
fects are often not computed, let alone reported. The difference between R2 and 
corr2 indicates how much of the variation is explained by the fixed effects, which 
in many cases is quite substantial. A similar type of argument applies to spatial 
random effects. 
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Another difficulty is how to cope with a spatially lagged dependent variable. If the 
spatial lag is seen as a variable that helps to explain the variation in the dependent 
variable, the first measure (R2) should be used. By contrast, if the spatial lag is not 
seen as variable that helps to explain the variation in the dependent variable, sim-
ply because it is a left-hand side variable in principle, the second measure (corr2) 
should be used. The latter measure is adopted by LeSage (1999) to calculate the 
goodness-of-fit of the spatial lag model in a cross-sectional setting.11 In vector no-
tation, the reduced form of the spatial lag model in Eq. (C.2.2) is  
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where µ is an N-by-1 vector of the spatial specific effects, μ = (μ1, …, μN)T. From 
this equation it can be seen that the squared correlation coefficient between actual 
and fitted values in spatial lag models, no matter whether μ is fixed or random, 
should also account for the spatial multiplier matrix [INT – δ (IT ⊗ W)]–1.  

Table C.2.1. Two goodness-of-fit measures of the four spatial panel data models 

Fixed effects spatial lag model 
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Notes:  R2 (e, IN) and R2 (~e) are defined by Eq. (C.2.48), corr2 is defined by Eq. (C.2.49) 

                                                           
11   See the routine ‘sar’ posted at LeSage's website <www.spatial-econometrics.com> 
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The two measures for the different spatial panel data models are listed in Table 
C.2.1. It shows that in the fixed and random effects spatial lag model not only the 
spatially lagged dependent variable, but also the spatial fixed or random effects 
are ignored when calculating the squared correlation coefficient between actual 
and fitted values. 

Prediction 

Finally, prediction formulas are presented for fixed effects and random effects 
models with spatial interaction effects. Goldberger (1962) shows that the best 
linear unbiased predictor (BLUP) for the cross-sectional units in a linear 
regression model with disturbance covariance matrix Ω at a future period T+C is 
given by 

 

eΩβXy 1Tˆˆ −
++ += ψCTCT  (C.2.51)

 
where ψ = E (εT +C ε) is the covariance between the future disturbance εT+C  and the 
sample disturbances ε, X covers the independent variables of the model, β

^ 
is the 

estimator of β, and e denotes the residual vector of the model. Baltagi and Li 
(2004) derive the prediction formulas for the fixed effects and random effects 
model with spatial autocorrelation. Here, we also present these formulas for the 
fixed effects and random effects model extended to include a spatially lagged 
dependent variable based on own derivations. The prediction formulas are listed in 
Table C.2.2. 

Baltagi and Li (2004) point out that ψ = 0 in the fixed effects model, provided 
that error terms are not serially correlated over time. Unlike the fixed effects 
model, the correction term ψTΩe in the random effects model is not zero. In the 
random effects spatial lag model, the correction term ψTΩ e is identically equal to 
its counterpart in a standard random effects model, which has been reported in 
Baltagi and Li (2004). To calculate this correction term (see Table C.2.2), the re-
siduals of each spatial unit are first averaged over the sample period and then mul-
tiplied with (1–θ2), a factor that can take values between zero and one.12 However, 
in addition to the standard random effects model, both XT+C β

^
 and the correction 

term  should  also  be  premultiplied with the  N-by-N  spatial multiplier matrix 
(INT – δW)–1.  

 

                                                           
12  Note that (1 – θ 2) = Tσ 2

µ / (Tσ 2
µ + σ 2) (see Baltagi 2005, p. 20, for the second part of this 

formula). 
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Table C.2.2. Prediction formula of the four spatial panel data models 

Fixed effects spatial lag model 

uWIβXWIy ˆ)ˆ(ˆ)ˆ(ˆ 11 −
+

−
+ −+−= δNCTNCT δ  

Fixed effects spatial error model 
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Random effects spatial lag model 
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Random effects spatial error model 
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Just as in the random effects spatial lag model, the residuals in the random effects 
spatial error model are first averaged over the sample period (see Table C.2.2). 
However, the sum of the residuals is not just divided by T, but premultiplied by V–

1=[TφIN + (BTB)–1]–1, a matrix that also accounts for the interaction effects among 
the residuals. Finally, the ‘average’ residuals are multiplied by ϕ, which measures 
the ratio between σμ2 and σ2. 

One problem of predictors based on fixed or random effects models is that one 
has no information on the spatial fixed effects or the averaged residuals of spatial 
units outside the sample. For this reason, some researchers abandon fixed or ran-
dom effects models. However, they better stick to the fixed effects or random ef-
fects models, provided that these effects appear to be (jointly) significant, and set 
the spatial fixed effects or the averaged residuals of spatial units outside the sam-
pling region to zero or, alternatively, try to approach them from proximate spatial 
units within the sample region. 

C.2.6  Concluding remarks 

The spatial econometrics literature has exhibited a growing interest in the specifi-
cation and estimation of econometric relationships based on spatial panels. Many 
empirical studies have found their way to the Matlab routines of the fixed effects 
and random effects models the author of this chapter has provided at his website. 
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Updated versions have been made available and include the (robust) LM tests, the 
estimation of fixed effects and the determination of their significance level, the de-
termination of the variance-covariance matrix of the parameters estimates, the de-
termination of good-of-fit measures, Hausman's specification test and the formulas 
for the best linear unbiased predictor, as discussed in this chapter. 

Two other areas where more insight has been gained into the extension of spa-
tial panel data models with spatial interaction effects is the possibility to test for en-
dogeneity of one or more of the explanatory variables and the possibility to include 
dynamic effects. However, this literature has not yet been crystallized. 

Fingleton and LeGallo (2007) consider models including an endogenous spa-
tial lag, additional endogenous variables due to a system feedback and an autore-
gressive or a moving average error process, and suggest an IV/GMM estimator 
based on Kelejian and Prucha (1998) and Fingleton (2008). Elhorst et al. (2007) 
present a framework to determine the best of three estimators (2SLS, fixed effects 
2SLS and first-difference 2SLS) in the presence of potential endogeneity using 
two Hausman type test-statistics. Using this framework, they conclude that the 
first-difference 2SLS is the preferred estimator of the East German wage curve, 
since the regional unemployment rate, the main explanatory variable of the wage 
rate, is not strictly exogenous and the spatial specific effects are not uncorrelated 
to the explanatory variables. To investigate the possible endogeneity of the re-
gional unemployment rate in combination with time-specific effects, a similar 
framework is used, except for the first-difference 2SLS estimator. This is because 
first differencing does not assist in eliminating time specific effects. For this rea-
son, they develop a spatial first-difference 2SLS estimator where the values of y 
and X in every spatial unit are taken in deviation of y and X in one reference spa-
tial unit.  

Finally, Elhorst (2008a) adopts the use of matrix exponentials, a transforma-
tion recently introduced by LeSage and Pace (2007). This transformation is differ-
ent from the spatial lag model in Eq. (C.2.2) or the spatial error model in Eq. 
(C.2.3) in that its Jacobian term is zero. This zero Jacobian term opens the oppor-
tunity to use an estimation method partly based on IV and partly based on ML to 
control for endogeneity of one or more of the explanatory variables. 

There has also been a growing interest in the estimation of dynamic panel data 
models. Elhorst (2005a) derives the ML estimator and Su and Yang (2007) the 
corresponding regularity conditions of a dynamic panel data model extended to 
include spatial error autocorrelation. Elhorst (2005b), Korniotis (2005), Yu et al. 
(2007) and Vrijburg et al. (2007) consider a dynamic panel data model extended to 
include a spatially lagged dependent variable. Up to now, the first of these six 
studies has also been applied successfully in the empirical work of other research-
ers (Kholodilin et al. 2008). 
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C.3 Spatial Econometric Methods for Modeling 
Origin-Destination Flows 

James P. LeSage and Manfred M. Fischer 

C.3.1  Introduction 

Spatial econometric theory and practice have been dominated by a focus on object 
data. In economic analysis these objects correspond to economic agents with dis-
crete locations in geographic space, such as addresses, census tracts and regions. 
In contrast spatial interaction or flow data pertain to measurements each of which 
is associated with a link or pair of origin-destination locations that represent points 
or areas in space. While there is a voluminous literature on the specification and 
estimation of models for cross-sectional object data (see, Chapter C.1 in this vol-
ume), less attention has been paid to sample data consisting of origin-destination 
pairs that form the basic units of analysis in spatial interaction models. 

Spatial interaction models represent a class of methods which are used for 
modeling origin-destination flow data. The interest in such models is motivated by 
the need to understand and explain flows of tangible entities such as persons and 
commodities or intangible ones such as capital, information or knowledge across 
geographic space. By adopting a spatial interaction modeling perspective attention 
is focused on interaction patterns at the aggregate rather than the individual level.  

The basis of modeling is the use of a discrete zone system. Discrete zone sys-
tems can obviously take many different forms, both in relation to the level of reso-
lution and the shape of zones. The subdivision of the geography into zones intro-
duces spatial aggregation problems. Such problems come from the fact that 
substantially different conclusions can be obtained from the same dataset and the 
same spatial interaction model, but at another spatial aggregation level (see, for 
example, Batty and Sidkar 1982). Spatial aggregation problems involve both a 
scale issue and a zoning issue. The tidiest, and often most convenient system to 
use would be a square grid. But quite often one is forced to use administratively 
defined regions, such as NUTS-2 regions in Europe, counties in a country or the 
wards of a city.  
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The subject of spatial interaction modeling has a long and distinguished history 
that has led to the emergence of three major schools of analytical thought: the 
macroscopic school based upon a statistical equilibrium approach (see Wilson 
1967; Roy 2004), the microscopic school based on a choice-theoretic approach 
(see Smith 1975; Sen and Smith 1995), and the geocomputational school based 
upon the neural network approach that processes spatial interaction models as uni-
versal function approximators (see Fischer 2002; Fischer and Reismann 2002). In 
these schools there is a deep-seated view that spatial interaction implies movement 
of entities, and that this has little to do with spatial association (Getis 1991). 

Spatial interaction models typically rely on three types of factors to explain 
mean interaction frequencies between origins and destinations of interaction: (i) 
origin-specific attributes that characterize the ability of the origins to produce or 
generate flows, (ii) destination-specific attributes that represent the attractiveness 
of destinations, and (iii) origin-destination variables that characterize the way spa-
tial separation of origins from destinations constrains or impedes the interaction. 
They implicitly assume that using spatial separation variables such as distance will 
eradicate the spatial dependence among the sample of spatial flows.  

However, research dating back to the 1970s, noted that spatial dependence or 
autocorrelation might be intermingled in spatial interaction model specifications. 
This idea was first put forth in a theoretical context by Curry (1972), with some 
subsequent debate in Curry et al. (1975). Griffith and Jones (1980) documented 
the presence of spatial dependence in conventional spatial interaction models. De-
spite this, most practitioners assume independence among observations and few 
have used spatial lags of the dependent variable or disturbances in spatial interac-
tion models. Exceptions are Bolduc et al. (1992), and Fischer and Griffith (2008) 
who rely on spatial lags of the disturbances, and LeSage and Pace (2008) who use 
lags of the dependent variable. 

The focus of this chapter is on problems that plague empirical implementation 
of conventional regression-based spatial interaction models and econometric ex-
tensions that have recently appeared in the literature. These new models replace 
the conventional assumption of independence between origin-destination flows 
with formal approaches that allow for spatial dependence in flow magnitudes. We 
follow LeSage and Pace (2008) and extend the generic version of the spatial inter-
action model to include spatial lags of the dependent variable. 

C.3.2   The analytical framework  

Spatial interaction data represent phenomena that may be described in their most 
general terms as interactions between populations of actors and opportunities dis-
tributed over some relevant geographic space. Such interactions may involve 
movements of individuals from one location to another, such as daily traffic flows 
in which case the relevant actors are individual travellers (commuters, shoppers, 
etc.) and the relevant opportunities are their destinations (jobs, stores, etc.). Simi-
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larly, one may consider annual migration flows, where the relevant actors are mi-
grants (individuals, family units, firms, etc.) and the relevant opportunities are 
their possible new locations. Interactions may also involve flows of information 
such as telephone calls or electronic messages. Here the callers or message send-
ers may be the relevant actors, and the possible receivers of calls or electronic 
messages may be considered as the relevant opportunities (Sen and Smith 1995). 
With this range of examples in mind, the purpose of this section is to outline a 
framework in which all such spatial interaction behaviour can be studied. 

The classical spatial interaction model 

Suppose we have a spatial system consisting of n discrete zone (locations, regions) 
where i (i = 1, …, n) denotes the origin and j (j = 1, …, n) the destination of inter-
action. Let m(i, j) denote observations on random variables, say M(i, j), each of 
which corresponds to a movement of tangible or intangible entities from i to j. The 
M(i, j) are assumed to be independent random variables. They are sampled from a 
specified probability distribution that is dependent upon some mean, say μ (i, j). 
Let us assume that no a priori information is given about the origin and destination 
totals of the observed flow matrix. Then the mean interaction frequencies between 
origin i and destination j may be modeled by 

 

( , ) ( ) ( ) ( , )i j C A i B j S i jμ =  (C.3.1) 

 
where ( , ) [ ( , )]i j E M i jμ =  is the expected flow, C denotes a constant term, the 
quantities A(i) and B(j) are called origin and destination factors or variables re-
spectively, and S(.) is some unspecified distance deterrence function (see Fischer 
and Griffith 2008). Note if the outflow totals for each origin zone and/or the in-
flow totals into each destination zone are known a priori, then model (C.3.1) 
would need to be modified to incorporate the explicitly required constraints to 
match exact totals. Imposing origin and/or destination constraints leads to so-
called production-constrained, attraction-constrained and production-attraction-
constrained spatial interaction models that may be convincingly justified using en-
tropy maximizing methods (see Fotheringham and O’Kelly 1989; Bailey and Ga-
trell 1995 for a discussion). 

Equation (C.3.1) is a very general version of the classical (unconstrained) spa-
tial interaction model. The exact functional form of the three terms A(.), B(.) and 
S(.) on the right hand side of Eq. (C.3.1) is subject to varying degrees of conjec-
ture. There is wide agreement that the origin and destination factors are generally 
best given by power functions 
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( ) ( )iA i A β=  (C.3.2a) 

( ) ( )jB j B γ=  (C.3.2b) 

 
where iA  represents some appropriate variable measuring the propulsiveness of 
origin i, and jB  some appropriate variable measuring the attractiveness of destina-
tion j in a specific spatial interaction context. The product ( ) ( )A i B j  can be inter-
preted simply as the number of distinct (i, j)-interactions that are possible. Thus, 
for origin-destination pairs (i, j) with the same level of separation, it follows from 
Eq. (C.3.1) that mean interaction levels are proportional to the number of possible 
interactions between such (i, j)-pairs. The exponents, β and ,γ  indicate the origin 
and destination effects respectively, and are treated as statistical parameters to be 
estimated. 

If more than one origin and one destination variable are relevant in a specific 
context the above specification may be extended to 

 

q
iqQq

AiA β)()(
∈
Π=  (C.3.3a) 

r
jrRr

BjB γ)()(
∈
Π=  (C.3.3b) 

 
where ( )iqA q Q∈  and ( )jrB r R∈  represent sets of relevant (positive) origin-
specific and destination-specific variables, respectively. The exponents 
( : )q q Qβ ∈ and ( : )r r Rγ ∈  are parameters to be estimated. See Fotheringham and 
O’Kelly (1989) for a range of explicit variable specifications. 

The distance deterrence function ( , )S i j  constitutes the very core of spatial in-
teraction models. Hence, a number of alternative specifications have been pro-
posed in the literature (for a discussion see Sen and Smith 1995). One prominent 
example is the following power function specification given by 

 

S (i, j) = [D (i, j)] θ (C.3.4) 

 
for any positive scalar distance measure, D(i, j), and negative distance sensitivity 
parameter θ  that has to be estimated. Another popular specification is the expo-
nential function ( , ) exp[ ( , )]= −S i j D i jθ , where θ  has to be an univariate pa-
rameter with specific value depending on the choice of units for distance (see Sen 
and Smith 1995). 
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The deterrence function reflects the way in which spatial separation or distance 
constrains or impedes movement across space. In general we will refer to this as 
distance between an origin i and a destination j, and denote it as D(i, j). At rela-
tively large scales of geographical inquiry this might be simply the great circle 
distance separating an origin from a destination zone measured in terms of the dis-
tance between their respective centroids. In other cases, it might be transportation 
or travel time, cost of transportation, perceived travel time or any other sensible 
measure such as political distance, language distance or cultural distance meas-
ured in terms of nominal or categorical attributes. To allow for the possibility of 
multiple measures of spatial separation, the power function specification in Eq. 
(C.3.4) can be extended to the following class of multivariate power deterrence 
functions 

 

kjiDjiS k

Kk

θ)],([),(
∈
Π=  (C.3.5) 

 
with corresponding distance sensitivity vector ( : ).k k Kθ θ= ∈  

From the positivity of the functions A(.), B(.) and S(.), it follows that the spa-
tial interaction model (C.3.1) with the specifications (C.3.3) and (C.3.4) can be 
expressed equivalently as a log-additive model of the form 

 

( , ) ( ) ( ) ( , )q q r r
q Q r R

y i j c a i b j d i jβ γ θ
∈ ∈

= + + +∑ ∑  (C.3.6) 

 
where ( , ) log ( , ),y i j i jμ= log ,c C= ( ) log ,q iqa i A= ( ) log ,r jrb j B=  and ( , )d i j =  
log ( , ).D i j  In the sequel we will illustrate how these 2 ( )n N=  equations can be 
written more compactly using vector and matrix notation. 

The spatial interaction model in matrix notation 

Let Y denote an n-by-n square matrix of origin-destination flows from each of the 
n origin zones to each of the n destination zones as shown in Eq. (C.3.7) where the 
n columns represent different origins and the n rows different destinations. The 
elements on the main diagonal of the matrix represent intrazonal flows, and we 
use 2N n=  for notational simplicity. 
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LeSage and Pace’s (2008) introduction of notational conventions allow use of  
origin-centric or destination-centric flow matrices.  An origin-centric ordering of 
the flow matrix Y is shown in Table C.3.1, where the dyad label denotes the over-
all index from 1, …, N for the ordering. The first n elements in the stacked vector 
y reflect flows from origin zone 1i =  to all n destinations and the last n elements 
flows from origin zone i n=  to destinations 1, …, n. This case often arises in 
practice when intraregional flows cannot be measured or are difficult to measure. 

Table C.3.1. Data organization convention  

Dyad 
label 

ID 
origin 

ID 
destination 

Flows Origin  
variables 

Destination  
variables 

Distance 
variable 

1 1 1 (1,1)y  1(1) (1)Qa aK  1(1) (1)Rb bK  (1,1)d  
M  M  M  M  M M  M M  M  
n  1 n  (1, )y n  1(1) (1)Qa aK  1( ) ( )Rb n b nK  (1, )d n  

1n +  2 1 (2,1)y  1(2) (1)Qa aK  1(1) (1)Rb bK  (2,1)d  
M  M  M  M  M M  M M  M  

2n  2 n  (2, )y n  1(2) (2)Qa aK  1( ) ( )Rb n b nK  (2, )d n  
M  M  M  M  M M  M M  M  

1N n− +  n  1 ( ,1)y n  1( ) ( )Qa n a nK  1(1) (1)Rb bK  ( ,1)d n  
M  M  M  M  M M  M M  M  
N  n  n  ( , )y n n  1( ) ( )Qa n a nK  1( ) ( )Rb n b nK  ( , )d n n  

The least-squares regression approach widely used in practice to explain variation 
in origin-destination flows relies on two sets of explanatory variable matrices. One 
is an N-by-Q matrix of Q  origin-specific variables for the n regions that we label   

oX .  This  matrix  reflects  an   n-by-q    matrix  of  explanatory   variables Xq (q = 
1, …, Q) that is repeated n times using o n= ⊗X X ι , where nι  is an n-by-1 vector 
of ones. The matrix Kronecker product ( )⊗  works to multiply the right-hand ar-
gument nι  times each element in the matrix X, which strategically repeats the ex-
planatory variables so they are associated with observations treated as origins. 
Specifically, the matrix  product would repeat the origin characteristics of the first 
zone to form the first n rows, the origin characteristics of the second zone n times 
for the next n rows and so on (see Table C.3.1), resulting in the N-by-Q matrix 

oX . LeSage and Pace (2008) point out that if we organized the matrix of flows Y 
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using a destination-centric ordering based on YT, then the matrix of origin-specific 
explanatory variables would consist of o n= ⊗X Xι .  

The second matrix is an   N-by-R matrix ( 1,..., )d n r r R= ⊗ =X Xι  that repre-
sents the R destination characteristics of the n regions. The Kronecker product 
works to repeat the matrix rX  n times to produce an N-by-R matrix representing 
destination characteristics (see Table C.3.1) that we label dX .  

In addition to explanatory variables consisting of origin and destination char-
acteristics, a vector of distances between each origin-destination dyad is included 
in the regression model. This vector is formed using the n-by-n distance matrix D 
containing distances between each origin and destination zone. The N-by-1 vector 
of distances is formed using vec( )=d D , where vec is an operator that converts a 
matrix to a vector by stacking the columns of the matrix,  as shown in Table C.3.1. 

This results in a regression model of the type shown in Eq. (C.3.8) that repre-
sents the log-additive power deterrence function spatial interaction model in ma-
trix notation 

 

n o dα θ= + + + +y X X dι β γ ε  (C.3.8) 

 
where 

 
y  N-by-1 vector of origin-destination flows, 

oX  N-by-Q matrix of Q origin-specific variables that characterize the ability of 
the origin zones to produce flows, 

β  the associated Q-by-1 parameter vector that reflects the origin effects, 

dX  N-by-R matrix of R destination-specific variables that represent the attrac-
tiveness of the destination zones, 

γ  the associated R-by-1 parameter vector that reflects the destination effects, 
d  N-by-1 vector of distances between origin and destination zones, 
θ  scalar distance sensitivity parameter that comes from the power deterrence 

function and reflects the distance effects, 

nι  N-by-1 vector of ones, 
α  constant term parameter on ,nι  
ε  N-by-1 vector of disturbances with ε ~ N (0, σ 2 IN).  
 
This spatial interaction model is based on the independence assumption for the 
case of a square matrix where each origin zone is also a destination zone and 
where no a priori information is given on the row and/or column totals of the in-
teraction data matrix. In the sequel we will refer to this model as the independence 
(log-normal) model. 
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C.3.3  Problems that plague empirical use of 
conventional spatial interaction models 

There are several problems that arise in applied practice when estimating the con-
ventional spatial interaction model given by Eq. (C.3.8). We enumerate each of 
these problems in the following section and discuss solutions that have been pro-
posed in the literature. These solutions often rely on elaborations of the basic 
model specification given in Eq. (C.3.8).  

Efficient computation 

One problem that can arise in cases where the sample of regions n is large in-
volves computational memory. For the case of the U.S. counties, for example, we 
have 3 000n > ,  leading to N-by-Q  and N-by-R  matrices for the explanatory vari-
ables involving 2 9 000 000.= > , ,N n  LeSage and Pace (2008) propose a solution 
for the case where Q R k= =  and we rely on the same n-by-k  explanatory vari-
ables matrix X  for both origin and destination characteristics. They point out that 
repeating the same sample of n-by-k explanatory variable information is not nec-
essary if we take a moment matrix approach to the estimation problem.  

If we let ( ),N d o=Z X X dι  we can form the moment matrix ZTZ shown 
in Eq. (C.3.9), with the symbol k0  denoting a 1-by-k vector of zeros, and tr  rep-
resenting the trace operator 
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where we assume that the matrix X and vector d are in deviation from means form. 
This leads to many of the entries in Eq. (C.3.9) taking values of zero.  

For the case of the ZTy required to produce least-squares estimates for the pa-
rameters, δ = (ZT Z)–1ZT y, we have 
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Kronecker products prove extremely useful in working with origin-destination 
flows, as we will see. However, there are limitations associated with this approach 
that were not fully elaborated by LeSage and Pace (2008). One limitation is that 
the system of flows is a closed system with the same number of origins (n) as des-
tinations (n). This will be required when we discuss modeling spatial dependence 
by constructing spatial lags of the dependent variable or disturbance terms. For 
example, if we were modeling shopping trips from various residential locations to 
a single store, this limitation would come into play.  

Another limitation pertains to moment-based expressions in Eqs. (C.3.9) and 
(C.3.10) for working with large problems. These require that the same matrix X  
is used to form both the origin and destination characteristics matrices so that 

d n= ⊗X ι X  and o n= ⊗X X ι . This is equivalent to imposing the restriction that 
Q R=  in Table C.3.1. The moment-based expressions in Eqs. (C.3.9) to (C.3.10) 
also assume the matrix X  is in deviation from means form, but LeSage and Pace 
(2009a) provide moment expressions that relax this requirement.  

If these limitations are consistent with the problem at hand, the moment-based 
approach to estimation of the model parameters saves a great deal of computer 
memory. This is accomplished by working with n-by-n matrices rather than n2-by-
(2k + 2), where we have k explanatory variables for regions treated as origins, k 
for the destination regions in addition to the intercept term and distance vector.  

Spatial dependence in origin-destination flows 

As already indicated, numerous applied work has pointed to the presence of spa-
tial dependence in the least-squares disturbances from models involving origin-
destination data samples (Porojan 2001; Lee and Pace 2005; Fischer and Griffith 
2008).  

One way to incorporate spatial dependence into a log-normal spatial interac-
tion model of the form (C.3.8) is to specify a spatial process that governs the spa-
tial interaction variable y. This approach leads to a family of models depending on 
restrictions imposed on the spatial origin-destination filter specification set forth in 
LeSage and Pace (2009a). Specifically, this type of model specification takes the 
form 

 

= + + + + + + +o o d d w w n o dρ ρ ρ α θy W y W y W y ι X β X γ d ε  (C.3.11a) 

ε ~ N (0, σ ² IN) (C.3.11b) 

 
where the spatial weight matrix o n= ⊗W W I  is used to form a spatial lag vector 

oW y  that captures origin-based dependence arising from flows (observation dy-
ads) that neighbor the origins. The n-by-n spatial weight matrix W is a non-
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negative sparse matrix with diagonal elements set to zero to prevent an observa-
tion from being defined as a neighbor to itself. Non-zero values for element pairs 
( i j, )  denote  that zone i  is a neighbor to zone j .  Neighbors could be defined 
using contiguity or other measures of spatial proximity such as cardinal distance 
(for example, kilometers) and ordinal distance (for example, the five closest 
neighbors). The spatial weight matrix is typically standardized to have row sums 
of unity, and this is required to produce linear combinations of flows from 
neighboring regions in the model given by Eq. (C.3.11).  

Given an origin-centric organization of the sample data, the spatial weight 
matrix o n= ⊗W W I  will form an N-by-1 vector containing a linear combination 
of flows from regions neighboring each observation (dyad) treated as an origin. In 
the case where neighbors are weighted equally, we would have an average of the 
neighboring region flows. Similarly, a spatial lag of the dependent variable formed 
using the weight matrix d n= ⊗W I W  to produce an N-by-1 vector dW y  captures 
destination-based dependence using an average (or linear combination) of flows 
associated with observations (dyads) that neighbor the destination regions. Finally, 
a spatial weight matrix, w = ⊗W W W  can be used to form a spatial lag vector that 
captures origin-to-destination based dependence using a linear combination of 
neighbors to both the origin and destination regions.  

This model specification can also be written as 

 

( )( )− − = +n o o n d dρ ρI W I W y Z δ ε  (C.3.12a) 

( )n o o d d o d o dρ ρ ρ ρ− − + = +I W W W W y Z δ ε  (C.3.12b) 

{ }[ ] [ ] [ ]n o n d n o dρ ρ ρ ρ− ⊗ − ⊗ + ⊗ = +I W I I W W W Z δ ε  (C.3.12c) 

 
where the matrix cross-product term, o d o d w wρ ρ ρ≡W W W  motivates the term re-
flecting origin-to-destination based dependence. LeSage and Pace (2008) note that 
this  specification implies  that w o dρ ρ ρ= − ,  but these restrictions  need to  be 
applied during  estimation. There is a need to impose restrictions on the values of 
the scalar dependence parameters d o wρ ρ ρ, ,  to ensure stationarity in the case 
where wρ  is free of the restriction. LeSage and Pace (2008) discuss maximum 
likelihood estimation of this specification, and LeSage and Pace (2009a) set forth 
a Bayesian heteroscedastic variant of the model along with Markov Chain Monte 
Carlo (MCMC) estimation methods.  

This variant allows for non-constant variance in the disturbances by introduc-
ing a set of N  scalar variance parameters. Specifically, ( ),N0ε Σ~ N , where the    
N-by-N  diagonal matrix Σ  contains variance scalar parameters to be estimated 
on the diagonal and zeros elsewhere.  
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A virtue of the model in Eq. (C.3.11) is that changes in the value of an explanatory 
variable associated with a single region will potentially impact flows to all other 
regions. For example, a ceteris paribus change in observation i of the explanatory 
variables matrix X for variable Xr implies that region i will be viewed differently 
as both an origin and destination. Given the structure of the matrices o d,X X  
changes in observation i  imply changes in 2n observations from the explanatory 
variables matrices. This is true for the independence model as well as the spatial 
model. In the case of the independence model such a ceteris paribus change will 
lead to changes in the flows associated with the same 2n  observations and no oth-
ers. Intuitively, if, for example, the labor market opportunities in a single region i 
decrease, this region will look less attractive as a destination when considered by 
workers residing in the own and other 1n −  regions in a migration application 
context, for example. This should lead to a decrease in migration pull from within 
and outside region i, the impact of changing the n-elements in dX  and associated 
parameter. Region i will exert more push leading to an increase in out-migration to 
the other 1n −  regions (as well as a decrease in within-region migration). This 
impact is reflected by the n-elements in oX  and associated parameter. In the inde-
pendence model, changes in the explanatory variables associated with the 2n  ob-
servations can only impact changes in flows in the same 2n  observations (by 
definition).  

Turning to the spatial model that includes spatial lags of the dependent vari-
able, these 2n  changes will lead to changes in flows involving more than the 2n  
observations whose explanatory variables have changed. The additional impacts 
arising from changes in a single region’s characteristics represent spatial spillover 
effects. Intuitively, a decrease in labor market opportunities for region i will indi-
rectly impact the attractiveness of a region that neighbors i, say region j. Region 
j  will become less attractive as a destination for migrants given the decrease in 

labor market opportunities in neighboring region i. Residents of region j who work 
in region i and suffer from the labor market downturn in this neighboring region 
might also find out-migration more attractive. In-migrants to region j may con-
sider labor market opportunities not only in region j but also in neighboring re-
gions such as i. The partial derivative impacts on observations iy  arising from 
changes in the explanatory variables associated with observations j are zero (by 
definition) in the independence model, but not in the spatial model containing lags 
of the dependent variable (see LeSage and Pace 2009a for a discussion of this). 
Correct calculation and interpretation of the partial derivative impacts associated 
with the spatial lag model allow one to quantify the spatial spillover impacts. 

LeSage and Polasek (2008) provide a minor modification to the model that 
can be used in the case of commodity flows. In an application involving truck and 
train commodity flows between 40 Austrian regions, they provide a procedure that 
adjusts the spatial weight matrix to account for the presence or absence of interre-
gional transport connectivity. Since the mountainous terrain of Austria precludes 
the presence of major rail and highway infrastructure in all regions, they use this 
priori non-sample knowledge regarding the transportation network structure con-
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necting regions to produce a modified spatial weight structure. Bayesian model 
comparison methods indicate that these adjustments to the spatial weight matrix 
result in an improved model.  

Another approach to dealing with spatial dependence in origin-destination 
flows is to specify a spatial process for the disturbance terms, structured to follow 
a (first-order) spatial autoregressive process (see Fischer and Griffith 2008). This 
specification could be estimated  using  maximum  likelihood  methods. In this 
framework, the spatial dependence resides in the disturbance process ε , as in the 
case of serial correlation in time series regression models. Griffith (2007) also 
takes this specification approach that focuses on dependence in the disturbances 
but relies on a spatial filtering estimation methodology.  

Specifically, the most general variant of this type of model specification takes 
the form 

 

n o dα θ= + + + +y ι X  β X γ d u  (C.3.13a) 

= + + +o o d d w wρ ρ ρu W u W u W u ε  (C.3.13b) 

2(0 ), Nσ Iε ~ N  (C.3.13c) 

 
where the definitions for the spatial lags involving the disturbance terms in         
Eq. (C.3.13), W0 u, Wd u and Ww u, are analogous to those for the spatial lags of 
the dependent variable in Eq. (C.3.12).  

Simpler models can be constructed by imposing restrictions on the general 
specification in Eq. (C.3.13). For example, we could specify the disturbances us-
ing  

 

εuWu += ~ρ  (C.3.14a) 

2(0 ), Nσ Iε ~ N  (C.3.14b) 

 
which merges origin- and destination-based dependence to produce a single (row-
normalized) spatial weight matrix W~ consisting of the sum of oW  and dW  which 
is row-normalized to produce a single vector uW~  reflecting a spatial lag of the 
disturbances. This specification also restricts the origin-to-destination based de-
pendence in the disturbances to be zero, since wρ  is implicitly set to zero.  
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The virtue of a simpler model such as this is that conventional software for esti-
mating spatial error models could be used to produce an estimate for the parameter 
ρ  along with the remaining model parameters α, β, γ and θ. It may or may not be 
apparent that estimating the more general models that involve more than a single 
spatial dependence parameter requires customized algorithms of the type set forth 
in LeSage and Pace (2008). These are needed to maximize a log-likelihood that is 
concentrated with respect to the parameters α, β, γ, θ and 2σ  resulting in an opti-
mization problem involving the three dependence parameters d o wρ ρ ρ, , . Of note 
is the fact that an extended version of the moment-based expressions involving the 
matrix Z from Eq. (C.3.9) and Eq. (C.3.10) can be used for both maximum likeli-
hood and Bayesian MCMC estimation (see LeSage and Pace 2009a for details).  

One point to note regarding modeling spatial dependence in the model distur-
bances is that the coefficient estimates α, β, γ, θ  will be asymptotically equal to 
those from least-squares estimation. However, there may be an efficiency gain that 
arises from modeling dependence in the disturbances. Another point is that the 
partial derivative impacts associated with this model are the same as those from 
the independence model. That is, no spatial spillover impacts arise in this type of 
model so that ceteris paribus changes in region i ’s explanatory variable only re-
sult in changes in the 2n  regions associated with the 2n  dyad relationships in-
volving region i .  

A third approach to modeling spatial dependence is motivated by the use of 
fixed effects parameters for origin and destination regions in non-spatial versions 
of the gravity model in the empirical trade literature (Feenstra 2002). Assuming 
the origin-centric data organization set forth in Table C.3.1, a fixed effects model 
would take the form in Eq. (C.3.15). The N-by-n  matrix oΔ  contains elements 
that equal  one if  region I  is the origin  region and  zero otherwise, and oθ  is an 
n-by-1 vector of associated fixed effects estimates for regions treated as origins. 
Similarly, the N-by-n  matrix dΔ  contains elements that equal one if region j  is 
the destination region and zero otherwise leading to an n-by-1  vector dθ  of fixed 
effects estimates for regions treated as destinations 

 

y = α + ßoXo + ßdXd + γ d + Δoθo + Δdθd + ε. (C.3.15)

 
LeSage and Llano (2007) extend this model to the case of spatially structured ran-
dom effects. This involves introduction of latent effects parameters that are struc-
tured to follow a spatial autoregressive process. This is accomplished using a 
Bayesian prior that the origin and destination effects parameters are similar for 
neighboring regions.  

In the context of commodity flows between Spanish regions, the model takes 
the form  
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= + + +d d o oδy Z Δ θ Δ θ ε  (C.3.16a) 

d d d dρ= +θ W θ u  (C.3.16b) 

0o o oρ= +θ W θ u  (C.3.16c) 

2(0 ),d d nσNu I~  (C.3.16d) 

2(0 ).,o o nσNu I~  (C.3.16e) 

 
Given our origin-centric orientation of the flow matrix (columns as origins and 
rows as destinations), the matrices d n n= ⊗Δ I ι  and o n n= ⊗Δ ι I  produce N-by-n 
matrices. It should be noted that estimates for these two sets of random effects pa-
rameters are identified, since a set of n sample data observations are aggregated 
through the matrices dΔ  and oΔ  to produce each estimate in dθ  and oθ .  

The spatial autoregressive prior structure placed on the destination effects pa-
rameters dθ  (conditional on the parameters dρ  and 2

dσ ) is shown in Eq. (C.3.17) 
and that for the spatially structured origin effects parameters oθ  in Eq. (C.3.18), 
where we use the symbol (.)π  to denote a prior distribution: 
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( )d n dρ= −B I W  (C.3.19) 

( ).= −o n oρB I W  (C.3.20) 

 
Estimation of the spatially structured effects parameters requires that we estimate 
the dependence parameters d oρ ρ,  and associated variances 2 2

d oσ σ, . LeSage and 
Llano (2007) provide details regarding using of Markov Chain Monte Carlo meth-
ods for estimation of this model.  
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This model does not allow directly for spatial spillover effects. It does, however, 
provide a spatially structured effect adjustment for each origin and destination re-
gion. These act in the same fashion as non-spatial effects parameters producing an 
intercept shift adjustment that would be added to the parameters β  and γ  when 
considering the partial derivative impacts arising from ceteris paribus changes in 
region i’s explanatory variable. Another point about the spatially structured prior 
is that if the scalar spatial dependence parameters ( )o dρ ρ,  are not significantly 
different from zero, the spatial structure of the effects vectors disappears, leaving 
us with normally distributed random effects parameters for the origins and desti-
nations similar to the conventional effects models described in Feenstra (2002).  

Large diagonal flow matrix elements 

Another problem that arises in empirical work is the fact that the diagonal ele-
ments of the flow matrix Y  representing intraregional flows are often quite large 
relative to the off-diagonal elements reflecting interregional flows. Since the ob-
jective of spatial interaction modeling is typically a model that attempts to explain 
variation in interregional rather than intraregional flows, practitioners often view 
intraregional flows as a nuisance, and introduce dummy variables for these obser-
vations (see, for example, Koch et al. 2007). For the case of the independence 
model this approach is fine, but it can have deleterious impacts on models involv-
ing spatial lags of the dependent variable. To see this, consider the case of a sim-
ple model involving  

 

y = ρ W~  y + Z δ + ε (C.3.21a) 

2(0 ), Nσ Iε ~ N  (C.3.21b) 

 
where W~  is a row-normalized version of the sum of the spatial weight matrices 

o d w, ,W W W . The n zero elements associated with the diagonal of the vectorized 
flow matrix =y  vec(Y) in the N-by-1 vector of flows will have the impact of pro-
ducing outliers in the spatial lags when these observations are involved in the li-
near combination used to form  W~ y.  

To avoid this problem, LeSage and Pace (2008) suggest a procedure that em-
beds a separate model for the intraregional flows into the spatial interaction mo-
del. This is accomplished by adjusting the explanatory variables matrices o d,X X  
and the intercept vector nι  to have zero values for the n observations associated 
with the main diagonal elements (intraregional flows) of the flow matrix .Y  We 
use ,% %

o dX X  to denote these adjusted matrices. A new matrix that we label iX  is 
introduced containing the n observations associated with intraregional flows set to 
zero in the matrices o d,X X , and zeros in the other N n−  observations. That is, 
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o o i= −X X X% , and d d i= −X X X% . In addition, a new intercept vector iι  is intro-
duced that contains ones in the n positions so that N N i−ι = ι ι% . The adjusted inde-
pendence model now takes the form 

 

( ) ( )= + + − + − + + +%N i i o i d i iα α ψ θy ι ι X X β X X γ X d ε  (C.3.22a) 

= + + + + + +% %%N i i o d iα α ψ θy ι ι X β X γ X d ε  (C.3.22b) 

 
where a corresponding adjustment can be used for the case of the spatial lag model 
in Eq. (C.3.11)  or the spatial error model in Eq. (C.3.13).  This model uses the 
(orthogonal) intercept term iι  and explanatory variables iX  (and associated Ψ ) to 
capture variation in the vector of flows y across dyads representing intraregional 
flows and the adjusted variables: , , N d oι X X% %%  to model variation in interregional 
flows.  

Of course, it is not necessary to rely on the same set of explanatory variables 
for o d i, ,X X X , but this will simplify computation via the moment matrices for 
models involving large samples n as discussed earlier. LeSage and Pace (2009a) 
provide expressions for the moment matrices that arise for these adjustments to the 
model.  

As an example, consider that variation in intraregional flows might be ex-
plained by variables such as the area of the regions or in the case of a migration 
flow model the population of the regions. We would expect that regions having 
larger population and area should exhibit more intraregional migration. This sub-
set of two explanatory variables could then be used to form the matrix iX , with 
corresponding adjustments to these two variables undertaken for the matrices 

o d,X X  to produce o d,X X% % . Inference regarding the parameter ψ  for these two 
variables would not be of primary interest (since associated with the intraregional 
control variables) whereas the focus of the model is on the parameters β, γ  and θ .  

The advantage of this approach is that non-zero intraregional flows can be in-
cluded in the matrix Y used to form the dependent variable vector y and the spatial 
lags o d w, ,W y W y W y. Variation in the flows associated with the large diagonal 
elements is captured by the embedded model variables iι  and iX  allowing the co-
efficient estimates associated with the adjusted explanatory variables o d,X X% %  to 
more accurately characterize variation in interregional flows.  

As an illustration of the differences that arise from these adjustments to the 
model, we use a sample of 1998 commodity flows between the 48 lower U.S. 
states plus the District of Columbia leading to a sample size of 49n =  and N = 
2,401. The commodity flows were taken from the Federal Highway Administra-
tion Freight Analysis Framework State to State Commodity flow Database. As ex-
planatory variables we use the (logged) area of each state and the 1998 Gross State 
Product (gsp). The model was based on a single spatial weight matrix constructed 
using a row-normalized matrix consisting of d o w+ +W W W , where the n-by-n ma-
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trix W was based on six nearest neighbors. Following convention, the commodity 
flows were transformed using logs as were the explanatory variables representing 
area and gsp.  

Table C.3.2 shows the coefficient estimates labelled β
^

1 for the adjusted model 
along with those from the unadjusted model labeled β

^
0. In the table, we use the 

symbol I_gsp and I_area to denote the variables contained in the matrix iX  in the 
adjusted model expression given by Eq. (C.3.22). A t-test for significant differ-
ences between the coefficients (β

^
0 – β

^
1) common to the two models is presented in 

Table C.3.3. From the table reporting test results for differences in the two sets of 
estimates we see evidence of differences that are significant at the 99 percent level 
in the coefficients on distance and the spatial lag of the dependent variable. There 
is also a difference between the origin area explanatory variable that is significant 
at the 90 percent level. It is also worth noting that twice the difference in the log-
likelihood function values from the two models is 249, which suggests a signifi-
cant difference between the models. This would be an informal indication since 
the two models cannot be viewed as formally nested.  

Table C.3.2. Unadjusted and adjusted model estimates 

Variables Unadjusted model Adjusted model 

 Coefficient 
0

ˆ( )β  t-statistic Coefficient 
1

ˆ( )β  t-statistic   

Constants    

Nι / Nι%  –19.2770  –38.9  –19.9888  –41.1   

iι  –   –     –5.2012  –2.2   
     
Origin variables     
O_gsp / O% _gsp 0.3397  15.7  0.3520  17.0   
O_area / O% _area 0.5679  27.1  0.4961  23.6   
     
Destination variables     
D_gsp / D% _gsp 0.7374  30.7  0.7021  30.8   
D_area / D% _area 0.2806  17.2  0.2608  16.5   
     

I_gsp –   –     0.6169  4.3   

I_area –   –     0.3738  3.5   

Distance –0.5123  –22.2  –0.3101  –13.1   

ρ  0.5219  23.5  0.6429  31.6   
2σ  1.1549   1.0337   

Log-likelihood          –2762.7            –2638.2  

We can also use this model and sample data to illustrate how problems arise when 
setting the intraregional flows to zero values. For this illustration a spatial weight 
matrix based on row-normalized d o+W W  was used, and the unadjusted model 
was estimated for values of the dependent variable representing intraregional 
flows flows set to zero as well as the full set of non-zero flows.  
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Table C.3.3. Test for significant differences between the unadjusted and  
adjusted model estimates 

Variables 0 1
ˆ ˆ( )−β β   t-statistic  t-probability   

Constant 0.7118 0.7264  0.4677   
    
Origin variables    
O_gsp  –0.0123 –0.2905  0.7715   
O_area  0.0718 1.7139  0.0867   
    
Destination variables    
D_gsp  0.0352 0.7529  0.4516   
D_area  0.0198 0.6195  0.5357   

Distance  –0.2022 –4.3319  0.0000   

ρ   –0.1210 –2.8511  0.0044   

The results from this illustration are presented in Table C.3.4 where we see a seri-
ous degradation in the log-likelihood function value for the zero-flows model and 
a dramatic six-fold rise in the noise variance estimate 2.σ  A number of problem-
atical coefficient estimates arise, for example the coefficient on distance is nega-
tive but not significantly different from zero, contrary to the conventional result. 
The magnitude of the spatial dependence parameter ρ  decreased dramatically, 
consistent with our admonition that setting the main diagonal elements of the flow 
matrix to zero will have an adverse impact on the spatial nature of the sample flow 
data. Finally, given the reported t-statistics, we can infer that the coefficient esti-
mates on the origin and destination gsp variables are significantly different in the 
two regressions. 

Table C.3.4. Zero intraregional flows versus non-zero intraregional flows 

Variables Zero diagonal flows Non-zero diagonal flows 

 Coefficient 
0

ˆ( )β   t-statistic Coefficient 
1

ˆ( )β   t-statistic   

Constant 2.1675  2.30  –16.1351  –33.55   
     
Origin variables     
O_gsp 0.3801 7.73 0.2805 13.92  
O_area 0.5573  13.42 0.4552  22.72  
     
Destination variables     

D_gsp / D% _gsp 0.8504 15.35  0.5969 25.77 

D_area / D% _area 0.1801 5.01  0.2341  15.31 

     
Distance –0.0230 –0.75 –0.4113 –19.15 

ρ  0.2979 6.80 0.6449 33.71 
2σ  5.8627  0.9911  

Log-likelihood            –4,707.2           –2,612.1  
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The zero flows problem 

Another problem that arises involves the presence of a large number of zero 
flows1. This problem arises when analyzing sample data collected using a fine spa-
tial scale. As an example, population migration flows between the largest 50 U.S. 
metropolitan areas over the period 1995-2000 resulted in only 3.76 percent of the 
OD-pairs contained zero flows, whereas 9.38 percent of the OD-pairs were zero 
for the largest 100 metropolitan areas and for the largest 300 metropolitan areas, 
32.89 percent of the OD pairs exhibited zero flows.  

The presence of a large number of zero flows invalidates use of least-squares 
regression as a method for estimating the independence model and maximum like-
lihood methods for spatial variants of the interaction model. This is because zero 
values for a large proportion of the dependent variable invalidate the normality as-
sumption required for inference in the regression model and validity of the maxi-
mum likelihood method.  Despite this, a number of applications can be found 
where the dependent variable is modified using log (1 + y) to accommodate the 
log transformation. This, however, ignores the mixed discrete/continuous nature of 
the flow distribution. Intuitively, this type of practice should lead to downward 
bias in the coefficient estimates for the model.  

If we can view flows as arising from say positive utility in the case of migra-
tion flows or positive profits when considering commodity flows, then the pres-
ence of zero flows might be indicative of negative utility or profits. This type of 
argument is often used to motivate sample censoring models such as in the Tobit 
regression model. In a non-spatial application to international trade flows, Ranjan 
and Tobias (2007) treat zero flows using a threshold Tobit model. Their argument 
is that zero trade flows are indicative of situations where the transportation and 
other costs associated with trade exceed a threshold making trade unprofitable. A 
similar argument could be applied to migration flows. Non-zero flows could be 
viewed as an indication that the origin versus destination characteristics are such 
that at least one migrant perceives positive utility arising from movement between 
the origin-destination dyad. In contrast, zero observed migration flows could be 
interpreted to mean that no individual views destination utility to be greater than 
utility at the origin for these OD dyads, leading to net negative utility from migra-
tion. We note that similar arguments regarding utility from program participation 
have been used to motivate sample truncation leading to the use of Tobit regres-
sion models when evaluating the level of program participation by individuals.  

LeSage and Pace (2009a) set forth estimation methods for Tobit models where 
a spatial lag of the dependent variable is involved. This requires Bayesian MCMC 
estimation where a set of parameters representing negative utility are introduced 
for the zero-valued dependent variable observations. Some important caveats are 
associated with this approach to dealing with zero-valued flows. One is that Tobit 

                                                           
1  Note that zero counts present no serious problem in Poisson regression, but must be han-

dled in the log-normal spatial interaction model case. 
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models assume the dependent variable follows a truncated normal distribution. 
This assumption seems reasonable when we are faced with a sample of flows con-
taining less than 50 to 70 percent zero or censored values. However, in situations 
where we are faced with a very large proportion of zero values, the assumption of 
a truncated normal distribution seems less plausible.  

In the context of modeling knowledge flows between European Union re-
gions, LeSage et al. (2007) note that a large proportion of zero knowledge flows 
between the sample of European regions should be viewed as indicative that 
knowledge flows are perhaps a rare event. This view is more consistent with a 
Poisson distribution for the dependent variable. We will have more to say about 
this later.  

To demonstrate how spatial autoregressive Tobit models can be used to ad-
dress the issue of zero observations we generated a sample of 2,401 OD flow ob-
servations using the explanatory variables area and gsp from our previous exam-
ple involving state level commodity flows involving the 48 lower U.S. states and 
the District of Columbia. A Queen-based spatial contiguity weight matrix was 
used for W and a single matrix W~  was generated using a row-normalized version 
of d o+W W . The true parameter values for β and γ  were set to one and minus one 
for the gsp and area variables respectively. Use of both positive and negative co-
efficient values ensures that the generated flows will include negative values. The 
parameter θ  for distance was set to minus one and that for the intercept to 20. A 
value of 0 65ρ = .  was used. This procedure for producing data-generated flows 
resulted in 1,020 negative flows out of 2,401 observations, or slightly more than 
42 percent sample censoring. We should view the dependent variable generated in 
this fashion as profitability associated with interregional commodity flows, so the 
magnitude of commodity flows is proportional to profitability. Consistent with 
this view, we set negative values of the dependent variable to zero, reflecting the 
absence of commodity flows between dyads where negative profits existed.  

Estimates from the set of continuous values for the flows/profitability were 
constructed using maximum likelihood estimation of the spatial autoregressive 
model in Eq. (C.3.11). These estimates should of course be close to the true values 
used to generate the sample data. A second set of estimates were based on the 
sample with zero values assigned for negative values of the generated dependent 
variable, to explore the impact of ignoring zero flow values and proceeding with 
conventional maximum likelihood estimation of the spatial autoregressive model. 
Here we would expect to see downward bias in the coefficient estimates due to the 
sample truncation.  

A third set of spatial autoregressive Tobit model estimates were based on the 
sample with zero values assigned for negative values of the dependent variable. 
Ideally, the spatial Tobit model parameters should be close to the true parameter 
values used to generate the sample of flows, if we have been successful in our spa-
tial econometric treatment of zero valued flows as representing sample truncation. 
MCMC estimation methods described in LeSage and Pace (2009a) were used to 
produce estimates for the spatial autoregressive Tobit model.  
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Results from this illustration are reported in Table C.3.5, where we see coefficient 
estimates labeled Uncensored sample close to the true values used to generate the 
flow vector y. These were based on the sample flow vector that did not impose 
sample truncation on the negative values of the dependent variable. The estimates 
labeled Non-Tobit censored are those based on ignoring the existence of zero val-
ued flows. The Bayesian spatial autoregressive Tobit model estimates are reported 
in the columns labeled Tobit censored, where the posterior mean reported in the 
table is based on a sample of 1,000 MCMC draws. The posterior mean was di-
vided by the posterior standard deviation to produce a pseudo t-statistic for com-
parability with these measures of dispersion for the maximum likelihood esti-
mates. 

From the table we see that ignoring zero valued flows produces a dramatic 
downward bias in the coefficient estimates. Most of the estimates are around 50 to 
60 percent lower than the true parameters used to generate the sample y-vector. In 
contrast, the spatial autoregressive Tobit estimates produced coefficients very 
close to the true parameters as well as the benchmark estimates based on the un-
censored sample. A point worth noting is that use of the spatial autoregressive To-
bit model will lead to larger dispersion in the estimates, which from a Bayesian 
viewpoint reflects greater uncertainty in the posterior means.  

Table C.3.5. Spatial Tobit experimental results 

Variables  Uncensored sample Non-Tobit censored Tobit censored 
 True Coefficient t-statistic a  Coefficient t-statistic a   Coefficient t-statistic a   

Constant 20 19.2933  31.4  15.7547  24.9  19.5794  29.9   
        
Origin variables        
O_gsp 1 1.0309  42.5  0.4746  21.2  1.0519  32.5   
O_area –1 –1.0055  –45.0  –0.6128  –29.3  –1.0169  –45.4   
        
Destination variables        
D_gsp 1 0.9833  41.1  0.4564  20.5  0.9940  31.8   
D_area –1 –0.9691  –44.3  –0.5985  –29.0  –0.9849  –43.2   
        
Distance –1 –0.9861  –42.8  –0.6016  –27.9  –1.0075  –41.7   
ρ  0.65 0.6569  81.9  0.7719  90.8  0.6475  75.1   

2σ  1 0.9654   0.9853   0.9786   

Notes: a Pseudo t-statistic, posterior mean divided by posterior standard deviation 

Some caveats regarding this approach to dealing with zero-valued flows are in or-
der. As already mentioned, this approach is most likely applicable for situations 
where there is not an excessive amount of zero values. The ability of this approach 
to produce quality estimates depends on the ability of the spatial Tobit procedure 
to produce good estimates for the latent parameters introduced in the model (see 
LeSage and Pace 2009a for a detailed discussion of this). As economists are fond 
of saying, there is no such thing as a free lunch. This applies to the spatial Tobit 
model where the cost of censoring is increased uncertainty regarding the posterior 
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estimates. Intuitively, as the proportion of the sample that is censored increases, so 
does our uncertainty in the estimation outcomes. A final point is that this same ap-
proach can be used to deal with zero flow values for the spatially structured effects 
model set forth in Eq. (C.3.16). LeSage and Pace (2009a) discuss this and LeSage 
et al. (2008) provide details including an applied example using commuting flows 
in Toulouse. This involves introducing latent parameters for the zero-valued flows 
and estimating these using Bayesian MCMC procedures.  

As already mentioned, cases where the proportion of zero-valued flows is very 
large are not amenable to the Tobit model approach. LeSage et al. (2007) provide 
an extension of the model given by Eq. (C.3.16) that can be used to accommodate 
this situation. They rely on a variant of the model in Eq. (C.3.16) where the flows 
are assumed to follow a Poisson distribution, and treat interregional patent cita-
tions from a sample of European Union regions as representing knowledge flows. 
The counts of patents originating in region i that were cited by regions j = 1, …, n  
are used to form a knowledge flows matrix. Since cross-region patent citations are 
both counts and rare events, a Poisson distribution seems much more plausible 
than the normal distribution assumption made for the Tobit model.  

The extension of the spatially structured effects model relies on work by Früh-
wirth-Schnatter and Wagner (2008) who argue that (non-spatial) Poisson regres-
sion models (including those with random-effects) can be treated as a partially 
Gaussian regression model by conditioning on two strategically chosen sequences 
of artificially missing data. These sequences are similar in spirit to the latent pa-
rameters approach described above for estimating the spatial autoregressive Tobit 
model (LeSage and Pace 2009a). After conditioning on both of these latent se-
quences, Frühwirth-Schnatter and Wagner (2008) show that the resulting model 
can be estimated using an MCMC procedure.  

The one drawback to the approach pointed out by LeSage et al. (2007) is that 
one must sample two sets of latent parameters equal to 1ijy + , where ijy  denotes 
the count for observation i. This can lead to very long sequences of artifically 
missing data that need to be manipulated during MCMC estimation thousands of 
times. The authors report that for a sample of 188n =  regions 23,718 zero values 
and 199,817 non-zero values, a total of 133,535 latent observations were needed 
to sample each of the two latent variable vectors. The estimation procedure took 
over two days to produce estimates for the moderately sized sample based on n = 
188.  

For  the  spatially  structured  random  effects   model  from   Eqs. (C.3.17) to 
(C.3.20),  let y = (y1, …, yN) denote our sample of 2N n=  counts for dyads of 
flows between regions. The assumption regarding iy  is that i iy λ|  follows a Pois-
son, ( )iP λ  distribution, where iλ  depends on (standardized) covariates Zi reflect-
ing the ith row of the explanatory variables matrix Z, with i = 1, …, N. The Pois-
son variant of this model can be expressed as 
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( )i i iy Pλ λ| ,~  (C.3.23a) 

exp( )i i di d oi ozλ δ δ θ δ θ= + +  (C.3.23b) 

 
where diδ  represents the ith row from the matrix dΔ  in Eq. (C.3.16) that identifies 
region i as a destination region and oiδ  identifies origin regions using rows from 
the matrix oΔ  of Eq. (C.3.16). The insight of Frühwirth-Schnatter and Wagner 
(2008) was that conditional on the sequences of artifically missing data MCMC 
samples can be constructed from the posterior distribution of the parameters using 
draws from a series of distributions that take known forms.  

C.3.4   Concluding remarks 

In addition to the challenges discussed above that face practitioners interested in 
empirical implementation of spatial interaction models, there is a need to provide 
a theoretical justification for the use of spatial lags of the dependent variable (or 
disturbances) in spatial interaction models. The description provided here moti-
vates the need for these models based on empirically observed spatial dependence 
in flows.  

LeSage and Pace (2008) provide a purely econometric motivation for inclu-
sion of spatial lags of the dependent variable based on missing variables, and 
LeSage and Pace (2009a) provide a number of additional econometric motivations 
for use of spatial autoregressive regions models in applied settings not specific to 
modeling origin-destination flows. Many of these empirical motivations could be 
extended to the case of flow modeling.  

However, a theoretical basis would give the strongest justification for use of 
these models. Koch et al. (2007) provide a starting point for the special case of in-
ternational trade flows by extending the work of Anderson and van Wincoop 
(2004). They rely on a monopolistic competition model in conjunction with a CES 
(constant elasticity of substitution) utility function to derive a gravity equation for 
trade flows that contains spatial lags of the dependent variable. A study of theo-
retical work in the trade literature (Anderson and van Wincoop 2004; Koch et al. 
2007) suggests that spatial interaction models may suffer from their focus on bi-
lateral flows between origin-destination dyads. The conclusion drawn from recent 
theoretical developments in the trade literature is that bilateral relationships may 
not readily extend to a multilateral world. Simple relationships based on dyads ig-
nore indirect interactions that link all trading partners. The theoretical work of 
Koch et al. (2007) leading to a spatial interaction model for trade flows that in-
cludes spatial lags of the dependent variable has some important implications for 
spatial interaction modeling in more general circumstances. One implication is 
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that introducing spatial dependence leads to a situation where dyad relationships 
are no longer of central importance. In the context of trade flows and spatial de-
pendence, price differences between bilateral partners spillover to produce an im-
plicit dependence that quickly encompasses all other trading partners. Specifi-
cally, the authors argue that when goods are gross substitutes, trade flows from 
any origin to any destination may depend on the entire distribution of bilateral 
trade barriers, which reflect prices of substitute goods.  

As already motivated, use of spatial regression models that include spatial lags 
of the dependent variable leads to an implication consistent with the work of Koch 
et al. (2007). Returning to our example of a ceteris paribus change in labor market 
opportunities for a single region i , the spatial spillover impacts that arise for these 
models have the potential to reflect dependence on the entire distribution of re-
gional labor market opportunities available in all regions.  
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C.4  Spatial Econometric Model Averaging 

Oliver Parent and James P. LeSage 

C.4.1  Introduction 

Estimates and inferences that arise from use of empirical models include uncer-
tainty arising from a number of sources. Coefficient estimates produced using sta-
tistical regression methods embody uncertainty that we attribute to noise that 
arises in the process that generated our sample data. There are other sources of un-
certainty related to issues of model specification that are typically ignored when 
we conduct statistical inference regarding model parameters. Uncertainty related 
to various aspects of model specification is typically excluded from inferential 
considerations by virtue of the assumption that our models are correctly specified 
to reflect the true model that generated the sample data. Given this assumption, as 
well as assumptions regarding the nature of statistical distributions assigned to all 
random deviates in the data generating process, we can use basic principles from 
statistical theory to derive distributions for the model parameters that serve as the 
basis for parameter inference. 

An implication that is often ignored in applied practice is that we should con-
sider parameter inference to be conditional on the model specification. In this con-
tribution we discuss formal methods that can be used to incorporate model specifi-
cation uncertainty when making inferences about model parameters. These have 
been labeled Bayesian model averaging and represent one approach to making pa-
rameter inference unconditional on model specification issues. Instead of selecting 
a single model, this approach proposes to average estimates across different mod-
els. We focus our discussion of model averaging on prominent members of the 
family of spatial regression models that are widely used by practitioners analyzing 
spatial data sets. In this setting model uncertainty arises from three sources: (i) the 
spatial weight or connectivity structure assigned to regions that form the observa-
tional basis of spatial data samples, (ii) the type of model employed from the fa-
mily of models available, and (iii) specific explanatory variables included in the 
model. 

The first source of model uncertainty is unique to spatial regression modeling 
since conventional regression models assume independence between sample ob-
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servations. The hallmark of spatial regression models that distinguish these from 
more traditional regression methods is the spatial weight matrix. Uncertainty re-
garding the spatial weight matrix has long been recognized by practitioners who 
typically check whether estimates and inferences are similar when alternative spa-
tial weight structures are used. As we will see, model averaging represents a more 
formal approach to this issue. The second and third sources of uncertainty arise in 
conventional regression models as well as spatial regression models considered 
here. Again, model averaging provides a formal approach to considering the im-
pact of these two types of uncertainty regarding model specification on the result-
ing estimates and inferences we draw regarding parameters of interest from our 
models. 

Bayesian inference is based on the posterior distribution of model parameters 
which refers to an update of the prior parameter distributions that arises from mix-
ing these with sample data. The posterior distribution for our model parameters 
tells us what we learn about the model parameters from combining our model, 
prior beliefs and sample data information. This is often referred to as Bayesian 
learning, where the data allows us to update our prior views about the model pa-
rameters. The result is the posterior which combines our prior distributions for the 
model parameters with the data. Non-Bayesian methods such as maximum likeli-
hood focus only on the data distribution arising from random deviates at work in 
the data generating process to derive statistical distributions for the model parame-
ters. Model averaging extends this approach to estimation and inference by includ-
ing the model specification in the learning process. This results in a posterior dis-
tribution for the model parameters that includes the three sources of uncertainty 
noted above regarding various aspects of model specification. 

This contribution describes details and provides illustrations of how this can 
be accomplished in the context of spatial regression models. Section C.4.2 sets 
forth the theory behind Bayesian model averaging with specifics related to promi-
nent members of the family of spatial regression models detailed in Section C.4.3. 
Implementation issues are taken up in Section C.4.4 with an applied illustration in 
Section C.4.5. 

C.4.2  The theory of model averaging 

We consider spatial regression models that involve an n-by-1 dependent variable 
vector y, where n denotes the number of observations or regions contained in the 
sample data. Spatial data samples typically consist of a single observation for each 
region  in the sample.  Explanatory variables  in these models take the form of an 
n-by-k matrix, where k represents the number of explanatory variables which 
might include an intercept vector. As noted, a distinguishing feature of spatial re-
gression models is use of a spatial connectivity or weight matrix that describes 
neighboring relationships between the regional observational units. This is usually 
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specified using an n-by-n matrix that we label W. This matrix contains non-zero 
entries in row i, column j to indicate a neighboring relationship between re-
gions/observations i and j. Zero entries are used to denote the absence of a 
neighboring relationship, and the main diagonal elements of W are set to zero to 
prevent a region from being defined as a neighbor to itself. We will have more to 
say about the spatial weight matrix as it pertains to specific spatial regression 
models that we consider later. 

Given a set i = 1, …, m of Bayesian models, each would be represented by a 
likelihood function and prior distribution as in Eq. (C.4.1). 
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where D = {y, X, W} represent model data and θ denote model parameters. We 
note that the posterior distributions for the model parameters in this case are for-
mally conditional on the model specification Mi as well as the data, D. Equation 
(C.4.1) results from application of Bayes' rule. This rule states that for two sets of 
random variables D and θ  the joint probability p (D, θ) can be expressed in terms 
of conditional probability p (D |θ) or P(θ | D) and the marginal probability P(θ ) 
as shown in Eqs. (C.4.2) and (C.4.3). 

 

p(D,θ) = p(D|θ) p(θ) (C.4.2) 

p(D,θ) = p(θ |D) p(D). (C.4.3) 

 
Setting these two expressions equal and rearranging gives rise to Bayes' Rule 
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The expression in Eq. (C.4.1) arises from application of Bayes' rule to expand 
terms like p(D|Mi) in a fashion similar to that used to arrive at Eq. (C.4.4). A simi-
lar approach leads to a set of unconditional posterior model probabilities: 
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These posterior model probabilities serve as the basis for inference about different 
models. As indicated by the notation p(Mi|D), the model probabilities depend only 
on the sample data. A key point is that the posterior model probabilities are un-
conditional on the model specification. This is unlike the conventional situation 
motivated in the introduction where inferences regarding the model parameters 
were considered conditional on the model specification which was assumed to be 
correct. Some discussion of how this is accomplished through the use of Bayes' 
rule follows (Zellner 1971). 

The term p(D |Mi) that appears on the right-hand-side of Eq. (C.4.5) is called 
the marginal likelihood, and we can solve for this key quantity needed for model 
comparison finding 

 

p (D |Mi) =∫ p (D |θ i, Mi) p(θ i |Mi) dθ i. (C.4.6) 

 
An important point is that the model probabilities involve integration over the en-
tire posterior distribution for the parameters in all models, θ i. This makes these 
unconditional on any particular values taken by the parameters. Non-Bayesian 
methods such as maximum likelihood carry out model comparison using mean 
values of the parameter estimates to evaluate the likelihood function. Models are 
then compared using scalar values of these parameters that maximize the likeli-
hood function. This means that non-Bayesian inferences about two or more mod-
els will depend on particular maximum likelihood parameter estimates used to cal-
culate likelihood function values employed in the comparison. In contrast, 
Bayesian model comparison constructs model probabilities for comparison pur-
poses by integrating over the entire posterior distribution of possible values that 
can be taken by the model parameters in all models under consideration. The 
process of integrating over distributions for unknown quantities such as the model 
parameters makes our posterior inferences regarding various model specifications 
unconditional on these quantities. 

This suggests the Bayesian approach has advantages, but there is also the 
computational burden of carrying out integration with respect to the model pa-
rameters. Using analytical methods of integration simplifies the task. Unfortu-
nately, analytical methods are not always applicable and if numerical methods are 
required the task can be computationally demanding. 

Assuming we can calculate posterior model probabilities using analytical or 
numerical methods, Bayesian model averaging proceeds by constructing a linear 
combination of parameter distributions. The posterior model probabilities are used 
as weights when forming the linear combination of parameter distributions. As a 
simple example of this procedure, consider a situation where we are uncertain 
about the specification used for the spatial weight matrix in our spatial regression 
model. For simplicity, assume that we assign equal prior probabilities to models 
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based on m = 10 different models, each based on a different nearest-neighbor 
weight matrix. Assigning equal prior probabilities to all ten models implies that 
we believe each of the ten models based on alternative weight matrices to be 
equally likely a priori. We use the term a priori to denote that we have made this 
assignment without examining the sample data. Further assume that we entertain 
model specifications based on weight matrices constructed using the single nearest 
neighboring region, the two nearest neighbors, three neighbors and so on, up to ten 
nearest neighbors, leading to a set of ten models under consideration. Formally, 
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where we use πi to represent the posterior model probabilities. Like all probabili-
ties, these must lie between zero and one, and sum to unity over the set of m = 10 
models under consideration. 

A non-Bayesian approach to inference in this type of situation might be to se-
lect a single model based on some criterion such as model  fit or likelihood func-
tion values. We note however that formal likelihood ratio tests that compare mod-
els cannot be applied in this situation because the set of models under 
consideration is non-nested. A set of nested models is such that the simpler models 
in the set can be expressed as restricted versions of a more elaborate model. For 
example, a regression model based on two explanatory variable vectors x1, x2 nests 
a model based on the single explanatory variable vector x1, and a model based on 
only x2. These two simpler models can be derived by imposing a zero restriction 
on the parameters associated with one of the two explanatory variables in the full 
model involving both variables. An important advantage of Bayesian model com-
parison methods based on posterior model probabilities such as πi is that non-
nested models can be compared. 

As noted in the introduction, it has become conventional non-Bayesian prac-
tice to report spatial regression model estimates based on a single selected model 
and to explore the sensitivity of inferences made when the specification is altered 
to rely on say the next best model which would have been selected using the selec-
tion criterion. Despite this non-Bayesian attempt to explore robustness of infer-
ences to the choice of alternative spatial weight matrices, inferences are drawn 
from a single model. An implication of this is that uncertainty regarding the choice 
of weight matrix is not formally incorporated in reported inferences regarding 
model parameters of interest. 

The Bayesian model averaging approach would be to construct a single poste-
rior distribution for the model parameters based on a linear combination of pa-
rameter distributions from all ten model specifications based on each of the ten 
weight matrices. This leads to posterior inferences that incorporate model uncer-
tainty regarding the choice of weight matrix. If the parameter distributions from 
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individual models based on different weight matrices exhibit a great deal of varia-
tion and the posterior model probabilities assign large weights to many of the ten 
models, this will lead to greater dispersion in the posterior parameter distribution 
arising from model averaging. Intuitively, if the posterior probabilities are dis-
persed over the set of ten models, this is indicative that the sample data are rela-
tively inconclusive about which weight matrix that should be employed in our 
model. This aspect of model uncertainty should be taken into account when we 
draw inferences about model parameters of interest, leading to greater uncertainty 
in our conclusions. Suppose we are interested in a single model parameter of stra-
tegic interest regarding the influence of infrastructure investment on regional eco-
nomic growth. If model averaged inferences lead us to conclude that infrastructure 
exerts a positive and significant influence on regional growth, we can be confident 
that this inference includes model uncertainty regarding the spatial weight matrix 
used. It might also be the case that after taking into account model uncertainty re-
garding the spatial weight matrix we  find no significant role for infrastructure in-
vestment on the regional growth process. In this circumstance, the non-Bayesian 
approach that produces inferences based on a single model might lead to an erro-
neous conclusion that is specific to the particular spatial weight matrix employed 
in the model selected for purposes of inference. 

C.4.3  The theory applied to spatial regression models 

We wish to consider prominent members of the family of spatial regression mod-
els popularized by Anselin (Anselin 1988). Specifically, we focus on the spatial 
autoregressive (SAR) model 

 

y = ρWy + αιn + Xβ + ε (C.4.8) 

ε ~ N (0, σ 2
I n) (C.4.9) 

 
where y is our n-by-1 dependent variable vector, ιn denotes an n-by-1 vector of 
ones and α is the associated intercept parameter. The n-by-k matrix X contains 
non-constant explanatory variables that are assumed exogenous with β being a k-
by-1 vector of associated parameters. The n-by-1 vector ε is a disturbance vector 
that is normally distributed with zero mean and constant scalar variance, σ 2, and 
zero covariance leading to a variance-covariance matrix σ 2In, where In is an n-
dimensional identity matrix. The matrix-vector product, Wy represents a spatial 
lag of the dependent variable vector y. This results from the matrix multiplication 
because the matrix W consists of non-zero weights reflecting the degree of con-
nectivity between neighboring observations/regions in our sample data. If we as-
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sign equal weights to each neighboring observation in the matrix W, the product 
Wy represents an average of the values taken by the dependent variable in 
neighboring regions (LeSage and Pace 2009). The weight matrix is normalized to 
have row-sums of unity to accomplish the task of producing spatial lags that rep-
resent linear combinations of values taken by neighboring observations. The scalar 
parameter ρ in the model reflects the strength of influence or spatial dependence 
of each observation on values of the dependent variable from neighboring regions. 
This dependence could be positive or negative, and for stability of the model we 
require that the parameter ρ takes values less than one. We can assign a Bayesian 
prior distribution for this parameter that restricts the range to the interval –1 < ρ < 1. 

It should be clear that the model in Eq. (C.4.8) represents an extension of the 
conventional regression model when the parameter ρ ≠ 0, and collapses to the or-
dinary independence model when ρ = 0. Since this parameter measures the degree 
of dependence, a zero value reflects no dependence which is equivalent to inde-
pendence between observations of the dependent variable. 

The results we derive also apply to an extension of this model that has been 
labeled the spatial Durbin model (SDM) by Anselin (1988). This extended variant 
of the model includes a spatial lag of the explanatory variables matrix formed by 
WX leading to 

 

y = ρWy + αιn + Xβ  +WXγ  + ε  (C.4.10) 

ε ~ N (0, σ 2
I n) (C.4.11) 

 
where the matrix product WX represents a linear combination, or in the case of 
equal values assigned to neighbors by the matrix W, an average of the values taken 
by the explanatory variables from neighboring observations/regions. 

Another model that represents a prominent member of the family of spatial 
regression models is the spatial error model (SEM) 

 

y = αιn + Xβ  + u (C.4.12) 

u = ρWu + ε (C.4.13) 

ε ~ N (0, σ 2
I n) (C.4.14) 

 
which models the vector of disturbances u as exhibiting spatial dependence on 
neighboring region disturbances. This is accomplished by the spatial lag Wu that 
produces a linear combination (or average) of neighboring disturbances, with the 
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strength of spatial dependence determined by the scalar parameter ρ. As in the 
case of the SAR model, this model represents a simple extension of the ordinary 
regression model when the parameter ρ ≠ 0, and collapses back to a standard re-
gression when ρ = 0. 

An interesting motivation for use of the SDM model in the presence of model 
uncertainty regarding use of the SAR or SEM model specification is provided by 
LeSage and Pace (2009). They make the following observation starting with the 
data generating processes (DGPs) for the SAR and SEM models shown in Eqs. 
(C.4.15) and (C.4.16) respectively. We have included the intercept vector ιn in the 
matrix of explanatory variables X for notational simplicity in Eqs. (C.4.15) and 
(C.4.16). 

 

ys = (In – ρW)–1 Xβ + (In – ρW)–1ε (C.4.15) 

ye = Xβ + (In – ρW)–1ε . (C.4.16) 

 
The DGP can be thought of as the process we would use to produce a simulated 
sample of data observations that obey the model specification. For example, we 
would use Eq. (C.4.15) to produce an n-by-1 vector of observations y that are con-
sistent with the SAR model statement in Eq. (C.4.8), and parameters ρ, α, β and 
noise variance σ 2. Using our earlier notation we can use D = {y, X,W} to denote 
the sample data realization and the vector θ = (α, β, ρ, σ 2) for the model parame-
ters. Equations (C.4.15) and (C.4.16) represent DGPs so we are free to assume 
identical values for the parameter vector θ in both models. 

LeSage and Pace (2009) point out that if we entertain only these two models 
and suppose that posterior model probabilities πs , πe have been calculated using 
the sample data D, model averaging would lead to a linear combination of the 
SAR and SEM models that could be expressed as 

 

yavg = πs ys + πe ye (C.4.17) 

yavg = (In – ρW)–1 Xβπs + Xβπe + (In – ρW)–1ε (πs + πe). (C.4.18) 

 
This can be simplified to arrive at (LeSage and Pace 2009) 

 

yavg = ρWyavg + Xβ +WXγ  + ε (C.4.19) 
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γ = – ρβπ e   (C.4.20) 

 
which is the SDM model specification set forth in Eq. (C.4.10). Of interest is the 
fact that if a zero posterior model probability πe for the SEM model arises, then 
using Eq. (C.4.20) we have that γ = 0. Since πs + πe = 1, this implies that πs = 1, 
producing the intuitively pleasing result that the SAR model: ys = ρWys + Xβ  + ε, 
is the appropriate model. On the other hand, if πe ≠ 0 so there is some posterior 
probability evidence in favor of an SEM model, we should rely on the SDM 
model in our empirical application. 

In addition to this motivation for use of the SDM model in applied spatial re-
gression work, LeSage and Pace (2009) provide a number of other motivations for 
this model based on omitted or excluded variables that often arise in applied prac-
tice. For this reason, we focus our developments for Bayesian model averaging on 
the case of the SDM model. To simplify notation we use a slightly altered version 
of the expression in Eq. (C.4.8) to represent the SDM model by simply re-defining 
the matrix 

 

Z = (X  WX) (C.4.21) 

y = ρWy + αιn + Zδ + ε (C.4.22) 

ε ~ N (0,σ 2In). (C.4.23) 

 
We consider two types of model uncertainty that arise in spatial regression 

modeling. One relates to the specification used to construct the spatial weight ma-
trix W, and the other pertains to which explanatory variables should be included in 
the matrix X. Given our development here, we ignore model specification issues 
pertaining to whether we should rely on an SAR or SEM model specification, 
since the SDM model we work with subsumes both of these models as special 
cases (LeSage and Pace 2009). It should be clear from our development here that 
when πe = 0 we have an SAR model specification and when πe ≠ 0 an SDM model 
arises. The development here obscures the fact that when πs = 0, we have that πe = 
1, leading to the SEM model. This can be seen in the following development, 
where we apply the fact that πs = 0 and πe = 1 to Eq.  (C.4.19). 

 

ye = ρWye + Xβ +WX (–ρβ) + ε (C.4.24) 
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(In – ρW) ye = (X – ρWX) β + ε (C.4.25) 

(In – ρW)ye = (In – ρW) Xβ + ε (C.4.26) 

ye = Xβ + (In – ρW)–1ε (C.4.27) 

ye = Xβ + u (C.4.28) 

u = (In – ρW )–1ε (C.4.29) 

u = ρWu + ε . (C.4.30) 

 
The fact that the SDM model subsumes both the SAR and SEM model has been 
overlooked in most applied spatial regression work, leading practitioners to devote 
a great deal of effort to choosing between the SAR and SEM model specifications. 
Given that the SDM model subsumes both of these models, there is no need to 
agonize over this aspect of model uncertainty. 

C.4.4  Model averaging for spatial regression models 

We consider the two sources of model uncertainty that arise from specification of 
the spatial weight matrix and selection of explanatory variables separately. There 
is an important technical difference between these two types of problems that mo-
tivates this choice. We consider the weight matrix issue and then turn attention to 
the variable selection problem. 

Model uncertainty associated with spatial weight matrix specification 

From our theoretical development we have seen that the key quantity needed to 
produce posterior model probabilities is the marginal likelihood. When we com-
pare models based on a finite set of alternative spatial weight matrices, we are 
typically considering only a small number of alternative models, say m. Further, 
each model differs only in terms of the weight matrix specification since we hold 
the number of explanatory variables used in the model matrix X  fixed. Of course, 
for the SDM model specification changes in the specification for the matrix W im-
ply a change in the explanatory variables constructed using the spatial lag WX. 
However, an important point is that the number of vectors included in the matrix X 
remain the same. When we turn attention to variable selection the number of vec-
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tors in the matrix X change as we consider different explanatory variables. This 
requires some changes in the approach taken to determining the marginal likeli-
hood and accompanying posterior model probabilities. 

Determining values for the marginal likelihood for varying weight matrix 
specifications represents a situation where the dimension of the model is  fixed be-
cause we have the same number of explanatory variables in all models. The mod-
els considered differ only in terms of the weight matrices used, allowing us to rely 
on uninformative prior distributions for the model parameters. This simplifies the 
task of model specification since we do not need to specify prior distributions for 
the model parameters. 

For the simple case of two models, M1, M2 we denote the marginal likelihood 
of the data given model Mm , m = 1, 2 using p(D|Mm) which can be used to con-
struct a posterior model probability for M1 which takes the form 
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p (D|Mi) = ∫  p (D |θ I , Mi) p(θ i |Mi) dθ i       i = 1, 2 (C.4.32) 

where p(M1) and p(M2) represent prior probabilities assigned to the two models by 
the practitioner. If we wish to let the sample data information determine the poste-
rior model probabilities we should rely on a uniform setting for these that assigns 
equal weight to all models. That is, p(Mi) = 1/m, i = 1, …, m for the case of m 
models. It should be clear that in this case the fraction p(M1)/p(M2) = 1, eliminat-
ing any role for the prior model probabilities in determination of the posterior 
model probabilities. 

A related concept often used to compare two (or more) models is the posterior 
odds ratio for M1 versus M2. The odds ratio is constructed using the posterior 
model probabilities: O1,2 = p(M1|D) / p(M2|D), where we use O1,2 to denote the 
odds in favor of model one versus two. There is of course a relationship between 
the odds ratios and model probabilities 
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and in general for the case of m models we have 
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For the independent regression model where uninformative prior distributions are 
assigned to the parameters β, σ 2 the marginal likelihood takes the form of a scalar 
expression: 
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e = y – Xβ
^
 (C.4.36) 

β
^  = (XT X)–1 XT y . (C.4.37) 

 
Hepple (1995a, 1995b) sets forth the expressions needed to calculate the marginal 
likelihood associated with the SAR model that can be adapted to our case of the 
SDM model. The development is for the case of uninformative improper priors 
assigned to the model parameters δ, σ that take the form: p(δ, σ) ∝ 1/σ, and a uni-
form proper prior for the parameter ρ having the range D, p(ρ) = 1/D. We will 
have more to say about the role of proper versus improper priors in the next sec-
tion when we discuss the need for proper priors when carrying out model averag-
ing over models with varying sets of explanatory variables. For now we simply 
note that assigning these priors used by Hepple (1995a) requires no work on the 
part of the practitioner. This is because the range D for the uniform prior can be 
based on the interval (–1 < ρ < 1) and there is no need to think about prior infor-
mation regarding the parameters δ and σ. 

The resulting marginal likelihood is derived from the joint posterior density 
for the model by analytically integrating over the parameters δ and σ to produce 
the expression shown in Eq. (C.4.38), where we use the symbol Zi = (X  Wi X) to 
represent a model based on the spatial weight matrix Wi that defines model Mi. 
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e = y – Zi δ
^
 (C.4.39) 

δ
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T Zi)
–1 (In – ρ Wi) y. (C.4.40) 
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We also note that consistent with our discussion regarding  fixing the explanatory 
variables matrix X we do not place a subscript i on this matrix which remains  
fixed for all models, Mi , i = 1, …, m. 

An important difference arises between the scalar marginal likelihood in Eq. 
(C.4.35) for the case of the independent regression model and Eq. (C.4.38) for the 
SDM model. In the case of the SDM model we cannot rely on analytical integra-
tion methods to completely derive the marginal likelihood. These work to elimi-
nate the parameters δ and σ from the marginal likelihood, but not the spatial de-
pendence parameter ρ. To complete the task of evaluating the marginal likelihood 
we need to perform numerical integration over the range of the parameter ρ. 
LeSage and Parent (2007) provide an Appendix that sets forth computationally ef-
ficient methods for accomplishing this task. 

Uncertainty arising from explanatory variable selection 

In the case where we fix the spatial weight matrix W and consider models based 
on varying numbers of explanatory variables we cannot rely on improper prior dis-
tributions for the parameters δ and σ as we did in the previous section. An issue 
that arises when calculating posterior model probabilities for these models has 
been labeled the Lindley paradox (Lindley 1957). Lindley noted that posterior 
model probabilities calculated for models based on improper priors resulted in a 
higher posterior probability always being assigned to the more parsimonious 
model, that containing fewer parameters. This result arises irrespective of the sam-
ple data used. Since we would like the sample data to play a primary role in de-
termining the posterior probabilities for models based on varying sets of explana-
tory variables, this is a very undesirable result. 

The solution to the Lindley paradox is to assign proper prior distributions for 
the parameters δ and σ in our model. (We have already assigned a proper uniform 
prior for the parameter ρ in the model) There is a trade-off between allowing the 
sample data to play the only role in determining the explanatory variables which 
would be the case if we were able to assign uninformative priors and the need to 
avoid the Lindley paradoxical outcome associated with using this type of prior. 
We note that this problem arises in the conventional independent regression model 
as well as the spatial regression models considered here. LeSage and Parent 
(2007) build on results from the conventional regression literature to devise a stra-
tegic prior. One implication of the Lindley paradox is that there is no natural way 
to construct a prior that exerts a total lack of influence on the resulting posterior 
parameter distributions that arise in Bayesian analysis. Nonetheless, we can devise 
a prior that exerts a minimal influence on the posterior outcome so the sample data 
information plays a dominant role in determining the posterior model probabili-
ties. A prior specification that exerts minimal influence on the posterior model 
probabilities is what we mean when we refer to a strategic prior. We provide spe-
cifics regarding our strategic prior later. 
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There is a second important difference between calculating posterior model prob-
abilities for a finite number of models based on alternative weight matrices and 
the problem of models based on alternative explanatory variables considered here. 
In these situations a small set of say 20 candidate explanatory variables will lead 
to 220 = 1,048,576 or over one million possible models. That is, if we are inter-
ested in entertaining all possible ways of including or excluding combinations of 
20 variables we would need to calculate posterior model probabilities for a very 
large number of models. In general, if we let k denote the number of candidate ex-
planatory variables, there are 2k possible models to be considered. If k = 50, a 
seemingly realistic number in many applied situations, we have a near infinite 
1,000 trillion possible models to consider. Further, determining each model prob-
ability requires that we carry out numerical integration of the expression in Eq. 
(C.4.38) to arrive at the marginal likelihood needed to determine each model prob-
ability. 

A large literature exists on the topic of Bayesian model averaging for the case 
of the independent regression model where alternative sets of explanatory vari-
ables are the object of interest (Fernandez et al. 2001; Madigan and York 1995). 
This is perhaps not surprising given the classic trade-off that exists in applied re-
gression modeling between including a sufficient number of explanatory variables 
to avoid potential omitted variables bias and inclusion of redundant variables that 
produce a decrease in precision of the estimates. A strategic prior is set forth by 
(Fernandez et al. 2001) that we rely on to overcome the problem of the Lindley 
paradox. To address the second issue where a near infinite number of possible 
models arises when the number of candidate explanatory variables becomes large, 
we adopt a method that has been labeled Markov Chain Monte Carlo Model Com-
position or MC3 (Madigan and York 1995). Details regarding these two ap-
proaches are provided in LeSage and Parent (2007) as they apply to both the SAR 
and SEM spatial regression model specifications. We also note there is some more 
recent literature regarding strategic priors for use with the MC3 method (Ley and 
Steel 2009; Liang et al. 2008). For example, Ley and Steel (2009) propose a bi-
nomial-beta prior distribution that relaxes the assignment of equal prior probabil-
ity for each model. This represents an attempt to address a concern that models 
with more versus fewer variables might be seen as a priori more or less likely. 

LeSage and Parent (2007) rely on a normal distribution as a prior for the pa-
rameters δ in the SDM model and an inverse gamma prior distribution for the pa-
rameter σ. This combination of normal and inverse gamma distribution simplifies 
analytical integration over these parameters allowing use to arrive at an expression 
analogous to that in Eq. (C.4.38). As in the case of Eq. (C.4.38), we still require 
numerical integration over the parameter ρ to complete our evaluation of the mar-
ginal likelihood. 

The normal prior assigned for the parameters δ is based on a suggestion by 
Fernandez et al. (2001) that the normal prior distribution from Zellner (1986) 
known as the g-prior can act as a strategic prior. They suggest settings for this 
prior distribution that they demonstrate to be strategic. By this we mean that the 
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prior settings produce a proper prior that does not exert undue influence on the 
posterior model probabilities. However, Liang et al. (2008) propose an alternative 
approach to specifying the Zellner g-prior from Fernandez et al. (2001). 

Given the ability to calculate the (logged) marginal likelihood for a single 
model, LeSage and Parent (2007) suggest using this calculated quantity in the 
MC3 method of Madigan and York (1995). The MC3 method relies on a stochastic 
Markov Chain process that moves through the near infinite dimensional model 
space and samples regions of high posterior support. This eliminates the need to 
consider all possible models. Rather, the Markov Chain process works its way 
through the model space sampling various models and calculating (log-
transformed) marginal likelihoods for each model sampled. These are subjected to 
a Metropolis-Hastings accept-reject step which steers the sampling process to-
wards regions of the model space with higher posterior probability mass. Specifi-
cally, a proposed model Mi is compared to the current model Mj using the Me-
tropolis-Hastings acceptance probability in Eq. (C.4.41). 
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For details regarding Metropolis-Hastings sampling in the context of spatial re-
gression models [see LeSage and Pace (2009)]. Of note for our purposes is the fact 
that the fraction in Eq. (C.4.41) is nothing more than our odds ratio Oij (see the 
discussion surrounding Eq. (C.4.31)). There are strict requirements on the proce-
dure used to propose a new model for validity of the MC3 method. LeSage and 
Parent (2007) discuss these issues. Basically, if we let Mj denote the current 
model, a proposed model Mi must contain either one variable more (labeled a birth 
step), or one variable less (a death step) than Mj. Of course, birth steps select a 
variable at random from those not currently included in the model and death steps 
select at random from the set of variables currently included in the model. 

This procedure is not ad-hoc. Madigan and York (1995) show that running the 
Markov Chain process long enough will result in a sample of models that are rep-
resentative of the true posterior model probabilities. In applied practice, one can 
select a random set of explanatory variables as a starting point for the sampling 
procedure and produce a large number of sampled models (say 500,000) along 
with their posterior model probabilities. Running a second sampling procedure 
beginning with a different randomly selected set of starting variables to produce 
another sample of 500,000 models and model probabilities should produce very 
similar results to the  first sample. If similar results do not arise, one should in-
crease the sample size beyond 500,000. This process should be continued until a 
sample size large enough to produce samples that approximates the true posterior 
model probabilities arises. 
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C.4.5  Applied illustrations 

We illustrate model averaging for the case of spatial weight matrices based on dif-
fering numbers of nearest neighbors using two samples consisting of U.S. coun-
ties, one involving 950 counties located in metropolitan areas and the other con-
sisting of 1,754 counties located outside of metropolitan areas. The sample data 
was taken from the 2002 Census of Governments on county-level spending and 
some observations were missing resulting in less than 3,108 total county-level ob-
servations. 

The same example is used to illustrate model averaging over models based on 
differing sets of explanatory variables. The results reported for these two illustra-
tions do not fully incorporate both sources of model uncertainty. Results from the 
first illustration are conditional on the explanatory variables matrix X used, and 
those from the second illustration condition on the spatial weight matrix. A third 
illustration is used to present posterior inferences that incorporate model specifica-
tion uncertainty regarding both the spatial weight matrix and explanatory vari-
ables. 

Weight matrix model averaging 

The model was used to explore the impact of population migration on provision of 
local government services. It is commonly acknowledged that local government 
service provision and taxes are not independent, but rather spatially dependent, 
which means that levels of services and taxes in one county are similar to those of 
nearby counties. There are a number of theories that provide an explanation for 
this observed spatial clustering (Tiebout 1956). This suggests an econometric 
model that takes spatial dependence into account should be used when examining 
cross-sectional information on county government spending and taxes. 

Information on taxes and intergovernmental aid from both state and national 
sources were used as one explanatory variable in the model along with median 
household income estimates for the year 2002 taken from Current Population Sur-
vey Annual Demographic Supplements. Population for the year 2000 and in- and 
out-migration were obtained from the year 2000 Census, with the migration mag-
nitudes reflecting cumulative in- and outmigration to each county in the our sam-
ple (over the  five-year period from 1995-2000) from all other (3,108) counties in 
the contiguous 48 states. 

The model is shown in Eq. (C.4.42), where the dependent variable y repre-
sents the (log) marginal tax cost of local government services provision for county 
i. This is a variable constructed using: yi = ln(si Pi

φ), where si is the median voter's 
share of taxes raised from local sources, Pi is the county population and φ  repre-
sents a scalar congestion parameter associated with consumption of local public 
goods. This parameter reflects the degree of publicness that varies with consump-
tion congestion,  with  0 < φ < 1.  A value of  φ = 0  reflects  local government 
services  provision  that suffer from no consumption congestion effects resulting 
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in a purely public good and a value φ = 1 denotes a private good (Turnbull and 
Geon 2006). Since this parameter is unknown, we set φ = 0.5 in this illustration, 
reflecting the midpoint of the zero to one range. This indicates that we view 
county government services as midway between the extremes of pure public and 
private goods. 

 

y = α0 ιn + ρWy + α1X + α2WX + ε . (C.4.42) 

 
Four explanatory variables were used to form the explanatory variables matrix X: 
intergovernmental grants from state and national sources, which we label A, 
county government spending (G) (excluding A), and in- and out-migration to the 
county (I,O). We might expect the effects on marginal tax cost to be positive for G 
and negative for A. (Intergovernmental grants/transfers essentially act like a reduc-
tion in G.) Both the dependent and independent variables were transformed using 
logs, so we will be able to interpret the coefficient estimates as elasticities. 

The effects of in- and out-migration on the marginal tax cost of local govern-
ment services are less clear. Destination regions should benefit from an inflow of 
more highly skilled and educated workers, since these are the groups most likely 
to move. On the other hand, origin regions may suffer from a loss of the more pro-
ductive members of their communities who are also less dependent on government 
services. This reasoning has led to the argument that rural-urban migration trends 
over the past half century have increased the costs of providing local government 
services in rural areas. 

For our illustration here we calculated posterior model probabilities for two 
models, one based on the sample of 950 metropolitan area counties and the other 
based on the sample of 1,754 counties located outside of metropolitan areas. These 
are reported in Table C.4.1 for models based on 15 different spatial weight matri-
ces based on varying the number of nearest neighbors used to construct the matrix 
Wi over m = 1 to m = 15. The table also reports the posterior mean estimates for 
the noise variance parameter σ 2 for the metropolitan area sample which we use 
later. 

From the table, we see high posterior probabilities pointing to a spatial weight 
matrix based on m = 8 and m = 9 nearest neighbors in the case of the non-
metropolitan county sample and m = 7, 8, 9 for the metropolitan area counties. For 
the U.S. counties, the number of  first-order contiguous neighbors (those with bor-
ders that touch each county) is around six, so the number of neighbors chosen 
from the model comparison illustration represents slightly more than just the con-
tiguous counties. 
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Table C.4.1. Posterior model probabilities for varying spatial neighbors 

# Neighbors  Non-metro Metro Metro σ^
 2 

m = 1  0.0000 0.0000 0.1569 
m = 2  0.0000 0.0000 0.1397 
m = 3  0.0000 0.0000 0.1338 
m = 4  0.0000 0.0000 0.1287 
m = 5  0.0000 0.0000 0.1286 
m = 6  0.0000 0.0250 0.1270 
m = 7  0.0003 0.4305 0.1266 
m = 8  0.6007 0.2884 0.1272 
m = 9  0.3299 0.2427 0.1275 
m = 10  0.0689 0.0102 0.1288 
m = 11  0.0001 0.0023 0.1297 
m = 12  0.0000 0.0005 0.1306 
m = 13  0.0000 0.0005 0.1311 
m = 14  0.0000 0.0000 0.1318 
m = 15  0.0000 0.0000 0.1336 

To illustrate how model averaging works, we constructed model averaged esti-
mates using the metropolitan area sample of counties and the eight non-zero poste-
rior probability weights to average over models based on weight matrices con-
structed using nearest neighbors ranging over m = 6, …, 13. These model averaged 
estimates will be compared to estimates based on the m = 7 neighbors suggested 
by the single highest posterior probability model. The single model approach 
might reflect a conventional approach that selects a single model based on some 
criterion such as  fit. The posterior mean of the parameter σ 2 was indeed a mini-
mum for the model based on m = 7 as shown by the values reported in Table C.4.1 
for the metropolitan area sample. 

Table C.4.2 reports posterior means and standard deviations constructed from 
a set of 2,500 draws produced using Markov Chain Monte Carlo (MCMC) estima-
tion of the model (LeSage 1997). In addition, we follow conventional MCMC 
practice and report 0.95 and 0.99 credible intervals constructed using the sample 
of draws from the MCMC sampler. This involves sorting the sampled draws from 
low to high and  finding lower and upper 0.95 and 0.99 points. For example, given 
a vector of 10,000 sorted draws, we would use the 5,000 – (9,500/2) and 5,000 + 
(9,500/2) elements of this vector as the lower and upper 0.95 credible intervals. In-
ferences based on these should correspond to a 95% level of confidence from con-
ventional methods of inference used in regression modeling. 

From the table we see that the standard deviation of the model averaged esti-
mates is smaller than that associated with the single model estimates for all vari-
ables. This indicates an increase in the posterior precision of the parameters aris-
ing from the model averaging procedure. The model averaged standard deviations 
are around 60 percent of those from the single model. 

This increased precision leads to some differences in the inferences that would 
be drawn based on the two sets of model estimates. In the case of the single m = 7 
model, we would conclude that neighboring governments expenditures WG do not 
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reduce the marginal tax costs of local government service provision using the 0.99 
credible interval. In contrast, the model averaged estimates point to a negative im-
pact from WG based on the 0.99 credible interval. Another difference arises for 
the out-migration variable O which has a 0.99 lower credible interval near zero 
(0.0008) for the single model. The positive impact of out-migration on marginal 
tax costs is much clearer for the model averaged estimates since the lower 0.99 
credible interval of (0.0392) is clearly greater than zero. 

Another approach to resolving questions regarding the role of the various ex-
planatory variables in explaining variation in the marginal tax costs of local gov-
ernment services would be to rely on model averaging in the context of variable 
selection. We illustrate this approach next. 

Table C.4.2. Metropolitan sample SDM model estimates 

Single m = 7 model estimates 

Variablesa  Lower 01 Lower 05 Mean Upper 05 Upper 01 Std 
Constant  –2.4134  –2.2622  –1.9059  –1.5392  –1.3844   0.2158 
G  0.5179  0.5322  0.5718  0.6092  0.6260   0.0235 
A  –0.0467  –0.0371  –0.0089  0.0184  0.0291   0.0167 
I  –0.3076  –0.2791  –0.2006  –0.1241  –0.0955   0.0465 
O  0.0008  0.0321  0.1079  0.1849  0.2158   0.0471 
WG  –0.2340  –0.1965  –0.1179  –0.0351  0.0007   0.0492 
WA  –0.1715  –0.1531  –0.1088  –0.0653  –0.0470   0.0263 
WI  0.1697  0.2239  0.3610  0.4977  0.5519   0.0827 
WO  –0.6493  –0.5914  –0.4507  –0.3153  –0.2599   0.0837 

Model averaged estimates 

Variablesa Lower 01 Lower 05 Mean Upper 05 Upper 01 Std 
Constant  –2.1247  –2.0319  –1.8252  –1.6205  –1.5326  0.1252 
G  0.5495 0.5577 0.5801 0.6028 0.6101 0.0135 
A  –0.0357  –0.0296  –0.0130  0.0025  0.0086  0.0096 
I  –0.2541  –0.2405  –0.1959  –0.1518  –0.1364  0.0263 
O  0.0392  0.0559  0.0996  0.1439  0.1600  0.0266 
WG  –0.2126  –0.1931  –0.1449  –0.0978  –0.0768  0.0286 
WA  –0.1343  –0.1239  –0.0986  –0.0734  –0.0638  0.0152 
WI  0.2369  0.2774  0.3526  0.4314  0.4620  0.0479 
WO  –0.5443  –0.5134  –0.4325  –0.3521  –0.3163  0.0487 

Notes:  a G is government spending;  A is intergovernmental revenue;  I is in-migration;  O is out-
migration;  WG is the spatial lag of G;  WA is the spatial lag of A;WI and WO are spatial lags of in- and 
out-migration 

Variable selection model averaging 

We proceed by allowing each of the four explanatory variables and their spatial 
lags to enter the model independently, leading to a set of 28 = 256 possible mod-
els. The intercept term and spatial lag of the dependent variable are included in all 
models (LeSage and Parent 2007). There may be modeling contexts where it 
makes more sense to force an explanatory variable from the matrix X to enter the 
model along with the same variable from WX. When implementing the MC3 pro-
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cedure, we used only a single spatial weight matrix based on m = 7, the highest 
posterior probability model. This makes the estimates and inferences about the 
matrix X drawn conditional on the spatial weight matrix W used. In our previous 
illustration, inferences regarding the spatial weight matrix W were conditional on 
use of the saturated explanatory variables matrix X containing all explanatory 
variables. We will have more to say about eliminating the conditional nature of 
these results later. 

Since there are only 256 models we could calculate posterior model probabili-
ties for an enumerative list of these models, but we used the MC3 procedure to 
sample the model space. A run of 100,000 sampling draws found 119 unique mod-
els, with the top 12 models accounting for 0.9966 of the posterior probability mass 
determined using all 256 possible models. We note that the MC3 sampling proce-
dure systematically steered away from around half of the model space where the 
models exhibited low posterior probabilities. The model probability mass was 
very concentrated in a few models with the top 5 models accounting for 0.9530 
probability and the top 2 models 0.6020 probability. 

Results  for the  top 10  models are shown in  Table C.4.3,  where  the  ten  
columns labeled m1 to m10 show which variables entered each model using a ‘1’, 
and a ‘0’ for variables that were not included. The last row of the table shows the 
posterior model probabilities for each model. These results confirm the earlier un-
certainty regarding the influence of neighboring governments expenditures WG on 
marginal tax costs. The top 2 models (m1, m2) have probabilities that are roughly 
equal to 0.30 with the WG variable entering one model and not the other. All other 
variables are the same for these two models. It is also the case that WG appeared 
in five of the top 10 models, again pointing to uncertainty about the role of this 
variable. 

Also consistent with our earlier results, the variable A representing intergov-
ernmental aid had posterior credible intervals that spanned zero in Table C.4.2, 
pointing to a lack of significance. Here we see that this variable did not enter any 
of the top  5 models. 

Table C.4.3. Metropolitan sample MC3 results for m = 7 neighbors 

Variablesa m10 m9 m8 m7 m6 m5 m4 m3 m2 m1 
G 1 1 1 1 1 1 1 1 1 1 
A 1 1 0 1 1 0 0 0 0 0 
I 1 1 1 1 1 1 1 1 1 1 
O 1 1 0 0 0 0 1 1 0 0 
WG 1 0 1 0 1 0 1 0 0 1 
WA 1 1 1 1 1 1 1 1 1 1 
WI 1 1 0 1 1 0 1 1 1 1 
WO 1 1 1 1 1 1 1 1 1 1 
p(Mi|D) 0.005 0.007 0.008 0.010 0.011 .0020 0.132 0.199 0.294 0.308 

Notes:  a G is government spending; A is intergovernmental revenue; I is in-migration; O is out-
migration; WG is the spatial lag of G; WA is the spatial lag of A; WI and WO are spatial lags of in- and 
out-migration 
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Model averaged estimates were produced using the top 12 models which as noted 
accounted for 0.9966 of the posterior probability mass determined using all 256 
possible models. These estimates are reported in Table C.4.4, where posterior 
means for the coefficients and 0.95 as well as 0.99 credible intervals are shown. 
These estimates clearly point toward a zero impact for the variable A, producing a 
very small coefficient estimate. The posterior mean estimate of –0.0001 produces 
a sharper inference than the model averaged posterior mean coefficient from Table 
C.4.2 which was equal to –0.0130. The model averaged estimates resolve the 
question regarding WG by pointing to a significant negative impact based on the 
posterior mean and 0.99 credible intervals for this variable reported in the table. 

We also report a model averaged coefficient for the spatial dependence pa-
rameter associated with the spatial lag of the dependent variable Wy, which was 
excluded from our previous results to save space. This coefficient points to posi-
tive and significant spatial dependence in the marginal tax costs relationship being 
explored. 
 

Table C.4.4. Model averaged estimates based on the top 12 models 

Variables a Lower 0.01 Lower 0.05 Coefficients Upper 0.95 Upper 0.99 
G 0.5460 0.5518 0.5643 0.5777 0.5830 
A –0.0007 –0.0005 –0.0001 0.0004 0.0006 
I –0.1684 –0.1558 –0.1330 –0.1096 –0.0991 
O 0.0100 0.0211 0.0400 0.0597 0.0679 
WG –0.0821 –0.0747 –0.0496 –0.0251 –0.0186 
WA –0.1613 –0.1561 –0.1408 –0.1264 –0.1198 
WI 0.2065 0.2311 0.2923 0.3521 0.3830 
WO –0.4946 –0.4686 –0.4076 –0.3461 –0.3230 
Wy 0.5639 0.5720 0.5941 0.6158 0.6252 

Notes: a G is government spending; A is intergovernmental revenue; I is in-migration; O is out-
migration; WG is the spatial lag of G; WA is the spatial lag of A; WI and WO are spatial lags of in- and 
out-migration; Wy is a spatial lag of the dependent variable, marginal tax costs of local government 
services 

 
There is still the question of whether the results reported here fully account for the 
two aspects of model uncertainty under consideration. Model averaged results that 
address the weight matrix uncertainty were produced by conditioning on the satu-
rated matrix X containing the full set of explanatory variables. Similarly, the MC3 
results were produced by conditioning on an m = 7 neighbors spatial weight ma-
trix. Ideally, we would like to produce posterior inferences that are unconditional 
on both the weight matrix and explanatory variables employed. These inferences 
would incorporate all aspects of model uncertainty. We turn attention to this next. 

Weight matrix and variable selection model averaging 

As noted, the model averaged estimates presented in the previous two sections do 
not fully incorporate all sources of uncertainty in the posterior inferences. There 
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are applied modeling situations where application of the MC3 procedure to models 
based on different spatial weight matrices will produce models and model aver-
aged posterior inferences that do not vary greatly as we change the weight matrix. 
An examination of results from this approach applied to our model showed this 
was not the case. For example, the posterior mean model averaged coefficient for 
the WG variable based on a set of 142 unique models identified by the MC3 proce-
dure  applied with an  m = 9  nearest  neighbors  weight matrix was equal to –
0.1706 which is quite different from the value of –0.0496 reported in Table C.4.4 
for these same results based on m = 7. The upper 0.99 credible interval for this co-
efficient in the m = 9 procedure was –0.0861 suggesting a significant difference 
between the posterior mean estimates. There were a number of other differences 
between the outcomes from the m = 7, m = 8 and m = 9 models, suggesting sub-
stantial model uncertainty associated with the particular spatial weight matrix em-
ployed. 

In the most general case where we are dealing with a near infinite number of 
possible models, we could adapt our MC3 procedure to create proposal models 
based on variation in both the spatial weight matrix as well as the explanatory 
variables matrix. LeSage and Fischer (2008) discuss this approach and provide an 
application of the method to European regional growth. 

For the relatively small number of models considered here, we can simply av-
erage over models produced using the MC3 procedure three times based on spatial 
weight matrices involving m = 7, 8 and 9 nearest neighbors. As reported in Table 
C.4.1, models based on these weight matrices account for most of the posterior 
probability mass. The MC3 sampling procedure implemented using 100,000 draws 
produce 119, 126 and 142 unique models for m = 7, 8, 9 respectively. Using the 
log-marginal likelihoods for these models to calculate posterior model probabili-
ties resulted in 31 models that had posterior probabilities greater than 0.0001. Of 
these 31 models, ten were based on m = 7, 9 were associated with m = 8 and 12 
exhibited m = 9. This suggests a relatively uniform distribution of posterior model 
probabilities with respect to the number of nearest neighbors used to form the spa-
tial weight matrix. Table C.4.5 shows the top 12 models which had posterior 
model probabilities greater than 0.01 along with the number of neighbors m asso-
ciated with these models. 

Model averaged estimates based on the 31 models having posterior model 
probabilities greater than 0.0001 are reported in Table C.4.6 along with 0.95 and 
0.99 credible intervals. From these estimates we would conclude that all explana-
tory variables are significant using the 0.95 credible intervals. Based on the 0.99 
intervals we see that the variable A representing intergovernmental aid does not 
exert an impact on the marginal tax costs of local government services provision. 
We see the same small posterior mean coefficient estimate for the variable A as in 
the model averaged estimates results reported in Table C.4.4. Since the variables 
were transformed using logs, we can interpret the coefficient magnitudes as elas-
ticities. This suggest that despite the statistical significance of the variable A based  
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Table C.4.5. Posterior model probabilities for the top 12 models and  
associated neighbors 

Model Posterior Probability # of nearest neighbors 
12 0.0123 9 
11 0.0131 9 
10 0.0193 8 
  9 0.0235 9 
  8 0.0383 8 
  7 0.0396 9 
  6 0.0630 7 
  5 0.0736 7 
  4 0.0944 7 
  3 0.1455 7 
  2 0.1599 8 
  1 0.2257 9 

on the 0.95 credible interval, intergovernmental aid is not likely to be economi-
cally significant. 

All other variables have a statistically significant impact using the 0.99 credi-
ble intervals, and their magnitudes are such that we would infer these to be eco-
nomically significant as well. Another difference between the model averaged es-
timates from Table C.4.4 and those in Table C.4.6 relates to the estimate for the 
parameter ρ associated with the spatial lag variable Wy. Averaging over models 
based on differing spatial weight matrices produces a larger posterior mean esti-
mate for the strength of spatial dependence. The lower 0.01 credible interval for 
this coefficient equal to 0.5953 is above the posterior mean estimate of 0.5941 re-
ported in Table C.4.4, suggesting a significant increase in spatial dependence. 

Table C.4.6. Model averaging over both neighbors and variables 

Variables a Lower 0.01 Lower 0.95 Mean Upper 0.95 Upper 0.99 
G 0.5540 0.5581 0.5670 0.5763 0.5797 
A –0.0012 –0.0010 –0.0005 –0.0001 0.0001 
I –0.1418 –0.1354 –0.1226 –0.1099 –0.1050 
O 0.0119 0.0155 0.0245 0.0332 0.0363 
WG –0.1529 –0.1416 –0.1149 –0.0872 –0.0750 
WA –0.1369 –0.1312 –0.1183 –0.1049 –0.1002 
WI 0.2070 0.2257 0.2711 0.3151 0.3347 
WO –0.4208 –0.4023 –0.3581 –0.3128 –0.2959 
Wy 0.5953 0.6031 0.6217 0.6388 0.6467 

Notes:  a
 G is government spending; A is intergovernmental revenue; I is in-migration; O is out-

migration; WG is the spatial lag of G; WA is the spatial lag of A; WI and WO are spatial lags of in- and 
out-migration; Wy is a spatial lag of the dependent variable, marginal tax costs 

An important caveat regarding interpretation of the model averaged coefficient es-
timates reported in Table C.4.6 is that we cannot interpret these in the same fash-
ion as ordinary regression coefficients. Models containing spatial lags of the de-
pendent variable result in a situation where ceteris paribus changes in a single 
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observation i associated with any explanatory variable give rise to both direct and 
indirect impacts on the dependent variable y. The direct impacts reflect how 
changes in the ith observation of an explanatory variable influence the dependent 
variable at observation i. Indirect impacts indicate how other observations j of the 
dependent variable change in response to this type of ceteris paribus change in the 
single explanatory variable observation i. This is a consequence of allowing for 
spatial dependence between observations as opposed to the assumption of inde-
pendence across observations made in conventional regression models (LeSage 
and Pace 2009). 

C.4.6  Concluding remarks 

Model specification uncertainty arises in spatial regression models from three 
sources, (i) the type of model that should be used, (ii) the type of spatial weight 
matrix, and (iii) the specific explanatory variables to be included in the model. We 
showed how the  first type of uncertainty can be resolved by relying on a spatial 
Durbin model that subsumes both the spatial lag and spatial error dependence 
models as special cases. 

Bayesian model averaging methods can be used to incorporate uncertainty 
arising from the other two model specification choices that confront practitioners 
in applied settings. For prominent members of the family of spatial regression 
models often  used in applied work,  the marginal likelihood  can be  calculated 
using relatively simple univariate numerical integration. As discussed, this quan-
tity allows calculation of posterior model probabilities that can be used in formal 
Bayesian model comparison methods. Beyond this, Bayesian model averaging 
procedures can be used to incorporate uncertainty arising from sources (ii) and 
(iii) above. This involves constructing a posterior distribution for the model pa-
rameters using a linear combination of different models, where the posterior 
model probabilities are used as weights. 

The model averaging approach represents a formal Bayesian solution to the 
problem of uncertainty regarding various aspects of model specification that arise 
in applied practice. It can be used with a large number of spatial models, not just 
those described here (Parent and LeSage 2008; LeSage and Polasek 2008). In 
more complicated models it may be necessary to produce an approximation or es-
timate of the marginal likelihood. As discussed, calculating the marginal likeli-
hood requires integration over the model parameters. It is not always possible to 
use analytical integration of the type illustrated here to reduce the dimensionality 
of the integration problem. Fortunately, there is a large literature on various ap-
proaches to approximating the marginal likelihood (Chib 1995; Chib and Jeliaz-
kov 2001; Newton and Raftery 1994). 
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C.5  Geographically Weighted Regression 

David C. Wheeler and Antonio Páez 

C.5.1  Introduction 

Geographically weighted regression  (GWR)  was introduced  to the  geography 
literature by Brunsdon et al. (1996) to study the potential for relationships in a re-
gression model to vary in geographical space, or what is termed parametric non-
stationarity. GWR is based on the non-parametric technique of locally weighted 
regression developed in statistics for curve-fitting and smoothing applications, 
where local regression parameters are estimated using subsets of data proximate to 
a model estimation point in variable space. The innovation with GWR is using a 
subset of data proximate to the model calibration location in geographical space 
instead of variable space. While the emphasis in traditional locally weighted re-
gression in statistics has been on curve-fitting, that is estimating or predicting the 
response variable, GWR has been presented as a method to conduct inference on 
spatially varying relationships, in an attempt to extend the original emphasis on 
prediction to confirmatory analysis (Páez and Wheeler 2009).  

In GWR, a regression model can be fitted at each observation location in the 
dataset, although the model calibration locations are not restricted to observation 
locations. The spatial coordinates of the data points, either individual data points 
or areal centroids, are used to calculate inter-point distances, which are input into 
a kernel function to calculate weights that represent spatial dependence between 
observations. For each model calibration location, i = 1, …, n, the GWR model is 
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where iy  is the dependent variable value at location i, ikx  is the value of the thk  
covariate at location i, β i0 is the intercept, βik is the regression coefficient for the 

thk  covariate, p  is the number of regression terms, and iε  is the random error at 
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location i. We note the distinction between regression terms and regression coeffi-
cients, where the number of regression coefficients is np . The obvious difference 
in this model and the traditional ordinary least squares (OLS) regression model is 
in regression coefficients estimated at each data location, where they are global, or 
fixed for the study area, in the OLS model. 

C.5.2   Estimation 

To facilitate the exposition, it is convenient to express the GWR model in matrix 
notation 

 

i i i iy ε= +X β  (C.5.2)

 
where iβ  is a column vector of regression coefficients and iX  is a row vector of 
explanatory variables at location i . The vector of estimated regression coeffi-
cients at location i  is 

 

ˆ
iβ = [XT Wi X]–1 XT Wi Y (C.5.3)

 
where Y is the n-by-1 vector of dependent variables; X = [X1

T, X2
T, …, Xn

T]T is the 
design matrix of explanatory variables, which includes a leading column of ones 
for the intercept; Wi = diag[Wi1, …, Win] is the n-by-n diagonal weights matrix 
calculated for each calibration location i;  and T

110 )ˆ...,,ˆ,ˆ(ˆ
−= ipiii ββββ  is the vector 

of p  local regression coefficients at location i  for 1p −  explanatory variables 
and an intercept. Given Eq. (C.5.3), GWR may be viewed as a locally weighted 
least squares regression model where the weights associate pairs of data points, 
and there are weights to associate the model calibration location i  with all data 
points, including the calibration location itself. The weight matrix must be calcu-
lated at each location before the local regression coefficients can be estimated with 
Eq. (C.5.3). 

In GWR, the local weights matrix, iW , is calculated from a kernel function 
that places more weight on locations that are closer in space to the calibration lo-
cation than those that are more distant in space. The weighting, therefore, follows 
the assumption of spatial autocorrelation, which if exists, is expected to result in 
non-stationary patterns in estimated coefficients. A kernel function in this context 
takes as input distance between two locations, has a bandwidth parameter that de-
termines the spatial range of the kernel, and returns a weight between two loca-
tions that is inversely related to distance. A number of different kernel functions 
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have been proposed for use in GWR. There are two general types of kernel func-
tions, fixed and adaptive, where adaptive kernel functions attempt to adjust for the 
density of data points and fixed kernel functions do not. As an example of the dif-
ference in types of kernels, an adaptive kernel function could use the same number 
of observations in each local kernel, while a fixed kernel function could use the 
same spatial range in each local kernel.  

Some examples of both fixed and adaptive kernel functions are provided be-
low. In perhaps the simplest case, one could use a binary weighting scheme such 
as 
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where ijd  is the distance between observations i  and j , and *d  is a threshold 
distance that defines the size of the window. This kernel function could result in 
using fewer observations in the weighted set of a model calibration point located 
in a sparse area compared to a relatively dense area. Alternatively, the kernel func-
tion can be defined as 
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where Yi(N) is the set of Nth  nearest observations to point i , and N  is a value to 
estimate. In this case, the kernel function uses the same number of observations at 
every point, but these observations may cover a different spatial extent in every 
case. Despite its simplicity, this kernel function has not been used extensively, 
perhaps because it does not conform well to established ideas about distance decay 
that have been strongly flavored by gravity modeling. Most applications of GWR 
instead have favored continuous functions that produce weights that monotoni-
cally decrease with distance, such as the Gaussian kernel function 
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In this function, the weight for observation j  relative to observation i  changes as 
a function of the distance ijd  and a kernel bandwidth parameter γ  that controls 
the range and decay of spatial correlation. A similar kernel function is the simple 
exponential function 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

γ
ij

ij
d

W exp  (C.5.7)

 
which removes the powering and scaling of the Gaussian function. Another con-
tinuous, fixed kernel function is the bi-square kernel function 
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Several adaptive kernel functions have been proposed to adjust to the density of 
observations within a region. One such kernel function uses ranks of increasing 
distance instead of distance to calculate weights 
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where ijR  is the rank of distance ijd  when locations are sorted by increasing dis-
tance from model calibration location i . An adaptive kernel function that has a 
different type of bandwidth parameter is the bi-square nearest neighbor kernel, 
where, again, the number of nearest neighbors must be determined in order to cal-
culate weights to estimate the local regression coefficients. The kernel specifica-
tion is 
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where iNd  is the distance to the thN  nearest neighbor from location i . This func-
tion assigns a weight of zero to points that are beyond the distance to the thN  
nearest neighbor and a non-zero weight that decays with distance to points within 
the threshold distance. 

Given the many options for a kernel function, one must first select a type of 
kernel function before calibrating a GWR model. Furthermore, in all the kernel 
functions above, there is an unknown kernel bandwidth parameter that must be se-
lected or estimated from the data. Conventional wisdom inherited from the statis-
tical non-parametric roots of GWR holds that selection of a functional form for the 
kernel is less critical than selection of the kernel bandwidth parameter for estima-
tion results (see Chapter E.2, evidence in an application context), although this is 
something that has not been thoroughly explored in the geographical literature. 
Current practice is more concerned with the need for a formal criterion to select 
the kernel bandwidth or number of nearest neighbors in adaptive specifications. 
There are currently three different approaches for exogenously estimating the ker-
nel bandwidth in GWR, direct assignment of the bandwidth of number of nearest 
neighbors (McMillen 1996), cross-validation (Brunsdon et al. 1996; Farber and 
Páez 2007), and a corrected Akaike Information Criterion (AIC, Fotheringham et 
al. 2002). In addition, an approach to parameterize the estimation of the kernel 
bandwidth has been proposed by Páez et al. (2002a). Of these, the most widely 
used approach by far remains cross-validation. 

Cross-validation (CV) is an iterative process that searches for the kernel band-
width that minimizes the prediction error of all the ( )y s  using a subset of the data 
for prediction. If the kernel bandwidth is γ , it is estimated in CV by finding the γ  
that minimizes the root mean squared prediction error (RMSPE) 
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where ( )ˆ iy  is the predicted value of observation i  with calibration location i  left 
out of the estimation dataset. γ̂  is the kernel bandwidth value that minimizes the 
RMSPE. There are several search routines available, such as the golden search and 
the bi-section search, for finding the minimizing kernel bandwidth. Alternatively, 
one may evaluate the RMSPE over a large range of potential kernel bandwidths. 
As described, this is leave-one-out CV because only one observation is removed 
from the dataset for each local model when estimating the kernel bandwidth. The 
data point i  is removed when estimating iy  to avoid estimating it perfectly. In the 
kernel functions outlined above, the kernel bandwidth is a global parameter. This 
parameter is applied to all local models individually, both in estimation of the ker-
nel bandwidth and the regression coefficients. Implied in Eq. (C.5.11) is a local 
model to estimate iy  without using data point i  and with the estimated regression 
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coefficients in Eq. (C.5.3) and the current value of γ , and repeating this for each 
location. 

An approach to estimate the kernel bandwidth not based on prediction of the 
response variable is the corrected AIC, adopted in form from locally weighted re-
gression to GWR. It is instead based on minimizing the estimation error of the re-
sponse variable. It is a compromise between goodness-of-fit of the model and 
model complexity, in that there is a penalty in the criterion for the effective num-
ber of parameters in the model. The corrected AIC for GWR is 
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where σ̂  is the estimated standard deviation of the error, H is the hat matrix, and 
the trace of a matrix is the sum of the matrix diagonal elements. The kernel band-
width is used in the calculation of σ̂  and H. Each row of the hat matrix is defined 
by 

Hi = Xi (X
T Wi X)–1 XT Wi (C.5.13)

 
which may also be expressed as 

 

Hi = Xi Ai. (C.5.14) 

 
The estimated error variance is 
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As with CV, to estimate the kernel bandwidth one either uses a search algorithm 
or evaluates the objective function over a range of values of γ . Here, the objective 
function is the AIC and it is to be minimized. 

After estimating the kernel bandwidth with either CV or the AIC, one must 
calculate the kernel weights at each model calibration location using the estimated 
kernel function and then estimate the local regression coefficients. Then, one must 
estimate the response variable by 

 

.ˆˆ iiiy βX=  (C.5.16) 
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In many applications of GWR, the spatial analyst maps the estimated regression 
coefficients and attempts to interpret the spatial pattern of the coefficients in the 
context of the research problem. Analysts are typically interested in where the es-
timated regression coefficients are statistically significant, according to some spe-
cified significance level. In the frequentist setting of GWR, statistical significance 
tests of the coefficients use the variance of the estimated regression coefficients. 
According to Fotheringham et al. (2002, p.55), the variance of the regression coef-
ficients is  

 

ˆ[ ]ivar β =  Ai Ai
T 2ˆ' .σ  (C.5.17) 

 
Technically, this equation is not correct because the Fotheringham et al. (2002) 
version of GWR is not a formal statistical model with kernel weights that are part 
of the errors. The equation used for the local coefficient covariance is only ap-
proximate with cross-validation because the kernel weights are calculated from the 
data first before the regression coefficients are estimated from the data. The kernel 
weights are inherently a function of Y, as are the regression coefficients, and the 
correct expression for the coefficient covariance would be non-linear. 

C.5.3  Issues 

While GWR offers the potential of investigating relationships that vary over space 
between variables in a regression model, there have been several critiques ex-
pressed about the methodology that counsel prudence in the application of the me-
thod. At a fundamental level, an argument is that GWR does not propose a base 
model for the source of the variation, and is thus more appropriately seen as a heu-
ristic approach. As a consequence of this, it can be argued that GWR lacks a uni-
fied statistical framework since it is in essence an ensemble of local geographical 
regressions where the dependence between regression coefficients at different data 
locations is not specified in the model. This results in a fixed effects model with 
no pooling in estimates. 

A second issue is related to the repeated use of data to estimate model parame-
ters at different model calibration locations, which causes a multiple comparisons 
situation. With an increasing number of local models estimated, the probability 
that some individual tests will appear significant, even if only by chance, will also 
increase. The problem in this case is related to the trade-off between amount of in-
formation and confidence, since the usual confidence intervals for regression coef-
ficients are no longer reliable. In order to account for multiplicity, each individual 
test needs to be seen as part of a family of experiments, and its corresponding 
level of significance needs to be adjusted so that it conforms to a family-wise con-
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fidence level. A simple adjustment to achieve this objective is based on the Bon-
ferroni inequality, where the individual (adjusted) significance level is α /m with α 
being the nominal level of significance and m  the number of tests in the family. 
This adjustment ensures that the family-wise level of confidence will be at most 
the nominal level. While this simple adjustment does not require any distributional 
assumptions, the resulting individual tests lack power and are overly conservative 
when the tests are not independent, and this is certainly the case with GWR be-
cause of the use of overlapping subsets of data. Alternative adjustments are avail-
able that improve power of the individual tests by introducing multiple-step rejec-
tion schemes that adjust the level of significance in a sequential way (see Páez et 
al. 2002a). 

Another issue with GWR that is directly related to the selection of the kernel 
bandwidth involves high levels of spatial variation and smoothness of estimated 
regression coefficients. Clearly, if the bandwidth is such as to include a large 
number of observations, there will be relatively little or no spatial variation in the 
coefficients, and if the bandwidth is small, there will potentially be large amounts 
of variation. A natural concern emerges that some variation or smoothness in the 
pattern of estimated coefficients may be artificially introduced by the technique 
and may not represent true regression effects. This situation is at the heart of the 
discussion about the utility of GWR for inference on regression coefficients and is 
not answered by existing statistical (Leung et al. 2000a) or Monte Carlo (Fother-
ingham et al. 2002) tests for significant variation of GWR coefficients because 
these tests do not consider the source of the variation. This is important because 
one source of regression coefficient variability in GWR can come from collinear-
ity, or dependence in the kernel-weighted design matrix. Collinearity is known in 
linear models to inflate the variances of regression coefficients (Neter et al. 1996), 
and GWR is no exception (Griffith 2008). Collinearity has been found in empiri-
cal work to be an issue in GWR models at the local level when it is not present in 
the global linear regression model using the same data (Wheeler 2007). In addition 
to large variation of estimated regression coefficients, there can be strong depend-
ence in GWR coefficients for different regression terms, including the intercept, at 
least partly attributable to collinearity. Wheeler and Tiefelsdorf (2005) show in a 
simulation study that while GWR coefficients can be correlated when there is no 
explanatory variable correlation, the coefficient correlation increases systemati-
cally with increasingly more collinearity.  

Inflated regression coefficient variation associated with local collinearity in 
GWR can lead to overestimates of covariate effect magnitudes and coefficient 
sign reversals, both of which are likely to lead to incorrect interpretations of rela-
tionships in the regression model. Fortunately, collinearity diagnostic tools have 
been developed for the GWR framework (Wheeler 2007) that detect where esti-
mated regression coefficients are problematic in terms of redundant information 
and an ill-conditioned variance matrix due to collinearity in the design matrix. As 
an example, Wheeler (2007) applies the collinearity diagnostic tools to a Colum-
bus (Ohio) crime rate GWR model to clearly link local collinearity to strong GWR 
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coefficient correlation and increased coefficient variation for two economic status 
covariates at numerous data locations with counter-intuitive positive regression 
coefficient signs. In any analysis, estimated GWR coefficients from local models 
that are diagnosed as problematic should be interpreted with extreme caution and 
additional analysis should be undertaken in these areas to understand the nature of 
the relationships that are being modeled. 

 Another issue in GWR is with the standard errors associated with regression 
coefficient estimates. The standard error calculations in GWR are only approxi-
mate due to reusing data for parameter estimation at multiple locations (Congdon 
2003; LeSage 2004) and due to using the data to estimate both the kernel band-
width with cross-validation and the regression coefficients (Wheeler and Calder 
2007). In addition, as previously implied, local collinearity can increase variances 
of estimated regression coefficients in the general regression setting (Neter et al. 
1996). This issue with the standard errors indicates that the confidence intervals 
for estimated GWR coefficients are only approximate and are not exactly reliable 
for indicating statistically significant covariate effects and model selection.  

An open debate about GWR is in the nature of the application of the technique 
itself. It has been suggested that GWR, given its theoretical origins in local linear 
regression (developed to estimate a response variable locally), is well suited for 
estimation and prediction of a response variable but is less useful in the formal sta-
tistical inference on spatially varying regression effects (Wheeler 2009). Perhaps a 
shift in the focus of the utility of GWR towards spatial interpolation would be 
worthwhile, and there is empirical evidence to support such a move, with GWR 
producing good comparative results in relation to other interpolation techniques 
(Páez et al. 2008). One supporting argument for this is that when interpolation of a 
response variable over space is the sole interest, estimation issues in GWR, such 
as collinearity, are no longer a major concern. 

C.5.4  Diagnostic tools 

There are several well-known diagnostic tools available for OLS regression mo-
dels, including ones to check for autocorrelation, influential observations, and col-
linearity. In accord with this tradition, use of a more complicated linear regression 
model such as GWR should be accompanied with diagnostic tools. 

Methods to identify spatial residual autocorrelation in GWR models have been 
developed by Leung et al. (2000b), based on well-established statistics of spatial 
autocorrelation including Moran’s I and Geary’s c. The approach proposed by 
Leung et al. (2000b) compares each local prediction of the dependent variable to 
its observed value. This provides a set of estimated residuals that can be used to 
detect map patterns. The application of these statistics is very similar to the appli-
cation of autocorrelation statistics, and the theory required for hypothesis testing is 
derived by these authors. A limitation of these statistics is that they are not model 
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based, recalling that the GWR method is a collection of local models that are not 
part of a unified framework. As a consequence, it is unclear that the source of 
autocorrelation can actually be identified. A different approach to test for spatial 
dependencies is proposed in a paper by Páez et al. (2002b) that provides a model-
based alternative within a variance heterogeneity model, but it shares the limita-
tion that there is no unified framework to tie in the local models together. 

Additional diagnostic tools attend a recognition in the literature (Wheeler and 
Tiefelsdorf 2005; Waller et al. 2007; Wheeler and Calder 2007; Griffith 2008) of 
the existence of potentially strong correlation in sets of estimated GWR coeffi-
cients, which could come from local collinearity in the model, analysts should 
strongly consider using diagnostic tools for collinearity when estimating GWR co-
efficients. Fortunately, there are diagnostic tools one can use to evaluate whether 
substantial collinearity effects are present in a GWR model. In addition to scatter 
plots of regression coefficients for pairs of regression terms, maps of approximate 
local regression coefficient correlations (Wheeler and Tiefelsdorf 2005), local 
variance inflation factors (VIFs), one can use variance-decomposition proportions 
and the associated condition indexes (Belsley 1991; Wheeler 2007). An advantage 
of the variance-decomposition approach over the VIF, which measures how much 
the estimated variance of a regression coefficient is increased by collinearity, is 
that it measures and conveys the nature of the collinearity among all regression 
terms at the same time, including the intercept. 

The variance-decomposition proportion and condition index diagnostic tools 
introduced by Belsley (1991) and modified for GWR by Wheeler (2007) use sin-
gular value decomposition of the GWR kernel weighted design matrix to form 
condition indexes and variance-decomposition proportions of the coefficient co-
variance matrix. The variance-decomposition proportion is the percentage of the 
variance of a regression coefficient that is explained with any one component of 
the variance matrix decomposition. It has an affiliated condition index, which is 
the ratio of the largest singular value and the smallest singular value of the de-
composition. The singular value decomposition (SVD) of the design matrix in the 
GWR framework is 

 

 (Wi)
1/2 X = U D VT (C.5.18) 

 
where  U and V  are orthogonal  n-by-p  and p-by-p matrices respectively; D is a 
(p-by-p) diagonal matrix of singular values of 1 2( )iW X , starting at matrix ele-
ment (1,1) and decreasing in value down the diagonal; and 1 2( )iW  is the square 
root of the diagonal weight matrix for calibration location i  using a kernel func-
tion with the GWR estimated kernel bandwidth. Through SVD, the local variance-
covariance matrix of the regression coefficients is 

 



C.5     Geographically weighted regression      471 

ˆ( )ivar σ=β 2σ V D–2 VT (C.5.19) 

 
and the variance of the local thk  regression coefficient is 
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where the kjv  are the elements of the V matrix  and the jd  are the singular values. 
The variance-decomposition proportion for the local thk  regression term and the 

thj  component of the decomposition is 
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The condition index for variance component 1,...,j p=   is 
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Belsley (1991) introduced some relevant guidelines for using the variance-
decomposition proportions and condition indexes in the OLS regression setting. 
Through experimentation results, Belsley (1991) suggests a conservative value of 
thirty as a threshold for a condition index which indicates collinearity, although 
the threshold could be as low as ten if there are large variance-decomposition pro-
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portions for two or more regression terms for the same variance component. In 
general, stronger collinearity is indicated by larger condition indexes. Another 
guideline is that the presence of two or more variance-decomposition proportions 
greater than 0.5 for the same variance component indicates collinearity existing 
between those regression terms. One can apply the same guidelines for diagnosing 
collinearity in GWR. It should be emphasized that the variance-decomposition 
proportion and condition index diagnostic tools reveal collinearity locally at the 
GWR model calibration locations and therefore permit one to construct plots of 
the diagnostic values and link them explicitly to GWR estimated coefficients for 
visual analysis of any problems that may be present in the model. 

C.5.5  Extensions 

A number of different models have been proposed to extend the applicability of 
the concept of geographical weights in regression analysis. Three such extensions 
are discussed next. 

Autoregressive GWR 

One of the first extensions to the concept of GWR was to accommodate spatial 
dependencies in the structure of the model (Brunsdon et al. 1998). One computa-
tional challenge faced when working with models that contain spatially autore-
gressive components is the estimation of the coefficients using leave-one-out 
cross-validation,  since  this  necessitates  the  calculation  of  a  determinant of a 
(n–1)-by-(n–1) matrix n  times. Brunsdon et al. (1998) suggest conducting cross-
validation on a randomly selected sub-sample of points; however, given the exis-
tence of influential points in cross-validation, this practice may not be appropriate 
(see Farber and Páez 2007). A different approach to obtain spatially autoregressive 
local models based on the concept of geographical weighting is from Páez et al. 
(2002b) who, by adopting a non-constant variance model, are able to parameterize 
the estimation of the model coefficients, including the kernel bandwidth. Alterna-
tive models have been suggested in the literature, including the spatially autore-
gressive local estimation (SALE) model of Pace and LeSage (2004) that is based 
on a decomposition of the estimation matrices, and the ZOOM model of Mur et al. 
(2008). 

Constrained GWR 

Issues arising from collinearity can be addressed by constraining the amount of 
variation in regression coefficients. In the case of GWR, two versions of methods 
that achieve this objective have been proposed, namely geographically weighted 
ridge regression (GWRR, Wheeler 2007) and the geographically weighted lasso 
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(GWL, Wheeler 2009). As the names imply, these techniques are based on ridge 
regression and the lasso respectively. The methods work by penalizing the regres-
sion in order to limit the amount of variation in the coefficients. In both cases, a 
constraint on the size of the regression coefficients is introduced, but the con-
straint is slightly different in each. While ridge regression coefficients minimize 
the sum of a penalty on the size of the squared coefficients and the residual sum of 
squares 

 
2

2
0

1 1 1

ˆ arg min
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R
i ik k k

i k k
y xβ β λ β

= = =
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β

β  (C.5.25) 

 
the lasso coefficients minimize the sum of the absolute value of the coefficients 
and the residual sum of squares 
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where λ  is the parameter that controls the amount of shrinkage in the regression 
coefficients. This difference in specification of the two models results in poten-
tially more shrinkage in the lasso regression coefficients, some of which may 
shrink to zero. In both ridge regression and the lasso, it is common practice to cen-
ter the response variable, and center and scale the explanatory variables to have 
unit variances because the methods are scale-dependent. The formula to estimate 
the GWRR coefficients using centering of the variables is 

 

ˆ
i =β (X*T Wi X* + λ I)–1 X*T Wi y* (C.5.27)

 

where X* is the matrix of standardized explanatory variables, y* is the standardized 
response variable, and other terms are previously defined. There are options for 
the type of centering and scaling that can be performed (see Wheeler 2007). The 
absolute value constraint on the regression coefficients in GWL makes the prob-
lem non-linear, but fortunately there are efficient algorithms for estimating the pa-
rameters (Wheeler 2009). Cross-validation is employed in estimating the kernel 
bandwidth in both constrained versions of GWR. 
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Logistic and probit models with geographical weights 

In addition to the linear regression framework, the idea of applying geographical 
weights has been applied to models for nominal variables, including the geo-
graphically weighted logistic model of Atkinson et al. (2003) and the probit model 
with geographical weights of Páez (2006). These models extend the scope of ap-
plication of GWR to situations in geomorphology and transportation research that 
frequently require the analysis of limited dependent variables. 

C.5.6  Bayesian hierarchical models as an alternative  
to GWR 

With recent gains in computing power and software availability, it is possible to 
use Bayesian hierarchical models to estimate spatially varying regression coeffi-
cients as an alterative approach to GWR.  The Bayesian hierarchical models are 
hierarchical in that the distribution of the data is specified conditional on unknown 
parameters, whose distribution is in turn specified conditional on other parameters. 
In addition, these models can incorporate parameters at different levels of data, for 
example both at the individual and group level, to model relationships at different 
scales. There are Bayesian hierarchical models with random effects for both the 
intercept and covariate effects, where random effects can be specified as inde-
pendent in the prior and borrow strength across observations globally or be speci-
fied to have spatial correlation and borrow strength locally. There are two primary 
alternatives to GWR within this class of models. One is called the Bayesian spa-
tially varying coefficient (SVC) model, which defines spatial correlation in the re-
gression coefficients through a prior conditional specification of the coefficients 
that uses only neighboring observations. The other is called the spatially varying 
coefficient process (SVCP) model which uses a prior joint specification of the co-
efficients that models correlation in the coefficients as a continuous spatial proc-
ess. We next outline the two models, beginning with SVC model. 

In the Bayesian SVC model, one goal is to describe [ | ( ( ))]i iE Y f X s , the ex-
pected value of a response variable in location i  given a function of the covariates 
associated with the location. The general Bayesian SVC model is 

 

[ | , ] ~ ( ,1 )i i iY μ τ μ τN  (C.5.28)

 
where 
 

µi = Xi β i (C.5.29) 
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specifies the response variable mean at each data location through covariate vector 

iX  and a vector of spatially varying regression coefficients β i. The model as-
sumes spatial dependence in the regression coefficients through the prior distribu-
tion for the coefficients. The prior for the coefficients is an intrinsic multivariate 
conditional autoregressive (CAR), or MCAR prior, and is written as 

~ MCAR( )β Ω . The MCAR prior for the vector of spatially varying coefficients 
at each data location i  has a multivariate conditional distribution  

 

)/,(~) ..., ,,(| 1)(1)(0)( iippiiii mΩββ N−−−− βββ  (C.5.30)

 

where 
iijkkjikipiii m

i
κβββββ ,/,),,,( T

110 ∈− Σ== Kβ   is the set of neighboring 
locations for location i , and im  is the number of neighbors for location i . This 
prior is a natural one for area-level data where neighborhoods are formed from ad-
jacent areas. The diagonal elements of the variance-covariance matrix Ω  are the 
conditional variances of the βk. A conjugate prior for this within-area, between-
coefficient p-by-p variance-covariance matrix is an inverse Wishart distribution 
and a conjugate prior for the error precision τ  is gamma. Conjugate priors are 
used for computational convenience. The MCAR prior has an advantage over the 
prior in the process model discussed next because it is less computationally de-
manding. It is also a natural extension of the CAR prior that is commonly used for 
spatial random effects in Bayesian regression models (for more details see Besag 
et al. 1991; Besag and Kooperberg 1995). For a more thorough introduction to the 
SVC model, see Banerjee et al. (2004). 

As for implementation of this Bayesian SVC model, one can use Markov 
Chain Monte Carlo (MCMC) simulation in WinBUGS software (Spiegelhalter et 
al. 2003) to provide samples of model parameter values from the joint parameter 
posterior distribution for inference. The neighborhood adjacency list required for 
the MCAR prior can be generated in GeoBUGS software (Thomas et al. 2004). 
Typically, one uses a ‘burn-in’ period of samples and then a subsequent number of 
joint posterior distribution samples in MCMC to calculate posterior mean or me-
dian estimates for the model parameters. Statistical inference on the parameters 
comes from summaries of the posterior distribution, such as credible intervals us-
ing certain percentiles of the distribution. 

An alternative to the MCAR prior for the regression coefficients is a geostatis-
tical prior specification with a distance-based covariance function (Gelfand et al. 
2003). The SVCP model is specified conveniently with matrix notation as 

 

2| , ~P τ⎡ ⎤⎣ ⎦Y β N [(XP)T βP, τ 2 I] (C.5.31)
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where Y is assumed to be Gaussian conditional on the parameters βP and τ2 . βP is 
a np-by-1 vector of regression coefficient parameters; and (XP)T is the n-by-np 
block diagonal matrix of covariates where each row contains a row from the 
( , )n p  design matrix X, along with zeros in the appropriate places [the covariates 
from X are shifted p  places in each subsequent row in (XP)T]. The superscript P is 
meant to indicate the different sizes of the regression coefficient matrix and the 
design matrix associated with the process model. I is the n-by-n identity matrix 
and 2τ  is the error variance. 

The prior distribution for the regression coefficient parameters is specified as  

 

1| , ( , )P
n×⎡ ⎤ = ⊗⎣ ⎦β β β ββ μ Σ 1 μ ΣN  (C.5.32)

 
where the vector  µβ = (µβ

0
, …, µβ p)

T contains the means of the regression terms. 
The Kronecker product operator (⊗ ), multiplies every element in 1nx1  by βμ . The 
prior on the regression coefficients takes into account possible spatial dependence 
in the coefficients through the covariance, βΣ , which has a separable form with 
two distinct components, one for the spatial dependence in the regression coeffi-
cients and one for the within site dependence between coefficients. The separable 
form of the covariance matrix for βP is 

 

( )φ= ⊗βΣ R T  (C.5.33) 

 
where ( )φR  is the n-by-n correlation matrix that captures the spatial association 
between the n  locations using inter-point distances, φ  is an unknown spatial de-
pendence parameter, and T is a positive-definite p-by-p matrix for the covariance 
of the regression coefficients at any spatial location. In contrast to the repeated ap-
plication of spatial kernel functions in GWR, this np-by-np covariance matrix cap-
tures the covariation between all regression coefficients simultaneously. In the 
separable covariance matrix, each of the p  coefficients represented in the covari-
ance is assumed to have the same spatial dependence structure. This aligns with 
the assumption in GWR of equal spatial ranges for each regression term. 

The specification of the Bayesian SVCP model is complete with the specifica-
tion of prior distributions for the other parameters. A conjugate prior for the coef-
ficient means is Gaussian. A conjugate prior for the within-site covariance matrix 
is inverse Wishart and a conjugate prior for the error variance is inverse gamma. 
One can use a uniform or gamma prior for the spatial dependence parameter. In-
ference on the model parameters is achieved with MCMC by sampling from the 
joint posterior distribution of the parameters. See Wheeler and Calder (2007) for 
implementation details of the MCMC for the SVCP model.  
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C.5.7  Bladder cancer mortality example 

To serve as an illustrative example of the recommended way to apply the GWR 
approach, an analysis of white male bladder cancer mortality rates in the 506 State 
Economic Areas (SEA) of the contiguous United States for the years 1970 to 1994 
is presented. The dataset comes from the Atlas of Cancer Mortality from the Na-
tional Cancer Institute (Devesa et al. 1999) and contains age standardized morta-
lity rates (per 100,000 person-years). The standardized mortality rates are plotted 
in Fig. C.5.1 for SEAs. The explanatory variables of interest are population den-
sity and lung cancer mortality rate. Population density is used as a surrogate for 
behavioral and environmental differences with respect to an urban/rural dichot-
omy. It is expected, as several studies suggest, that with an increase in the popula-
tion density, there is an increase in the rate of bladder cancer. Lung cancer mortal-
ity rates are used as a surrogate for smoking, which is a known risk factor for 
bladder cancer. There is evidence in public health that an increase in smoking in-
creases bladder cancer risk, therefore, we expect a positive relationship between 
these variables. There is also evidence to justify the approximation of smoking by 
lung cancer, as the attributable risk of smoking for lung cancer is greater than 80 
percent and the attributable risk of smoking for bladder cancer is greater than 55 
percent (Mehnert et al. 1992).  

As an initial step in the analysis, a traditional, or global regression model is 
estimated for bladder cancer mortality. The base model is 

 

1 2( )y i β β= + 1 3( )x i β+ 2 ( ) ( )x i iε+  (C.5.34)

 
where ( )y i  is the bladder cancer mortality rate for white males for years 1970 to 
1994 for the thi SEA, 1x  is lung cancer mortality for time period 1954-1969, and 

2x  is the natural log of population density. A smoking surrogate is used from an 
earlier time period to represent an induction period for bladder cancer given the 
risk factor. Population density is natural log transformed to linearize the relation-
ship with bladder cancer mortality.  

The coefficient of determination for the fitted global model is 0.25 and the 
root mean square error (RMSE) of the estimated response variable is 1.06. The 
OLS regression coefficient estimates are β

^
1 = 3.832, β

^
2 = 0.029, β

^
3 = 0.277 and the 

p-values for all these coefficients are less than 0.001. Both the smoking surrogate 
risk factor and log population density are significantly positively related to the rate 
of bladder cancer mortality, as expected. The variance inflation factors for the two 
explanatory variable coefficients are less than 1.6 and the correlation of the global 
regression parameters is moderately negative at –0.60, whereas the correlation of 
the two variables is 0.60. The results from the initial analysis suggest that collin-
earity is not a significant problem with these data in this type of model. 
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Fig. C.5.1. Standardized mortality rates for bladder cancer among white males from 1970 
to 1990 in the State Economic Areas of the contiguous United States 

Next, a GWR model is fitted using the bladder cancer mortality data in R software 
with custom code. Note that there is a free R package for estimating GWR model 
parameters, spgwr, written by Roger Bivand (see Chapter A.3). We fit the follow-
ing GWR model, 

 

Y(i) = β1(i) + β2(i) x1(i) + β3(i) x2(i)+ ε(i) (C.5.35)

 
where the regression coefficients now vary by SEA. Through cross-validation, the 
GWR kernel bandwidth is estimated to be ˆ 1.27γ = . The RMSE of the estimate of 
the response variable for the GWR model with this estimated bandwidth and asso-
ciated estimated regression coefficients is 0.52, which is a marked reduction from 
the OLS model. Allowing the regression coefficients to vary by SEA provides an 
improved fit of bladder cancer mortality. Typically, incorporating observation-
specific intercepts in a model will improve model fit considerably over a model 
with a fixed intercept. 

The estimated GWR coefficients are graphed in Fig. C.5.2 for the three re-
gression terms. The estimated coefficients exhibit noticeable variation, with coun-
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terintuitive negative coefficients in some SEAs for both smoking proxy and popu-
lation density, although there are more negative coefficients for population den-
sity. Wheeler and Tiefelsdorf (2005) recommended using scatter plots of esti-
mated GWR coefficients for pairs of regression terms to visualize the nature of 
dependence in estimated GWR coefficients. Figure C.5.3 has scatter plots for the 
three pairs of regression terms in the model. There is discernable correlation in the 
coefficients in some areas, particularly for the intercept and smoking proxy coeffi-
cients and the smoking proxy and population density coefficients. The Pearson 
correlation coefficients for the GWR coefficients for pairs of regression terms are 

12 0.36r = − , 13 0.28r = − , 23 0.74r = − , where the subscripts indicate the regression 
term. The level of correlation in the coefficients for the smoking proxy and popu-
lation density terms is notably stronger in the GWR model than in the OLS model. 
The overall level of correlation in these GWR coefficients could indicate the pres-
ence of local collinearity in the GWR model that could lead to problems with in-
ference on the GWR coefficients. 

 

 

Fig. C.5.2. Estimated GWR coefficients for β
^
1 (intercept), β

^
2 (smoking proxy), β

^
3 (log 

population density) 

To further explore dependence in the regression coefficients, the variance-
decomposition proportion and condition index diagnostic tools (Wheeler 2007) 
described earlier are applied. The GWR estimated bandwidth is used in the vari-
ance-decomposition of the kernel weighted design matrix to assess collinearity in 
the GWR model. Of the 506 SEAs in the dataset, thirteen have a condition index 
greater than thirty, eighty-five have a condition index greater than twenty, and 500 
have a condition index greater than ten for the largest variance component. There 
are 436 records in the data with large variance proportions (greater than 0.5) for 
the largest variance component, with the shared component being between the two 
covariates for some records and between a covariate and the intercept for other re-
cords. Of these records, 431 also have a condition index greater than ten for the 
largest variance component. Overall, the variance-decomposition proportions and 
condition index values indicate the presence of some substantial local collinearity 
in the GWR model.  
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Fig. C.5.3. GWR estimated coefficients β
^
2 versus β

^
1 (left), β

^
3 versus β

^
1  (middle), β

^
3 versus 

β
^
2  (right) 

In addition to looking at summaries of the diagnostic tools, it is useful, particularly 
for inferential purposes, to visualize the diagnostic values with graphical links to 
the mapped GWR coefficients to inspect where the especially troublesome coeffi-
cients are located (Wheeler 2008). Figure C.5.4 contains maps of the GWR coeffi-
cients for the intercept and smoking proxy, a parallel coordinate plot of the condi-
tion indexes and variance proportions for the largest variance component, and a 
histogram of the condition indexes. The lines in the parallel coordinate plot that 
are highlighted are a selection set of the thirty SEAs with the largest condition in-
dexes. The same selected SEAs are highlighted with a yellow crosshatching on the 
coefficient maps. Most of the selected SEAs are peripheral ones in the West. It is 
clear in the parallel coordinate plot that most of the selected SEAs have large pro-
portions for both the intercept and the smoking proxy on the largest variance com-
ponent.  

Table C.5.1. Condition index and variance-decomposition  
proportions for the largest variance component 

3η  31π  32π  33π  

39.5 0.97 0.99 0.27 
37.0 0.97 0.99 0.18 
36.2 0.97 0.98 0.07 
35.8 0.96 0.98 0.05 
33.6 0.95 0.99 0.28 
33.5 0.97 0.99 0.31 
33.0 0.93 0.98 0.18 
32.7 0.96 0.98 0.07 
32.6 0.99 0.99 0.12 
31.1 0.93 0.98 0.18 
31.0 0.59 1.00 0.37 
30.5 0.73 0.98 0.21 
30.3 0.93 0.98 0.20 

Notes: 3η  condition index, 31π , 32π and 33π  variance-decomposition proportions  
for intercept, smoking proxy, and population density respectively 
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The variance-decomposition proportions and condition indexes are listed in Table 
C.5.1 for records with condition indexes greater than thirty for the largest variance 
component. As evidenced in the table, most of the records have variance propor-
tions of almost one for the intercept and the smoking proxy, meaning that the vari-
ance of these two regression terms is explained by one component in these loca-
tions. There is effectively one piece of information from two different sources. 
Therefore, attempting to separate the two regression coefficients for inference is 
not possible. This also brings up the important point that while strongly correlated 
regression coefficients for the intercept and another regression term may not be a 
general concern in an OLS regression model, strong correlation in local coeffi-
cients for these terms is a problem in GWR. The issue with high dependence be-
tween terms is that attempting to interpret the spatial pattern in the coefficients for 
individual terms, i.e. marginal inference, will lead to biased conclusions.  

In addition to the shared variance of the intercept and the smoking proxy ef-
fect in some SEAs, there are other SEAs with large variance decomposition pro-
portions for both the smoking proxy and population density for the largest vari-
ance component. Figure C.5.5 demonstrates this with linked maps of the GWR 
coefficients for smoking proxy and log population density, a scatter plot of vari-
ance decomposition proportions, and a histogram of condition indexes. The selec-
tion in all graphics is for SEAs with variance proportions greater than 0.6 for both 
regression terms. Most of the condition indexes for these SEAs exceed ten. The 
majority of the selected SEAs with a shared variance component for smoking 
proxy and population density are located in the Midwest and Northeast. These are 
areas where the GWR coefficients should be interpreted with caution. 

As an alternative to GWR, a Bayesian SVCP model is also fitted. The esti-
mated regression coefficients are plotted in Fig. C.5.6 side-by-side for GWR and 
the SVCP model as a means of comparison. Certain contrasts are evident, such as 
more variation in the GWR coefficients. There are both lower and higher coeffi-
cients for the GWR model compared to the SVCP model for each regression term, 
although this is most apparent with the intercept and population density. In addi-
tion to being more variable, the GWR coefficients are more spatially smooth for 
the smoking proxy term than are the SVCP coefficients. The SVCP model better 
constrains the coefficients in areas where the diagnostic values indicated problems 
with the GWR local models, such as in California for β

^
1  and β

^
2  and in areas of 

the Midwest for β
^
2  and β

^
3 . As recommended by Páez and Wheeler (2009), use of 

complementary approaches provides mutually supporting evidence of non-
stationarity in the case of bladder cancer presented in this section. 
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Fig. C.5.4. Estimated GWR coefficients for the intercept (top) and the smoking proxy 
(middle), parallel coordinate plot for condition indexes and variance decomposition propor-
tions (bottom left), and histogram of condition indexes (bottom right) with a selection set 
for SEAs with the thirty largest condition indexes for the largest variance component 
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Fig. C.5.5. Estimated GWR coefficients for smoking proxy (top) and population density 
(middle), scatter plot for variance decomposition proportions for these two regression terms 
(bottom left), and histogram of condition indexes (bottom right) with a selection set for 
SEAs with both variance decomposition proportions greater than 0.6 for the largest vari-
ance component 
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Fig. C.5.6. GWR coefficients (left) and SVCP coefficients (right) for the intercept (top), 
smoking proxy (middle), and population density (bottom) 
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C.6  Expansion Method, Dependency, and 
Multimodeling 

Emilio Casetti 

C.6.1  Introduction 

The body of this chapter consists of three sections: expansion method, depend-
ency, and multimodeling. In the first section the expansion method is defined, dis-
cussed, illustrated by an example, and pertinent literature items are briefly show-
cased. In the second section it is shown that when an estimated model’s residuals 
show significant spatial dependency the expansion method can provide a course of 
action to remedy this dependence. In the third section an expansion based multi-
modeling approach to remedying spatial dependence is presented and demon-
strated. The themes addressed in these sections are briefly outlined hereafter. 

The expansion method encompasses a technique for constructing mathemati-
cal models and the rationale concerning its use. As a technique, it involves widen-
ing the scope of a simpler initial model by expansion equations that redefine some 
or all of the initial model's parameters into functions of contextual variables. By 
replacing the parameters of the initial model with their expansions a terminal 
model is produced that encompasses both the initial model and a specification of 
its contextual variation. 

The rationale for the expansion method is best clarified by considering that 
scientific knowledge tends to progress by moving from simple models of realities 
to more complex ones. The expansion method brings into focus an orderly routine 
by which the transition from simpler to more complex mathematical models can 
be carried out. The relevance of the expansion method to the spatial disciplines 
becomes apparent considering that models born non-spatial can be expanded to 
encompass spatial contexts, and that models born spatial can be expanded to en-
compass non-spatial contexts. 

The ‘dependency’ section (see Section 6.3) shows by an example that an ‘ini-
tial model’ that upon estimation and testing displays significant residual spatial 
autocorrelation can be expanded into ‘terminal models’ that upon estimation and 
testing display no significant autocorrelation. Thus, the expansion method may 
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remedy spatial dependency. The reason is quite simple. The econometrics litera-
ture has shown that ‘omitted variables’ can produce autocorrelated residuals. The 
expansion method generates terminal models that in most cases will contain more 
independent variables than the initial models from which they originated. There-
fore, in these cases, some of the terminal model’s variables are ‘omitted’ from its 
initial model. If upon estimation and testing, significant autocorrelation is found in 
the initial model’s residuals but not in the terminal model’s residuals, it is likely 
that the variables generated by expansions are what made the difference.  

The expansion based multimodeling approach discussed in the ‘multimodel-
ing’ section (see Section C.6.4) also discusses an omitted variables type of remedy 
to spatial dependency. The approach involves first assembling a pool of initial 
models and a pool of expansion variables and then combining the two to create a 
multimodel pool; specifically, this multimodel pool will contain the initial models 
from the first pool, and the terminal models generated by expanding each initial 
model from the first pool by expansion variables from the second pool. Then all 
the models in the multimodel pool are estimated by OLS and tested so that the 
models with/without significant spatial dependency are identified. These results 
can be used to evaluate how prevalent spatial dependency is in a given research, to 
investigate which properties and attributes of the models are associated with the 
occurrence of spatial dependency, and finally, also to identify the best among the 
models with no significant spatial dependency. 

C.6.2   Expansion method 

Generalities. The expansion method section is divided into three subsections. In 
this subsection the expansion method and the spatial expansion method are de-
fined and discussed in generalities. In the second, termed Applications, selected 
literature items are briefly commented. In the third subsection the spatial expan-
sion method is demonstrated via the step-by-step construction of two terminal 
models. 

The expansion method (Casetti 1972, 1986, 1997b) is a technique for con-
structing mathematical models, bundled with rationales for its use. In a nutshell, it 
involves widening the scope of a simpler 'initial' model by redefining some or all 
of its parameters into functions of 'expansion' variables or variates that index a 
substantively relevant 'context'. The 'terminal model' thus produced will encom-
pass both the initial model and its contextual variation. Let us clarify the differ-
ence between the conventional approach to constructing models and the expansion 
method’s. 

A mathematical model of any realities links a substantive conceptual frame of 
reference to an analytical mathematical structure. Mathematics defines analytical 
structures such as equations, probability distributions, and stochastic processes, in 
which variables, random variables, and parameters appear. Substantive disciplines 
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define disciplinary-specific conceptual frames of reference. A mathematical model 
of any realities consists of analytical structures with some or all of their variables, 
variates, and parameters linked to disciplinary-specific frames of reference.  

There are two major approaches to the construction of mathematical models: 
the conventional modeling and the expansion modeling. The conventional mode-
ling consists in the straightforward linking of an analytical structure to a substan-
tive frame of reference. As example of conventional modeling suppose that a sub-
stantive discipline has defined variables and important relations among these 
variables. A scholar from this discipline with a background in a given inventory of 
analytical structures selects one of these structures and links it to one such rela-
tion. When this link is established, a mathematical model of a segment of reality is 
born. The expansion modeling consists in the conventional modeling of the pa-
rameters of a pre-existing initial model. The mathematical models can be determi-
nistic, stochastic, or mixed, can reflect theory or empirical regularities, and can be 
intended for solving, maximizing, or estimating. All these types of models can be 
arrived at by conventional modeling or by expansions. 

The relevance of the expansion method to the spatial disciplines becomes 
readily apparent considering that models born non-spatial can be expanded to en-
compass spatial contexts, and that models born spatial can be expanded to encom-
pass non-spatial contexts. To clarify this point spatial models and spatial expan-
sions have to be briefly defined and discussed. 

A model is spatial if the variables in it are spatial. Examples of spatial vari-
ables are spatial 'dummies', distances, directions, spatial coordinates, location quo-
tients, measures of spatial inequality, and spatially referenced measures of phe-
nomena that vary over space or index geographic environments. Spatial models 
are found not only in geography and regional science, but also in the spatial pe-
ripheries of virtually all social science disciplines. A spatial expansion is the re-
definition of a parameter of a spatial or non-spatial model in terms of spatial vari-
ables.  

The expansion method has an especially useful role in spatial modeling. It 
lends itself to operationalize the integration of complex geographical contexts and 
non-spatial models. If the initial model is suggested by non-spatial 'theory' and the 
expansion variables capture pertinent geographical dimensions, the terminal 
model integrates non-spatial theory and spatial realities. However, the expansion 
method has been also employed to model the variation of spatial relationships 
across non-spatial contexts, and the spatial variation of spatial relationships.  

The contexts of a model spatial or otherwise are any meaningful dimensions 
of reality: they can be the dimensions specifying substantively relevant aspects of 
geographical environments, dimensions of reality that are competing explanators 
of the same dependent variables, and just about any dimensions external to the 
model.  

Let us sketch a rough typology of spatial expansions constructed from classes 
of initial models and classes of expansion variables. The initial models can origi-
nate from spatial theory, as in the case of spatial interactions models; from 
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mathematical land use theory, as in the case of population density models; from 
central place theory such as the models relating the distances among centers to the 
centers' sizes; and so on. Alternatively, the initial models can originate within any 
non-spatial social science discipline.  

The parameters of any of these models can be redefined into functions of non-
spatial and spatial variables. Let us confine ourselves to the latter. The spatial ex-
pansion variables have included distances from substantively significant geo-
graphical reference points, the variables that appear in 'spatial polynomials' such 
as trend surfaces or two-dimensional Fourier polynomials, indexes of regional 
characteristics or factors extracted from these by factor analyses, spatial systemic 
measures such as indexes of accessibility, of metropolitan dominance, or of ine-
quality. 

Applications  

The bibliographic items referred to in this subsection were selected with the objec-
tive of giving the reader a feel for the diversity of the expansion method literature, 
that encompasses a wide range of research styles, issues, substantive fields, and 
mathematical techniques. The section includes presentations of the expansion 
method and of its extensions, discussions of the issues that arise in its implementa-
tion, and also touches upon three types of applications that are especially relevant 
to the themes developed here. 

The presentation and discussion of the expansion method in this chapter is a 
condensed version of some of the themes dealt with at greater length in Casetti 
(1997b). The article by Casetti (1972) contains the first published definition of the 
expansion method as a technique for creating or modifying models combined with 
rationales for its application.  

Multicollinearity can be a problem in the estimation of terminal models gen-
erated from initial models with many variables, and/or from expansion equations 
with many variables, and/or from iterated expansions (Kristensen 1997). The use 
of Bayesian regression and of mixed estimation à la Theil-Goldberger to remedy 
degrading multicollinearity within an expansion modeling frame of reference are 
demonstrated respectively in Casetti (1992) and in Casetti (1997c). The applica-
tion of Bayesian techniques in the estimation of spatial models including spatial 
expansion models is extensively reviewed in Congdon (2003, pp.273-322). The 
testing for parametric drift within an expansion modeling frame of reference is the 
focal point of Casetti (1991). 

The dual expansions method (Casetti 1986) is an extension of the expansion 
method. It builds upon the proposition that an expansion formulation defined as 
primal implies a dual expansion formulation, much in the same way as dual 
mathematical programming formulations are implied by primal ones. Specifically, 
in Casetti (1986) it is shown that a primal linear initial model and linear expansion 
equations imply a dual linear initial model and linear expansion equations, and 
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that these primal and dual formulations yield the same terminal model. Zhang and 
Kristensen (1995) used the dual expansions method to combine different gravity-
based trade models into a supermodel suitable for estimation and testing. 

Jones and Bullen (1994) discuss the relations between the expansion method 
and multilevel modeling. Jones and Wrigley (1995) extend the scope of the expan-
sion method to the generalized additive models.  

The expansion method is well suited to modeling complex spatial non-linear 
dynamics because it allows the linking of geographical locations to dynamics that 
vary across space and time. The reasoning and issues involved are discussed in 
Casetti (1997a). Two examples of applications can be found in Casetti (1989), and 
Casetti and Pandit (1987). The first of these centers on the spread of economic 
growth in Europe, and yields estimates of the time when each of 16 European 
countries transitioned from pre-modern quasi-stagnation to modern economic 
growth. The second application centers on the favorable and perverse dynamic 
equilibria that materialized in geographically distinct clusters of countries, and are 
associated respectively with strong manufacturing growth and with strong growth 
of the service sector.  

Modeling the human-environment interactions via the expansion method is 
discussed by Gatrell (2005). Reviews of spatial modeling that address the spatial 
expansion modeling can be found in LeSage (1999), Fotheringham and Brunsdon 
(1999), and Anselin (1988). A number of spatial expansion articles appeared in a 
book edited by Jones and Casetti (1992). 

The applications clusters that follow are groupings of expansions of the same 
type. They will be referred to as ‘distance cluster’, ‘trend surface cluster’, ‘spatial 
context cluster’. The ‘distance cluster’ encompasses expansion method contribu-
tions in which functions of geographical distance(s) appear either in the initial 
model or in the expansion equation(s). The modeling of spatial diffusion, of 
change in urban population densities, of polarized growth and polarization rever-
sal, of temporal change in spatial interactions, to name a few, can be modeled by 
expanding into distance polynomial(s) the parameters of a time function appearing 
in an initial model. For example, in Casetti and Semple (1969), and Casetti (1972) 
a spatial diffusion model was arrived at, from an initial model relating the percent 
of adopters of an innovation to a logistic function of time, by redefining the logis-
tic parameters as polynomial functions of distance from a diffusion pole. The 
other artcles selected as illustrations of the ‘distance cluster’ are by Casetti (1973), 
Zdorkowski and Hanham (1983), Kellerman and Krakover (1986), Kristensen 
(1997) and Eldridge and Jones (1991). 

Initial models or expansion equations in which trend surfaces appear charac-
terize the ‘trend surface cluster’. To exemplify, let us consider the intriguing paper 
by Eldridge and Jones (1991) that focuses upon the possible spatial instability of 
the friction of distance parameter in  gravity models. They expand this parameter 
into a quadratic trend surface. The estimated terminal model obtained is then used 
to produce distorted maps that depict the ‘spatial warping’ implied by the variation 
of the estimated friction of distance parameter. Other examples of trend surface 
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expansions are Casetti and Fan (1991); Casetti and Krakover (1990); Tanaka and 
Casetti (1992), and Aten and Heston (2003). 

Initial models or expansion equations including variables that index geo-
graphical contextual variation characterize the ‘spatial context cluster’. In Can 
(1990, 1992) initial models relating housing prices to housing attributes is ex-
panded using a ‘contextual’ neighborhood quality variable. In these articles sev-
eral variants of the models, some with spatially autoregressive terms, are specified 
and estimated, and tests for spatial dependence are carried out. Can’s work has 
spawned a growing literature. In Can et al. (1989) and Brown and Goetz (1987) 
the households’ propensity to move is related to households’ attributes, and the re-
sulting initial model is expanded using indices descriptive of geographical con-
texts. Other examples of work fitting the spatial context cluster are by Casetti and 
Tanaka (1992); Kodras (1986); Jones (1987); Kristensen (1997); Varga (1998, 
2000); Theriault et al. (2003); Burford and Zee (2006); Jensen et al. (2004), Jensen 
et al. (2005). 

Example  

In this subsection the spatial expansion method is demonstrated by an example. 
Consider an analyst who wishes to model the spatial distribution of crime in a 
monocentric city partitioned into neighborhoods. For each neighborhood are 
available: a measure of crime, CR; average household Income, I; and the Distance, 
D, between the neighborhood centroid and the central business district. The ana-
lyst wishes to specify model(s) of the spatial distribution of crime using these 
variables. 

Crime levels in a neighborhood are likely to be lower in more affluent 
neighborhoods.  A simple initial model that for appropriate parameter values can 
portray a relation of this type between crime level CR and average household in-
come I is  

 

0 1CR Iα α ε= + +  (C.6.1) 

 
where ε  is a  well behaved error term. Equation (C.6.1) implies that the spatial 
distribution of crime is accounted for by the spatial distribution of income. How-
ever, since in monocentric cities poverty tends to be greater in the city center than 
in the suburbs we can hypothesize that Eq. (C.6.1) holds with different parameter 
values at different distances from the CBD, namely, for different values of the 
contextual variable D. The contextual variation of the parameters in model in Eq. 
(C.6.1) in terms of D can be specified by the following linear expansion equations 

 

0 00 01Dα α α= +  (C.6.2) 
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α1 = α10 + α11 D. (C.6.3) 

 
By substituting the right hand sides of Eqs. (C.6.2) and (C.6.3) for the parameters 

0α  and 1α  in Eq. (C.6.1) the following terminal model in Eq. (C.6.4) is obtained 

 
CR = α00 + α01 D + α10I + α11 I  D + ε . (C.6.4) 

 
Suppose that the analyst expands only the intercept of Eq. (C.6.1), which is 
equivalent to set the parameter α11 to zero in Eq. (C.6.3), thus creating the terminal 
model  

 

CR = α00 + α01 D + α10 I + ε . (C.6.5) 

 
Let us say that the terminal model in Eq. (C.6.4) was generated by the ‘full expan-
sion’ of model in Eq.(C.6.1) with respect to the expansion variable D, and that the 
terminal model in Eq. (C.6.5) was generated by the ‘intercept expansion’ with re-
spect to D. 

The estimation and testing of models in Eqs. (C.6.1), (C.6.4) and (C.6.5), and 
of related models is discussed in the next sections in connection with the use of 
the expansion method as one of possible remedies to significant spatial autocorre-
lation.  

C.6.3  Dependency 

Generalities. Dependency is a focal point of spatial econometrics and of time se-
ries econometrics. The similarities and differences between the two have been dis-
cussed by Anselin (1988) and Stern (2000).  In the past 20 plus years a rich litera-
ture has addressed the effects of the testing for, and the remedies to spatial 
autocorrelation (Anselin 2006, 2007; Anselin and Bera 1998; Getis 2007).  

The remedial options available when a spatial linear model shows significant 
residual autocorrelation have always included the respecifications of the substan-
tive aspects of the model by adding and/or removing and/or transforming its vari-
ables (Miron 1984). However more recently greater attention has been given to the 
following four approaches: (i) the estimation of spatial lag, spatial autoregressive 
error, or spatial Durbin models; (ii) the FGLS estimation of models that incorpo-
rate spatial structure via a previous parametric estimation of the error’s variance-
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covariance matrix; (iii) the correction of the degrees of freedom to compensate for 
the partial redundancy of the observations due to the spatial autocorrelation; and 
(iv) spatial filtering (Getis 1990; Getis and Griffith 2002; Getis and Ord 1995; 
Griffith 2003; Fischer and Griffith 2008). Reviews of these four approaches to 
remedy spatial dependency are in Rangel and Diniz-Filho (2006), de Smith 
(2007), and Dorman et al. (2007).  

This section is concerned with the use of the expansion method to remedy re-
sidual spatial autocorrelation. The line of reasoning involved is as follows. Omit-
ted variables represent an important determinant of residual spatial autocorrelation 
A large literature has shown that omitted variables produce temporal and spatial 
autocorrelation: see for instance Maddala (1992, pp.255-257), Ramanathan (2002 
Chapter 9), Mukherjee et al. (1998, pp.23ff and pp.208ff), Cliff and Ord (1981, 
p.197),  McMillen (2003). Most applications of the expansion method generate 
terminal models with more independent variables than can be found in their re-
spective initial models. Consequently we can say that in these applications the ad-
ditional variables in a terminal model are ‘omitted’ from its initial model and that 
an estimated initial model showing significant spatial autocorrelation ‘may’ be 
converted by the expansions into a larger model that does not display any spatial 
autocorrelation. 

Example 

Let us show an example of initial model that upon estimation and testing displays 
a significant spatial autocorrelation, while a terminal model generated from it does 
not. In the terminal model the variables added by expansions were missing in the 
initial model. Consequently, the spatial autocorrelation of the initial model is due 
to omitted variables. 

The example in this 'Dependency' section as well as the one in the 'Multi-
modeling' section are based on Anselin’s classical ‘Columbus Crime’ dataset 
(Anselin 1988, pp.189) that has been used in a great many spatial analyses, and 
can be found in Bivand’s R-package spdep.  The dataset contains 1980 data for 49 
neighborhoods in Columbus, Ohio. The variables used in this example and in the 
other in the ‘Multimodeling’ section are: the residential burglaries and vehicle 
thefts per thousand households, CR; the average housing value per household in 
$1000, H; the average household income in $1000, I; the neighborhoods distances 
to the CBD, D; and a core-periphery dummy, C. The variable C has a value of one 
for the 'core' neighborhoods, and of zero otherwise. The variables’ names CR, H, 
I, D, and C are shortened versions of the ones appearing in the dataset’s documen-
tation. The spatial dependency tests used here (LM-Err and LM-Lag) are based on 
the neighborhoods’ contiguity matrix available in the Columbus dataset. 

The example that follows involves estimating and comparing the initial model 
and its full expansion specified by Eqs. (C.6.1) to (C.6.4). The results are shown in 
Table C.6.1.  
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Upon comparing the estimated models by their performance on the Lagrangian 
Multiplier tests for spatial lag and spatial error, LM-Lag and LM-Err, it is appar-
ent that the initial model shows a significant LM-Lag, while the terminal model 
does not show any significant residual spatial autocorrelation.  

 
Table C.6.1. Regression results  

 Initial Model Terminal Model 

Intercept    64.46***     92.10*** 
    13.58      (7.67) 
I    –2.04***      –3.06** 
   (–6.64)    (–3.25) 
D    –13.86*** 
     (–3.53) 
I*D       0.56* 
      (2.15) 

R2     0.48      0.68 

p(LM-Err)     0.109         0.664 
p(LM-Lag)     0.009**      0.513 

Notes:  p(LM-Err) stands for probability of LM-Err, p(LM-Lag)  
stands for probability of LM-Lag, t values are in parentheses,  
***, ** and * indicate significance at the 0.001, 0.01, and 0.05 levels 

 
A significant LM-Lag test can suggests either the respecification of the initial 
model as a spatial lag model, or an omitted variable solution such as the one that 
led to the terminal model specified by Eq. (C.6.4), or the use of one of the other 
remedial courses of action available.  

Let us confine ourselves to the respecification of the initial model as a spatial 
lag model, and to its respecifications by expansions. It can be argued that there is 
no conflict or incompatibility between these respecifications in the sense that one 
of them is correct, and the other is not, because the dataset used in the estimation 
originated from real world measurements and not from an artificial dataset. In the 
case of an artificial dataset the analyst knows what the true model is, because it 
was his/hers data generating process the basis on which the dataset was con-
structed. Instead, in the case of a dataset from real world measurements the analyst 
does not know whether any of the respecifications is a true model: she/he only 
knows that they were all effective remedies to the residual spatial dependency ob-
served in the initial model.  

Let us restate for emphasis this important point. If the spatial lag model and 
the terminal model in this demonstration are approximations to the same unknown 
and unknowable infinitely-complex realities, they will both reflect them, much in 
the same way that we can have multiple snapshots of the same object taken from 
different distances and angles of view. Then the issue is not which model or ap-
proximation or snapshot is ‘true’, but rather how they differ, how suited they are 
for any given purpose, and which model should be preferred when and why. Some 
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aspects of what may cause a preference for one of alternative approaches to rem-
edy residual spatial dependency are briefly discussed in the next few paragraphs. 

Ultimately, the analyst's mindset and the specifics of the analysis determine 
which model among a plurality of acceptable models is preferable. However it is 
useful to identify a few lines of thought and research situations in which the de-
terminants of such preferences are more apparent.  

The commitment to the specific independent variables in an initial model var-
ies greatly across analysts and disciplines. Clearly, though, when a significant spa-
tial dependency in the initial model’s residuals is found, a greater commitment to 
specific independent variables will tend to be associated with a stronger propen-
sity to remedy it by a respecification of the error term rather than by a respecifica-
tion of the variables. 

The rationales for a strong commitment to specific independent variables can 
be quite compelling. Issues of data availability can force the use of specific inde-
pendent variables. Data analyses centered upon the estimation of established and 
well grounded theoretical models will lead to a strong commitment to the theoreti-
cal models' variables. Also, when the dependency has theoretical foundations as in 
the cases discussed in (Anselin 2002), respecification into a spatial lag model is 
possibly the most straightforward response to it.  

However, we can also find analysts inclined to blame significant spatial de-
pendency on the model's inadequate ‘complexity’ that translates into an ‘omitted 
variables’ type of mis-specification. For instance, this is the case when the spatial 
drift of some or all the parameters in the model has a theoretical basis or a central 
position in a research. 

Between strong preferences for addressing significant residual spatial depend-
ency by respecifying the error term, and strong preferences for addressing it by 
adding independent variables, there is a vast gray area inhabited by eclectic practi-
tioners. Possibly, empirical studies of the analysts' actual patterns of behavior in 
matters pertaining to specification and respecification searches have not being car-
ried out to an extent commensurate to their importance. These studies would help 
considerably to understand which specification strategies are preferred when and 
why.   

C.6.4   Multimodeling 

Generalities. The prevailing modeling strategies aim at finding, estimating, test-
ing, and using, a single mathematical model of some phase of reality that is as-
sumed to be 'true', or optimal, or consistent with theory and data, or congruent 
with estimation assumptions, or useful in some sense, or, in general, that possesses 
desirable properties and attributes. Let's just note that the strategies involving the 
iterative stepwise improvement of a starting model by moving from the simple to 
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the complex or vice versa occupy a somewhat intermediate position between the 
single model strategy and multimodeling. 

This section's focus is upon the less common strategies that are here collec-
tively referred to as multimodeling, and that involve generating results by process-
ing simultaneously a plurality of models. Let us briefly touch upon four prominent 
types of multimodeling: meta-analysis, information theory based multimodeling, 
Bayesian based multimodeling, and extreme bounds analysis. 

In the words of its creator ‘Meta-analysis refers to the analysis of analyses … 
[Meta-analysis is] the statistical analysis of a large collection of analysis results 
from individual studies for the purpose of integrating the findings’ (Glass 1976, 
p.3). The meta-analysis entry in Wikipedia remarks that ‘… a meta-analysis com-
bines the results of several studies that address a set of related research hypothe-
ses. … Because the results from different studies investigating different independ-
ent variables are measured on different scales, the dependent variable in a meta-
analysis is some standardized measure of effect size.  … [S]tudy characteristics 
such as measurement instrument used, population sampled, or aspects of the stud-
ies design … [may be] ... used as predictor variables to analyze the … variation in 
the effect sizes … Meta-analysis leads to a shift in emphasis from single studies to 
multiple studies. It emphasizes the practical importance of the effect size instead 
of the statistical significance of individual studies. This shift in thinking has been 
termed meta-analytic thinking’. Two treatises on meta-analysis are Hunter and 
Smith (2004) and Sutton et al. (2000). A spatial econometric application is by 
Florax and de Graaff (2004).  

Both the information theory based multimodeling (Anderson 2007; Burnham 
and Anderson 2002)and the Bayesian based multimodeling (Hilborn and Mangel 
1997; Hobbs and Hilborn 2006; McCarthy 2007) involve (a) assembling and esti-
mating a pool of models of same type (such as for instance, linear models with 
well behaved error terms) that share dependent variable, dataset, and research ob-
jectives, and then (b) comparing and ranking the estimated models, and using 
them as inputs to further processing as in model averaging and multimodel infer-
ence.  

Kennedy (2003, p.84) characterizes Leamer’s extreme bounds and fragility 
analyses in the following terms: ‘Suppose that the purpose of [a] study is to esti-
mate the coefficients of some key variables. The first step of this approach, after 
identifying a general family of models, is to undertake an extreme bounds analy-
sis, in which the coefficients of the key variables are estimated using all combina-
tions of included/excluded doubtful variables. If the resulting range of estimates is 
too wide for comfort, an attempt is made to narrow this range by conducting a 
fragility analysis’. Key contributions to this type of multimodeling are Leamer 
(1983, 1985) and Leamer and Leonard (1983). Comments and criticisms on 
Leamer's extreme bounds and fragility analyses are reviewed in Kennedy (2003, 
pp. 95-96). 

The expansion-based multimodeling discussed here consists in the following 
sequence of steps. First, a research question is defined, a suitable dataset is se-
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cured, a dependent variable is selected, and the potential independent variables in 
the dataset are divided between candidates for use in the initial model(s), and can-
didates for use in the expansion equation(s). Second, a pool of initial models is ob-
tained by defining the dependent variable as a linear function of a subset of appro-
priate candidate variables plus an error term. Third, a pool of terminal models is 
obtained by expanding some or all the parameters of each initial model into linear 
functions of expansion variables. Fourth, each initial model and each terminal 
model are estimated, tested for the attribute(s) of interest, and assigned to one of 
two groups depending on whether they posses the attribute(s) or not. Fifth, analy-
ses are carried out to identify which characteristics of the estimated terminal mod-
els tend to be associated with the presence or absence of the attribute(s) of interest. 
Sixth, the subset of models possessing the attribute(s) are ranked according to a 
criterion such AIC, and the best of them is selected for use; alternatively, the ‘dis-
tance’ of the ranked models from the best is computed, and the models within 
some distance threshold from the best are used for averaging or inference.  

Dependency 

The illustration of the expansion-based multimodeling that follows is designed to 
remedy residual spatial autocorrelation, and to gain insights as to which character-
istics of a model tend to be associated with significant residual spatial autocorrela-
tion.  

The expansion method is very well suited to generate any multiple spatial 
models. However, here let us focus on the type of expansions emphasized 
throughout this chapter, whereby a linear initial model born in a substantive social 
science discipline is expanded in terms of variables that define a geographic con-
text and/or spatial dimensions such as distances or spatial dummies. 

A pool of spatial models of this type can be easily generated from a pool of 
initial models with well behaved error terms and the same dependent variable, and 
a pool of expansion variables defining geographical contexts or spatial dimen-
sions. To this effect each initial model is expanded in terms of as many subsets of 
variables from the expansion variables pool as appropriate. All the initial models 
and all the terminal models generated from them constitute the pool of models to 
be estimated and tested for spatial dependency. 

The estimation and testing of the models in the pool implement the ‘Spatial 
Regression Model Selection Decision Rule’ detailed and diagrammed in Anselin 
(2005, pp.198-200) and Florax et al. (2003, pp.558-559). Essentially, the rule in-
volves estimating a starting linear model by OLS and then testing it by LM-Error 
and LM-Lag statistics. If neither test rejects the null hypothesis of no-dependency 
the model is regarded as correctly specified. Otherwise the rule specifies a se-
quence of steps leading to rerun it either as a spatial error model or as a spatial lag 
model. 
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The estimation and testing for spatial dependency of all the models in the final 
pool is a multimodel implementation of the initial step in Anselin’s decision rule, 
and categorizes these models as having significant spatial dependency or not. This 
categorization opens the way to analyses aiming at finding which attributes of the 
models relate how much to spatial dependency. Also it opens the way to rank the 
models that do not display significant dependency by a criterion such as AIC, in 
order to select the best model (namely the one with the lowest AIC value) as an 
end product of the multimodeling. Alternatively, the ‘distance’ of the ranked mod-
els from the best could be used to select an average of the ‘best models with no 
spatial dependency’ as an end result. In the next section the approach is demon-
strated using the Columbus Crime dataset.  

Example 

The illustration that follows explores the effectiveness of the expansion based 
multimodeling approach to remedy spatial autocorrelation. The research question 
concerns the spatial distribution of crime in Columbus, Ohio, and its determinants.  

All the models appearing in the demonstration are linear, share the same de-
pendent ‘crime’ variable CR, are assumed to have well behaved error terms, and 
are estimated by OLS. Since all the models share the dependent variable they are 
defined by their independent variables.  

The names of the models were constructed so as to distinguish initial models 
from terminal models, and the independent variables appearing in the initial mod-
els from those added by expansions. In terms of this scheme the initial models are 
identified just by the independent variables' names. For instance I denotes an ini-
tial model with CR as dependent variable, with an intercept and with I as inde-
pendent variable. Instead HI denotes an initial model with dependent variable CR, 
with an intercept, and with the two independent variables H and I. Variable names 
separated by a 'period' denote a terminal model. For instance HI.D identifies a 
terminal model generated by expanding an initial model with the independent 
variables H and I, in terms of the expansion variable D. Hence the independent 
variables in HI.D are H, I, D, H*D , and I*D. The suffix m as in HI.Dm denotes a 
terminal model generated by an intercept expansion, so that the independent vari-
ables in it are H, I, and D. 

Three initial models H, I, and HI relating crime, CR, respectively to mean 
home values, H, to mean household income, I, and to both H and I, were estimated 
by OLS, tested by LM-Err and LM-Lag, and found to have all significant residual 
spatial dependency. The three models have variables that are spatial because are 
spatially referenced, but the substantive relations that they formalize originate in 
sociology and economics. The significant spatial autocorrelation indicates that the 
substantive relations used are inadequate to account for the spatial distribution of 
crime in Columbus. This illustration explores whether expanding these initial 
models in terms of the center-periphery dummy, C, or in terms of the distance 
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from the CBD, D, will produce terminal models with no significant spatial de-
pendence, and if so how many.  

A pool of fifteen models that include the three initial models plus twelve ter-
minal models were defined, estimated and tested. The terminal models were ob-
tained by the full expansion and the intercept expansion of each initial model in 
terms of C, and then of D. All the models in the pool were then estimated by OLS, 
and tested for residuals' spatial dependency by LM-Err and LM-Lag statistics. 
Relevant results for the fifteen models are shown in Tables C.6.2 and C.6.3. 

Table C.6.2. Multimodeling results 
Model   R2 df AIC p(LM-Err) p(LM-Lag) SSD 

H 0.330 3 401 0.000 0.000 1 
I 0.484 3 388 0.109 0.009 1 
HI 0.552 4 383 0.032 0.005 1 
H.C 0.621 5 377 0.045 0.029 1 
I.C 0.674 5 369 0.721 0.321 0 
HI.C 0.698 7 370 0.539 0.232 0 
H.Cm 0.620 4 375 0.044 0.028 1 
I.Cm 0.664 4 369 0.719 0.346 0 
HI.Cm 0.686 5 367 0.450 0.210 0 
H.D 0.664 5 371 0.063 0.289 0 
I.D 0.680 5 368 0.664 0.513 0 
HI.D 0.721 7 366 0.516 0.865 0 
H.Dm 0.609 4 376 0.154 0.419 0 
I.Dm 0.647 4 371 0.785 0.737 0 
HI.Dm 0.673 5 369 0.375 0.877 0 

 
 

For each estimated model Table C.6.2 shows the R-square; the degrees of freedom 
required by the estimation of the intercept, of the independent variables’ parame-
ters, and of the variance; the Akaike Information Criterion (AIC); the probability 
of no dependency due to spatial error p(LM-Err); the probability of no dependency 
due to spatial lag, p(LM-Lag); and the dummy variable SSD that stands for Sig-
nificant Spatial Dependency. SSD was defined so that it has a value of one for the 
models with significant spatial dependency, and a value of zero otherwise. Spe-
cifically, SSD = 1 if either p(LM-Err) < 0.05 or p(LM-Lag) < 0.05 or [p(LM-Err) 
< 0.05 and p(LM-Lag) < 0.05], else SSD = 0. 

The table shows that all the initial models H, I, and HI have significant spatial 
dependency, while only two out of twelve terminal models have significant spatial 
dependency. This means that in ten out of the twelve terminal models created by 
expanding the  initial models  the spatial dependency is no longer found. In the 
balance, this illustration suggests that when spatial autocorrelation is encountered, 
the strategy combining the spatial expansion method with multimodeling should 
be regarded as one of the remedial courses of action available.  

However the results in Table C.6.2 allow also identifying which variables tend 
to be more associated with spatial dependency. Specifically, the variable H ap-
pears in ten models, and four of these models show significant spatial dependency. 
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The variable I also appears in ten models, but of these only two display significant 
spatial dependency. Clearly, H tends to be associated with dependency more than 
I. Next, consider the expansion variables C and D. Each of them appears in six 
models. However, while two of the models in which C appears are spatially de-
pendent, none of the models in which D appears are. Clearly, again, the absence of 
spatial dependence in a terminal model is more strongly associated with expan-
sions in D than with expansions in C. Finally, note that both H and C appear in the 
only two terminal models with spatial dependence. This simple counting shows to 
what extent specific independent variables are associated with the occurrence of 
spatial dependency. 

Table C.6.3. Group means 

Groups Mean 
R2 

Mean 
df 

Mean 
AIC 

SSD=1 0.52 3.80 385 
SSD=0 0.67 5.10 370 
 
 

Table C.6.3 shows the mean values of R2, df, and AIC, for the group of five mod-
els that show Significant Spatial Dependence labeled SSD=1, and for the group of 
twelve models that do not show any Significant Spatial Dependence labeled 
SSD=0. In a capsule, Table C.6.3 shows that the models with no significant spatial 
dependency have a higher Mean R2, an higher Mean df, and a lower Mean AIC 
values than the models with significant spatial dependency.  

The Akaike Information Criterion, AIC, rewards goodness of fit and penalizes 
complexity. In the case of OLS estimation, AIC is an increasing function of both 
the mean square residuals and the number of estimated parameters.  Among a plu-
rality of models the most preferable is the one with the smallest AIC. Table C.6.2 
shows that the best, second best, and third best models in terms of AIC are respec-
tively HI.D, HI.Cm, and I.D.  Both Tables C.6.2 and C.6.3 suggest that in this il-
lustration the models with more estimated parameters, greater R2, and smaller AIC 
values tend to be associated with the absence of spatial autocorrelation. 

The analyses presented in this demonstration can be regarded as an example 
of a broad class of analyses exploring the relationships between/among ‘interest-
ing’ attributes of a pool of estimated models.  

C.6.5   Concluding remarks 

The body of this chapter is comprised of three sections. In the first section the spa-
tial expansion method is defined, demonstrated by an example, and illustrated by a 
brief review of selected items from the expansion method literature. 

The possible use of the expansion method as a remedy to residual spatial de-
pendency is discussed in the second section. The key line of reasoning runs as fol-
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lows. If an initial model upon estimation and testing is found to have significant 
spatial dependency while a terminal model generated from it does not show any 
significant dependency, we can say that the variables added to the initial model by 
expansions are what removed the dependency. 

In the third section an expansion based multimodeling approach to remedy 
spatial dependency is described and illustrated. In some research situations this 
approach could be of interest as one of the possible responses when spatial de-
pendency strikes. 
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C.7  Multilevel Modeling 

S.V. Subramanian  

C.7.1  Introduction 

Individuals are organized within a nearly infinite number of levels of organization, 
from the individual up (for example, families, neighborhoods, counties, states), 
from the individual down (for example, body organs, cellular matrices, DNA), and 
for overlapping units (for example, area of residence and work environment).  It is 
necessary, therefore, that links should be made between these possible levels of 
analysis.  The term ‘multilevel’ refers to the distinct levels or units of analysis, 
which usually, but not always, consists of, individuals (at lower level) who are 
nested within contextual/aggregate units (at higher level).  Multilevel methods 
consist of statistical procedures that are pertinent when (i) the observations that are 
being analyzed are correlated or clustered, or (ii) the causal processes is thought to 
operate simultaneously at more than one level, and/or (iii) there is an intrinsic in-
terest in describing the variability and heterogeneity in the phenomenon, over and 
above the focus on the average (Diez Roux 2002; Subramanian et al. 2003; 
Subramanian 2004a, 2004b).   

Multilevel statistical models are often used in areas such as image processing 
and remote sensing (Kolaczyk et al. 2005). Multilevel methods are specifically 
geared towards the statistical analysis of data that have a nested structure.  The 
nesting, typically, but not always, is hierarchical.  For instance, a two level struc-
ture would have many level-1 units nested within a smaller number of level-2 
units.  In educational research, the field that provided the impetus for multilevel 
methods, level-1 usually consists of pupils who are nested within schools at level-
2. Such structures arise routinely in health and social sciences, such that level-1 
and level-2 units could be, workers in organizations, patients in hospitals, indi-
viduals in neighborhoods, respectively.  In this chapter, for exemplification, we 
will consider the structure of individuals nested within neighborhoods (used to re-
flect one practical realization of place). 

The existence of nested data structures is neither random nor ignorable; for in-
stance, individuals differ but so do the neighborhoods. Differences among 
neighborhoods could either be directly due to the differences among individuals 
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who live in them; or groupings based on neighborhoods may arise for reasons less 
strongly associated with the characteristics of the individuals who live in them.  
Regardless, once such groupings are established, even if their establishment is 
random, they will tend to become differentiated.  This would imply that the group 
(for example, neighborhoods) and its members (for example, individual residents) 
can exert influence on each other suggesting different sources of variation (for ex-
ample, individual-induced and neighborhood-induced) in the outcome of interest 
and thus compelling analysts to consider covariates at the individual and at the 
neighborhood level.  Ignoring this multilevel structure of variations not simply 
risks overlooking the importance of neighborhood effects, but has implications for 
statistical validity. 

To put this in perspective, in an influential study of progress among primary 
school children, Bennett (1976), using single-level multiple regression analysis, 
claimed that children exposed to ‘formal’ style of teaching exhibited more pro-
gress than those who were not.  The analysis while recognizing individual children 
as units of analysis ignored their grouping into teachers/classes.  In what was the 
first important example of multilevel analysis using social science data, Aitkin et 
al. (1981) reanalyzed the data and demonstrated that when the analysis accounted 
properly for the grouping of children (at lower level) into classes (at higher lev-
els), the progress of formally taught children could not be shown to significantly 
differ from the others. 

What was occurring here was that children within any one class/teacher, be-
cause they were taught together, tended to be similar in their performance thereby 
providing much less information than would have been the case if the same num-
ber of children had been taught separately.  More formally, the individual samples 
(for example, children) were correlated or clustered.  Such clustered samples do 
not contain as much information as simple random samples of similar size. As was 
shown by Aitkin et al. (1981), ignoring this autocorrelation and clustering resulted 
in an increased risk of finding differences and relationships where none existed. 

Clustered data also arise as a result of sampling strategies.  For instance, while 
planning large-scale survey data collection, for reasons of cost and efficiency, it is 
usual to adopt a multistage sampling design.  A national population survey, for 
example, might involve a three-stage design, with regions sampled first, then 
neighborhoods, and then individuals.  A design of this kind generates a three-level 
hierarchically clustered structure of individuals at level-1 nested within neighbor-
hoods at level-2, which in turn are nested in regions at level-3. Individuals living 
in the same neighborhood can be expected to be more alike than they would be if 
the sample were truly random.  Similar correlation can be expected for neighbor-
hoods within a region. 

Much documentation exists on measuring this ‘design effect’ and correcting 
for it.  Indeed, clustered designs (for example, individuals at level-1 nested in 
neighborhoods at level-2 nested in regions at level-3) are often a nuisance in tradi-
tional analysis.  However, individuals, neighborhoods and regions can be seen as 
distinct structures that exist in the population that should be measured and mo-
deled. 
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C.7.2  Multilevel framework: A necessity for 
understanding ecological effects 

Figure C.7.1 identifies a typology of designs for data collection and analyses 
(Blakely and Woodward 2000; Kawachi and Subramanian 2006; Subramanian et 
al. 2007) where the rows indicate the level or unit at which the outcome variable is 
being measured [that is, at the individual level (y) or the ecological level (Y)], and 
the columns indicate whether the exposure is being measured at the individual 
level (x) or the ecological level (X).  The ecological level, in this illustration, re-
lates to the neighborhood level.  Study-type (y, x) is most commonly encountered 
when the researcher aims to link exposure to outcomes, with both being measured 
at the individual level.  Study-type (y, x) typically ignores ecological effects (ei-
ther implicitly or explicitly). 

  Exposure 
  Individual (x) 

(measured at individual level)  

Ecologic (X) 

(measured at ecological level) 

Individual  

(y) 

(y, x) 

Traditional risk factor study 

(y, X)                      

Multilevel study 

O
ut

co
m

e 

Ecologic 

(Y) 

(Y, x)a 

 

(Y, X) 

Ecological study 

Notes: a This type of study is impossible to specify as it stands. Practically speaking, it will either take 
the form of (Y, X), that is, ecological study, where X will now simply be central tendency of x. Or, if 
disaggregation of Y is possible, so that we can observe y, then it will be equivalent to (y, x). Source: 
(Subramanian et al. 2008) 

Fig. C.7.1. Typology of studies (Subramanian et al. 2007) 

Conversely, study-type (Y, X) – referred to as an ‘ecological study’ – may seem in-
tuitively appropriate for research where higher levels (for instances, neighbor-
hoods, regions, states, schools and so on) are the targets of interest. However, 
study-type (Y, X) conflates the genuinely ecological and the aggregate or ‘compo-
sitional’ (Moon et al. 2005), and precludes the possibility of testing heterogeneous 
contextual effects on different types of individuals.  Ecological effects reflect pre-
dictors and associated mechanisms operating primarily at the contextual level.  
The search for such measures and their scientific validation and assessment is an 
area of active research (Raudenbush 2003).  Aggregate effects, in contrast, equate 
the effect of a neighborhood with the sum of the individual effects associated with 
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the people living within the neighborhood.  In this situation the interpretative 
question becomes particularly relevant.  If common membership of a neighbor-
hood by a set of individuals brings about an effect that is over and above those re-
sulting from individual characteristics, then there may indeed be an ecological ef-
fect. 

Study-type (y, X) provides a multilevel approach in which an ecological expo-
sure is linked to an individual outcome.  A more complete representation would be 
type (y, x, X) whereby we have an individual outcome, individual confounders (x), 
and neighborhood exposure reflecting a multilevel structure of individuals nested 
within neighborhoods.  A fundamental motivation for study-type  (y, x, X) is to 
distinguish ‘neighborhood differences’ from ‘the difference a neighborhood 
makes’ (Moon et al. 2005).  Stated differently, ecological effects on the individual 
outcome should be ascertained after individual factors that reflect the composition 
of the places (and may be potential confounders) have been controlled.  Indeed, 
compositional explanations for ecological variations in health are common.  It 
nonetheless makes intuitive sense to test for the possibility of ecological effects.  
Besides anticipating their impact on individual outcomes, compositional factors 
may vary by context.  Thus, unless contextual variables are considered, their direct 
effects and any indirect mediation through compositional variables remain uniden-
tified.  Moreover, composition itself has an intrinsic ecologic dimension; the very 
fact that individual (compositional) factors may ‘explain’ ecologic variations 
serves as a reminder that the real understanding of ecologic effects is likely to be 
complex. 

The multilevel framework with its simultaneous examination of the character-
istics of the individuals at one level and the context or ecologies in which they are 
located at another level accordingly offers a comprehensive framework for under-
standing the ways in which places can affect people (contextual) and/or people can 
affect places (composition).  It likewise allows for a more precise distinction be-
tween aggregative fallacy versus ecologic effects (Subramanian et al. 2008). 

C.7.3  A typology of multilevel data structures 

The idea of multilevel structure can be recast, with great advantage, to address a 
range of circumstances where one may anticipate clustering. Outcomes as well as 
their causal mechanisms are rarely stable and invariant over time, producing data 
structures that involve repeated measures, which can be considered a special case 
of multilevel clustered data structures.  Consider the ‘repeated cross-sectional de-
sign’ that can be structured in multilevel terms with neighborhoods at level-3; 
year/time at level-2 and individuals at level-1.  In this example, level-2 represents 
repeated measurements on the neighborhoods (level-3) over time.  Such a struc-
ture can be used to investigate what sorts of individuals and what sorts of 
neighborhoods have changed with respect to the outcome.  Alternatively, there is 
the classic ‘longitudinal or panel design’ in which the level-1 is the measurement 
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occasion, level-2 is the individual and level-3 is the neighborhood.  This time, the 
individuals are repeatedly measured at different time intervals so that it becomes 
possible to model changing individual behaviors within a contextual setting of, say 
neighborhoods. 

When different responses/outcomes are correlated this lends itself to a ‘multi-
variate’ multilevel data structure in which level-1 are sets of response variables 
measured on individuals at level-2 nested in neighborhoods at level-3.  The ‘mul-
tivariate responses’ could be, for instance, different aspects of, say, health be-
havior (for example, smoking and drinking).  In addition, such responses could be 
a mixture of ‘quality’ (do you smoke/do you drink) and ‘quantity’ (how many/how 
much) producing ‘mixed multivariate responses’.  The substantive benefit of this 
approach is that it is possible to assess whether different types of behavior and 
whether the qualitative and quantitative aspects of each behavior are related to in-
dividual characteristics in the same or different ways.  Additionally, we can also 
ascertain whether neighborhoods that is high for one behavior also high for an-
other and whether neighborhoods with high prevalence of smoking, for instance, 
also high in terms of the number of cigarettes smoked. 

While the previous examples are strictly hierarchical, in that all level-1 units 
that form a level-2 grouping are always in the same group at any higher level, data 
structures could be non-hierarchical.  For example, a model of health behavior (for 
instance, smoking) could be formulated with individuals at level-1 and both resi-
dential neighborhoods and workplaces at level-2 not nested but crossed and are 
also called as the ‘cross-classified structures’.  Individuals are then seen as occu-
pying more than one set of contexts, each of which may have an important influ-
ence.  For instance individuals in a particular workplace may come from different 
neighborhoods and individuals in a neighborhood may go to several worksites. 

A related structure occurs where for a single level-2 classification (for example, 
neighborhoods), level-1 units (for example, individuals) may belong to more than 
one level-2 unit and these are also referred as ‘multiple membership designs’.  The 
individual can be considered to belong simultaneously to several neighborhoods 
with the contributions of each neighborhood being weighted in relation to its dis-
tance (if the interest is spatial) from the individual.  In summary, between some 
combination of hierarchical structures, cross-classified nesting and multiple mem-
bership exhibit a great of complexity that is imprinted either explicitly or implic-
itly in data can be incorporated via multilevel models. 

C.7.4   The distinction between levels and variables 

Each of the levels that were discussed in the previous section (for example, 
neighborhoods) can be considered as variables in a regression equation with an in-
dicator variable specified for each neighborhood. Conversely, why are many cate-
gorical variables such as gender, ethnicity/race, social class not a level? Critical to 
treating neighborhoods, for example, as a level is because neighborhoods are 
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treated as a population of units from which we have observed one random sample.  
This enables us to draw generalizations for a particular level (for example, 
neighborhoods) based on an observed sample of neighborhoods. Further, it is 
more efficient to model neighborhoods as a random variable given the (likely) 
large number of neighborhoods. On the other hand gender, for instance is not a 
level because it is not a sample out of all possible gender categories.  Rather, it is 
an attribute of individuals. Thus, male or female in our gender example are ‘fixed’ 
discrete categories of a variable with the specific categories only contribute to 
their respective means. They are not a random sample of gender categories from a 
population of gender groupings.  Further, we would usually wish to ascribe a 
fixed-effect to each gender, but not each neighborhood. Rather, we wish to model 
an ecologic attribute at the neighborhood-level. 

It is possible to consider ‘levels’ as ‘variables’.  Thus, when neighborhoods 
are considered as a variable, they are typically reflective of a fixed classification.  
While this may be useful in certain circumstances, doing so robs the researcher of 
the ability to generalize to all neighborhoods and inferences are only possible for 
the specific neighborhoods observed in the sample. 

C.7.5  Multilevel analysis 

There are three constitutive components of multilevel analysis which are now dis-
cussed. 

Evaluating sources of variation: Compositional and/or contextual. A funda-
mental application of multilevel methods is disentangling the different sources of 
variations in the outcome.  Evidence for variations in poor health, for example, be-
tween different neighborhoods can be due to factors that are intrinsic to, and are 
measured at, the neighborhood level.  In other words, the variation is due to what 
can be described as contextual, or neighborhood effects.  Alternatively, variations 
between neighborhoods may be compositional, that is, certain types of people who 
are more likely to be in poor health due to their individual characteristics happen 
to be clustered in certain neighborhoods.  The issue, therefore, is not whether 
variations between different neighborhoods exist (they usually do), but what is the 
primary source of these variations.  Put simply, are there significant contextual 
differences in health between neighborhoods, after taking into account the indi-
vidual compositional characteristic of the neighborhood?  The notions of contex-
tual and compositional sources of variation have general relevance and they are 
applicable whether the context is administrative (for example, political bounda-
ries), temporal (for example, different time periods), or institutional (for example, 
schools or hospitals). 

Describing contextual heterogeneity. Contextual differences may be complex 
such that it may not be the same for all types of people. Describing such contex-
tual heterogeneity is another aspect of multilevel analysis and can have two inter-
pretative dimensions.  First, there may be a different amount of neighborhood 
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variation, such that, for example, for high social class individuals it may not mat-
ter in which neighborhoods they live (thus a lower between neighborhood varia-
tion), but it matters a great deal for the low social class and as such shows a large 
between-neighborhood variation. Second, there may be a differential ordering: 
neighborhoods that are high for one group are low for the other and vice versa.  
Stated simply, the multilevel analytical question is whether the contextual 
neighborhood differences in poor health, after taking into account the individual 
composition of the neighborhood, is different for different types of population 
groups? 

Characterizing and explaining the contextual variations. Contextual differ-
ences, in addition to people’s characteristics, may also be influenced by the differ-
ent characteristics of neighborhoods.  Stated differently, individual differences 
may interact with context and ascertaining the relative importance of individual 
and neighborhood covariates is another key aspect of a multilevel analysis. For 
example, over and above social class (individual characteristic) health may depend 
upon the poverty levels of the neighborhoods (neighborhood characteristic). The 
contextual effect of poverty can either be the same for both the high and low so-
cial class suggesting that while neighborhood poverty explains the prevalence of 
poor health, it does not influence the social class inequalities in health.  On the 
other hand, the contextual effects of poverty may be different for different groups, 
such that neighborhood poverty adversely affects the low social class, but does the 
opposite for the high social class.  Thus, neighborhood level poverty may not only 
be related to average health achievements but also shapes social inequalities in 
health. The analytical question of interest is whether the effect of neighborhood 
level socioeconomic characteristics on health is different for different types of 
people? 

In the presence of a multilevel data, as described in Section C.7.3, and having 
motivations as discussed above, there are substantive as well as technical reasons 
to use multilevel statistical models to analyze such data (Raudenbush and Bryk 
2002; Goldstein 2003).  We shall not review the basic principles of multilevel 
modeling here as they have been described elsewhere in the context of health re-
search (Subramanian et al. 2003; Moon et al. 2005; Blakely and Subramanian 
2006), but rather provide a brief overview of the type of models invoked for iden-
tifying ecologic effects discussed in this section. 

C.7.6   Multilevel statistical models 

Like all statistical regression equations, multilevel models have the same underly-
ing function, which can be expressed as: 

 
RESPONSE = FIXED/AVERAGE PARAMETERS + (RANDOM/VARIANCE PARAMETERS).   
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While in a conventional regression model the random part of the model is usually 
restricted to a single term (called error terms or residuals), in the multilevel regres-
sion model the focus is on expanding the random part of a statistical model. 

In order to exemplify multilevel models we consider the following example.  
Suppose we are interested in studying the variation in health score, as a function 
of certain individual and neighborhood predictors.  Let us assume that the re-
searcher collected data on a sample of 50 neighborhoods and, for each of these 
neighborhoods, a random sample of individuals.  We then have a two-level struc-
ture where the outcome is a health score (with higher score indicating better 
health), y, for individual i in neighborhood j.  We will restrict this exemplification 
to one individual-level predictor, poverty, 1ijx , coded as zero if not poor and one if 
poor, for every individual i in neighborhood j; and one neighborhood predictor, 

1 jw , a socioeconomic deprivation index in neighborhood j. 
Variance component or random intercepts model. Multilevel models operate 

by developing regression equations at each level of analysis.  In the illustration 
considered here, models would have to be specified at two levels, level-1 and 
level-2.  The model at level-1 can be formally expressed as 

 

0 1 1 0ij j ij ijy x eβ β= + +  (C.7.1) 

 
where β0j  (associated with a constant, x0ij, which is a set of ones, and therefore, not 
written) is the mean health score for the jth neighborhood for the non-poor group; 
β1 is the average differential in health score associated with individual poverty 
status (x1ij) across all neighborhoods. e0ij  is the individual or the level-1 residual 
term. To make this a genuine two-level model we let β 0j  become a random vari-
able as 
 

β 0j =  β 0 + u0j (C.7.2) 

 
where u0j  is the random neighborhood-specific displacement associated with the 
overall mean health score (β 0) for the non-poor group.  Since we do not allow, at 
this stage, the average differential for the poor and non-poor group (β1) to vary 
across neighborhoods, u0j is assumed to be same for both groups.  Equation 
(C.7.2) is then the level-2 between-neighborhood model. 

It is worth emphasizing that the ‘neighborhood effect’, u0j can be treated in 
one of the two ways.  One can estimate each neighborhood separately as a fixed-
effect (that is, treat them as a variable, with 50 neighborhoods there will be 49 ad-
ditional parameters to be estimated).  Such a strategy may be appropriate if the in-
terest is in making inferences about just those sampled neighborhoods.  On the 
other hand, if neighborhoods are treated as a (random) sample from a population 
of neighborhoods (which might include neighborhoods in future studies if one has 
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complete population data), the target of inference is the variation between 
neighborhoods in general.  Adopting this multilevel statistical approach makes u0j 
a random variable at level-2 in a two-level statistical model. 

Substituting Eq. (C.7.2) into Eq. (C.7.1) and grouping them into fixed and ran-
dom part components (the latter shown in brackets) yields the following random-
intercepts or variance components model 

 

0 1 1 0 0( ).ij ij j ijy x u eβ β= + + +  (C.7.3) 

 
We have now expressed the response ijy  as the sum of a fixed part and a random 
part.  Assuming a normal distribution with zero mean, we can estimate a variance 
at  level-1  (σ ²e0: the between-individual within-neighborhood variation) and level-
2 (σ ²u0: the between-neighborhood variation), both conditional on fixed poverty 
differences in health score.  It is the presence of more than one residual term (or 
the structure of the random part more generally) that distinguishes the multilevel 
model from the standard linear regression models or analysis of variance type 
analysis.  The underlying random structure (variance-covariance) of the model 
specified in Eq. (C.7.3) is 

 

var (u0j) ∼ N (0, 2
0uσ ) (C.7.4a)

var (e0ij) ∼ N (0, 2
0eσ ) (C.7.4b)

0 0( , ) 0j ijcov u e = . (C.7.4c)

 
It is this aspect of the regression model that requires special estimation procedures 
in order to obtain satisfactory parameter estimates (Goldstein 2003). 

The model specified in Eq. (C.7.3) with the above random structure is typi-
cally used to partition variation according to the different levels, with the variance 
in yij being the sum of 2

0uσ  and 2
0eσ .  This leads to a statistic known as intra-class 

correlation, or intra-unit correlation, or more generally variance partitioning co-
efficient (Goldstein 2002), representing the degree of similarity between two ran-
domly chosen individuals within a neighborhood.  This can be expressed as 

2
0

2 2
0 0

.u

u e

σρ
σ σ

=
+

 (C.7.5) 
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Note that Eq. (C.7.3) estimates a variance based on the observed sample of 
neighborhoods.  While this is important to establish the overall importance of 
neighborhoods as a unit or level, another quantity of interest may pertain to esti-
mating whether living in neighborhood 1j , as compared to neighborhood 3j , for 
example, predicts a different health score conditional on compositional influences 
of covariates.  Given Eq. (C.7.3), we can estimate for each level-2 unit 

 

0 0
ˆˆ ( | , ,j ju E u Y β=                     Ω

^  
).

 
(C.7.6) 

 
The quantity 0ˆ ju  are referred to as ‘estimated’ or ‘predicted’ residuals, or using 
Bayesian terminology, as ‘posterior’ residual estimates, and is calculated as 
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=  (C.7.7) 

 
where 2

0uσ  and 2
0eσ  are as defined above, jr  is the mean of the individual-level 

raw residuals for neighborhood j, and jn  is the number of individuals within each 
neighborhood j.  This formula for 0ˆ ju  uses the level-1 and level-2 variances and 
the number of people observed in neighborhood j to scale the observed level-2 re-
sidual jr .  As the level-1 variance declines or the sample size increases, the scale 
factor approaches one, and thus 0ˆ ju  approaches jr . 

These neighborhood-level residuals are ‘random variables with a distribution 
whose parameter values tell us about the variation among the level-2 units’ 
(Goldstein 2003).  Another interpretation is that each 0ˆ ju  estimates neighborhood 
j’s departure from expected mean outcome.  This interpretation is based on the as-
sumption that each neighborhood belongs to a population of neighborhoods, and 
the distribution of the population provides information about plausible values for 
neighborhood j (Goldstein 2003).  For a neighborhood with only a few individu-
als, we can obtain more precise estimates by combining the population and 
neighborhood-specific observations than if we were to ignore the population 
membership assumption and use only the information from that neighborhood.  
When the estimated residuals at higher-level units are of interest in their own 
right, we need to provide standard errors, interval estimates and significance tests 
as well as point estimates for them (Goldstein 2003). 

Modeling places: fixed or random? It is worth drawing parallels between the 
multilevel or random-effects model given by Eq. (C.7.3) and the conventional 
OLS or fixed-effects regression model. Consider the fixed-effects model, whereby 
the neighborhood effect is estimated by including a dummy for each neighbor-
hood, as shown by 
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0 0ij ij j ijy x N eβ β β= + + +  (C.7.8) 

 
where jN  is a vector of dummy variables for 1N −  neighborhoods.  The key 
conceptual difference between the fixed-effects and the random-effects approach 
to modeling neighborhoods is that while the fixed part coefficients are estimated 
separately, the random part differentials ( 0 ju ) are conceptualized as coming from 
a distribution (Goldstein 2003).  This conceptualization results in three practical 
benefits (Jones and Bullen 1994) 

 
 (i)  pooling information between neighborhoods, with all the information in the 

data being used in the combined estimation of the fixed and random part; in 
particular, the overall regression terms are based on the information for all 
neighborhoods; 

 (ii)  borrowing strength, whereby neighborhood-specific relations that are impre-
cisely estimated benefit from the information for other neighborhoods; and 

 (iii)  precision-weighted estimation, whereby unreliable neighborhood-specific 
fixed estimates are differentially down-weighted or shrunk toward the over-
all city-wide estimate. A reliably estimated within-neighborhood relation 
will be largely immune to this shrinkage. 

 
The random-effects and the fixed-effects estimates for each neighborhood are re-
lated (Jones and Bullen 1994).  The neighborhood-specific random intercept ( 0 jβ ) 
in a multilevel model is a weighted combination of the specific neighborhood co-
efficient in a fixed-effects model ( *

0 jβ ) and the overall multilevel intercept ( 0β ), 
in the following way 
 

*
0 0 0(1 )j j j jw wβ β β= + −  (C.7.9) 

 
with the overall multilevel intercept being a weighted average of all the fixed in-
tercepts 
 

.
0

0 ∑
∑ ∗

=
j

jj

w

w β
β  (C.7.10)

 
Each neighborhood weight is the ratio of the true between-neighborhood parame-
ter variance to the total variance, which additionally includes sampling variance 
resulting from observing a sample from the neighborhood.  Consequently, the 
weights represent the reliability or precision of the fixed terms 
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 (C.7.11)

 
where the random sampling variance of the fixed parameter is 

 
2

2 e
j

jn
συ =  (C.7.12)

 
with jn  being the number of observations within neighborhood j.  When there are 
genuine differences between the neighborhoods and the sample sizes within a 
neighborhood are large, the sampling variance will be small in comparison to the 
total variance.  As a result, the associated weight will be close to one, with the 
fixed neighborhood effect being reliably estimated, and the random effect 
neighborhood estimate will be close to the fixed neighborhood effect.  As the 
sampling variance increases, however, the weight will be less than one and the 
multilevel estimate will increasingly be influenced by the overall intercept based 
on pooling across neighborhoods.  Shrinkage estimates allow the data to determine 
an appropriate compromise between specific estimates for different neighborhoods 
and the overall fixed estimate that pools information across places over the entire 
sample (Jones and Bullen 1994). 

Importantly, the fixed-effects approach to modeling neighborhood differences 
using cross-sectional data is not a choice for a typical multilevel research question, 
where there is an intrinsic interest in an exposure measured at the level of 
neighborhood such as the one specified in Eq. (C.7.3). In such instances, a multi-
level modeling approach is a necessity.  This is because the dummy variables as-
sociated with the neighborhoods (measuring the fixed-effects of each neighbor-
hood) and the neighborhood exposure is perfectly confounded and, as such, the 
latter is not identifiable (Fielding 2004). Thus, the fixed-effects specification to 
understand neighborhood differences is unsuitable for the sort of complex ques-
tions which multilevel modeling can address. 

The random coefficient or random slopes model. We can expand the random 
structure in Eq. (C.7.3) by allowing the fixed-effect of individual poverty (β 1) to 
randomly vary across neighborhoods in the following manner 

 

0 1 1 0 .ij j j ij ijy x eβ β= + +  (C.7.13)
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At level-2, there will now be two models 

 

0 0 0j juβ β= +  (C.7.14)

 

1 1 1j juβ β= + . (C.7.15)

 
Substituting the level-2 models in Eqs. (C.7.14) and (C.7.15) into the level-1 
model in Eq. (C.7.13) gives: 
 

0 1 1 0 1 1 0( )ij ij j j ij ijy x u u x eβ β= + + + + . (C.7.16)

 
Across neighborhoods, the mean health score for non-poor is β 0, and  β 0+ β 1 is 
the mean health score for the poor, and the mean poverty-differential is β 1.  The 
poverty differential is no longer constant across neighborhoods, but varies by the 
amount u0j around the mean, β 1.  Such models are also referred to as random-
slopes or random coefficient models.  These models have a more complex vari-
ance-covariance structure than before 
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00 eijevar σN  (C.7.18)

 
With this formulation, it is no longer straightforward to think in terms of a sum-
mary intraclass correlation statistic ρ  as the level-2 variation is now a function of 
an individual predictor variable, 1ijx . In our exemplification when 1ijx  is a dummy 
variable, we will have two variances estimated at level-2, one for non-poor which 
is 2

0uσ and one for poor which is 

 
2 2 2
0 1 1 1 12 .u uou ij u ijx xσ σ σ+ +  (C.7.19)
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That is, level-2 variation will be a ‘quadratic’ function of the individual predictor 
variable when ijx  is a continuous predictor.  Thus the notion of ‘random intercepts 
and slopes’, while intuitive, is not entirely appropriate.  Rather, what these models 
are really doing  is modeling  variance as some function (constant, quadratic or 
linear) of a predictor variable (Subramanian et al. 2003). 

Building on the above perspective of modeling the variance-covariance func-
tion (as opposed to ‘random intercepts and slopes’), we can extend the concept to 
modeling variance function at level-1.  It is extremely common to assume that the 
variance is homoskedastic in the random part at level-1 [ 2

0eσ ; Eq. (C.7.16))], and 
indeed researchers seldom report whether this assumption was tested or not.  One 
strategy would be to model the different variances for poor and non-poor of the 
following form: 

 

0 1 1 0 1 1 1 1 2 2( )ij ij j j ij ij ij ij ijy x u u x e x e xβ β= + + + + +  (C.7.20)

 
where 1ijx = 0 for non-poor, one for poor, and the new variable 2ijx = 1 for non-
poor, zero for poor, with 2

1 1( )ij evar e σ=  giving the variance for poor, and 
2

2 2( )ij evar e σ=  giving the variance for non-poor, and 1 2( , ) 0ij ijcov e e = .  There are 
other parsimonious ways to model level-1 variation in the presence of a number of 
predictor variables (Goldstein 2003; Subramanian et al. 2003).  With this specifi-
cation, we do not have an interpretation of the random level-1 coefficients as ‘ran-
dom slopes’ as we did at level-2.  The level-1 parameters, 2

1eσ  and 2
2eσ , describe 

the complexity of level-1 variation, which is no longer homoskedastic (Goldstein 
2003).  Anticipating and modeling heteroskedasticity or heterogeneity at the indi-
vidual level may be important in multilevel analysis as there may be cross-level 
confounding –  what may appear to be neighborhood heterogeneity (level-2) to be 
explained by some ecological variable could be due to a failure to take account of 
the between individual (within-neighborhood) heterogeneity (level-1). 

Modeling the fixed-effect of a neighborhood predictor. An attractive feature of 
multilevel models – one that is perhaps most commonly used in social science re-
search – is their utility in modeling neighborhood and individual characteristics, 
and any interaction between them, simultaneously.  We will consider the underly-
ing level-2 model related to Eq. (C.7.20), which is exactly the same as specified in 
Eqs. (C.7.14) to (C.7.15), but now including a level-2 predictor 1 jw , the depriva-
tion index for neighborhood j 
 

0 0 1 1 0j j jw uβ β α= + +  (C.7.21)

 

1 1 2 1 1j j jw uβ β α= + + . (C.7.22)
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Note that the separate specification of micro and macro models correctly recog-
nizes that the contextual variables ( 1 jw ) are predictors of between-neighborhood 
differences.  The extension of Eq. (C.7.20) will now be 
 

0 1 1 1 1 2 1 1 0 1 1 1 1 2 2( ).ij ij j j ij j j ij ij ij ij ijy x w w x u u x e x e xβ β α α= + + + + + + +  (C.7.23) 

 
The combined formulation in Eq. (C.7.23) highlights an important feature, the 
presence of an interaction between a level-2 and level-1 predictor ( 1 1j ijw x ), repre-
sented by the fixed parameter 2α .  Now, 1α  estimates the marginal change in 
health score for a unit change in the neighborhood deprivation index for the non-
poor, and 2α  estimates the extent to which the marginal change in health score for 
unit change in the neighborhood deprivation index is different for the poor.  This 
multilevel statistical formulation allows cross-level effect modification or interac-
tion between individual and neighborhood characteristics to be robustly specified 
and estimated. 

In summary, multilevel models are concerned with modeling both the average 
and the variation around the average, at different levels.  To accomplish this they 
consist of two sets of parameters: those summarizing the average relationships(s), 
and those summarizing the variation around the average at both the level of indi-
viduals and neighborhoods.  Models presented in the preceding section can be eas-
ily adapted to other structures with nesting of level-1 units within level-2 units.  
Additionally, these models can be extended to three or more levels.  While the 
preceding discussion considered a single normally distributed response variable 
for illustration, multilevel models are capable of handling a wide range of re-
sponses.  These include: binary outcomes, proportions (for example, logit, log-log, 
and probit models); multiple categories (for example, ordered and unordered mul-
tinomial models); and counts (for example, Poisson and negative binomial distri-
bution models).  In essence, these models work by assuming a specific, non-
Gaussian distribution for the random part at level-1, while maintaining the normal-
ity assumptions for random parts at higher levels. Consequently, the discussion 
presented in this entry focusing at the neighborhood level would continue to hold 
regardless of the nature of the response variable, with some exceptions.  For in-
stance, determining intra-class correlation or partitioning variances across individ-
ual and neighborhood levels in complex non-linear multilevel logistic models is 
not straightforward (see for details, Browne et al. 2005; Goldstein et al. 2002). 

C.7.7  Exploiting the flexibility of multilevel models to 
incorporating ‘realistic’ complexity  

Current implementations of multilevel models have generally failed to exploit the 
full capabilities of the analytical framework (Subramanian 2004a; Leyland 2005; 
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Moon et al. 2005).  Much, if not all, of the current research linking neighborhoods 
and health is cross-sectional, and assumes a hierarchical structure of individuals 
nested within neighborhoods.  This simplistic scenario ignores, for instance, the 
possibility that an individual might move several times and as such reflect 
neighborhood effects drawn from several contexts, or that other competing con-
texts (for example, schools, workplaces, hospital settings) may simultaneously 
contribute to contextual effects.  

Figure C.7.2 provides a visual illustration of one complex, but realistic multi-
level structure for neighborhoods and health research, where time measurements 
(level-1) are nested within individuals (level-2) who are in turn nested within 
neighborhoods (level-3). Importantly, individuals are assigned different weights 
for the time spent in each neighborhood.  For example, individual 25 moved from 
neighborhood one to neighborhood 25 during the time period t1-t2, spending 20 
percent of her time in neighborhood one and 80 percent in her new neighborhood. 
This multiple membership design would allow control of changing context as well 
as changing composition. Such designs could be extended to incorporate member-
ships to additional contexts, such as workplaces, or schools.  It can also be ex-
tended to enable consideration of weighted effects of proximate contexts 
(Langford et al. 1998). So, for example, the geographic distribution of disease can 
be seen not only as a matter of composition and the immediate context in which an 
outcome occurs, but also a consequence of the impact of nearby contexts with 
nearer areas being more influential than more distant ones. This is also called spa-
tial autocorrelation and forms an important area of spatial statistical research 
(Lawson 2001). While such analyses require high-quality longitudinal and con-
text-referenced data, models that incorporate such ‘realistic complexity’ (Best et 
al. 1996) are likely to improve our understanding of true neighborhood effects.  
While the foregoing discussion provides a sound rationale to adopt a multilevel 
analytic approach for modeling ecologic effects, it obviously does not overcome 
the limitations intrinsic to any observational study design, single-level or multi-
level. 

 
Fig. C.7.2. Multilevel structure of repeated measurements of individuals over time across 
neighborhoods with individuals having multiple membership to different neighborhoods 
across the time span. Source: Subramanian (2004b) 
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C.7.8   Concluding remarks 

The multilevel statistical approach – an approach that explicitly models the corre-
lated nature of the data arising either due to sampling design or because popula-
tions are clustered – has a number of substantive and technical advantages. 

From a substantive perspective, it circumvents the problems associated with 
ecological fallacy (the invalid transfer of results observed at the ecological level to 
the individual level), individualistic fallacy (which occurs by failing to take into 
account the ecology or context within which individual relationships happen), and 
atomistic fallacy (that arises when associations between individual variables are 
used to make inferences on the association between the analogous variables at the 
group/ecological level).  The issue common to the above fallacies is the failure to 
recognize the existence of unique relationships being observable at multiple levels 
and each being important in its own right.  Specifically, one can think of an indi-
vidual relationship (for example, individuals who are poor are more likely to have 
poor health), an ecological/contextual relationship (for example, places with a 
high proportion of poor individuals are more likely to have higher rates of poor 
health), and an individual-contextual relationship (for example, the greatest likeli-
hood of being in poor health is found for poor individuals in places with a high 
proportion of poor people). Multilevel models explicitly recognize the level-
contingent nature of relationships. 

From a technical perspective, the multilevel approach enables researchers to 
obtain statistically efficient estimates of fixed-effects regression coefficients. Spe-
cifically, using the clustering information, multilevel models provide correct stan-
dard errors, and thereby robust confidence intervals and significance tests.  These 
generally will be more conservative than the traditional ones that are obtained 
simply by ignoring the presence of clustering. More broadly, multilevel models al-
low a more appropriate and realistic specification of complex variance structures 
at each level.  Multilevel models are also precision weighted and capitalize on the 
advantages that accrue as a result of ‘pooling’ information from all the neighbor-
hoods to make inferences about specific neighborhoods. 

While the advances in statistical research and computing has shown the poten-
tial of multilevel methods for health and social behavioral research there are issues 
to be considered while developing and interpreting multilevel applications.  First, 
it is important to clearly motivate and conceptualize the choice of higher levels in 
a multilevel analysis.  Second, establishing the relative importance of context and 
composition is probably more apparent than real and necessary caution must be 
exercised while conceptualizing and interpreting the compositional and contextual 
sources of variation.  Third, it is important that the sample of neighborhoods be-
long to well-defined population of neighborhoods such that the sample shares ex-
changeable properties that are essential for robust inferences. Fourth, it is impor-
tant to ensure adequate sample size at all levels of analysis. In general, if the 
research focus is essentially on neighborhoods then clearly the analysis requires 
more neighborhoods (as compared to more individuals within a neighborhood).  
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Lastly, the ability of multilevel models to make causal inferences is limited and 
innovative strategies including randomized neighborhood-level research designs 
(via trials or natural experiments) in combination with multilevel analytical strat-
egy may be required to convincingly demonstrate causal effects of social contexts 
such as neighborhoods. 
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D.1  ARTMAP Neural Network Multisensor 
Fusion Model for Multiscale Land Cover 
Characterization 

Sucharita Gopal, Curtis E. Woodcock and Weiguo Liu 

D.1.1  Background: Multiscale characterization  
of land cover 

Land cover characterization is essential  for terrestrial ecosystem and climate 
modeling, monitoring and prediction. Satellite remote sensing represents the only 
feasible way to monitor and model many important global change processes by 
providing repetitive global scale coverage. As a result, typically land cover classi-
fication is based on the use of low spatial resolution data such as AVHRR and 
MODIS (Loveland et al. 2000; Friedl et al. 2002.). But of the global and regional 
scale, land cover consists of heterogeneous mixtures of different land cover types 
with exceptions of vast expanses of desert, grassland or forest. Normally, such 
land cover characterization at regional and global scales are often validated and 
complemented using fine resolution imagery such as Landsat TM. This line of re-
search has led to multiscale land cover characterization using multisensor fusion 
of remote sensing data.  

Two factors underlie why multisensor fusion of data is becoming increasingly 
important in land surface characterization. First, there are substantial improve-
ments in land cover characterization using more information from multisensor 
data sets obtained at various spatial resolutions (from local to regional) as well as 
at various spectral and angular resolutions. Second, there will be an exponential 
growth in the availability of data. Under NASA's Earth Science Enterprise (ESE) 
(formerly called Mission to Planet Earth) initiative, there is a series of satellites 
and other aircraft-based instruments that provide data relating to Earth. However, 
the issue of how best to integrate data from different sensors (different spatial 
resolutions) in order to combine their information and formulate classification and 
monitoring strategies is not well understood from either a conceptual or a meth-
odological perspective.  
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The conventional notion of image processing occurring at the scale of pixels is no 
longer relevant, as there is no single defining image geometry for all sensors. Thus 
new data models for pixel representation at multiple scales are needed.   

Mishandling scale can bias inferences made about the proportions of cover 
types and the spatial patterns at various scales that have consequences for global 
and terrestrial models. Both the thematic and proportional accuracy of land cover 
data are affected by the spatial resolution of the sensor, the interaction between 
sensor resolution and the spatial characteristics of the phenomenon being mapped, 
and spatial organization of the classes in the landscape, specifically the interclass 
adjacencies in the landscape and level of spatial association of classes. There is a 
scale dependent area bias as there is a general tendency for dominant classes to in-
creasingly dominate the landscape at coarser scales. Conversely, smaller classes 
will diminish in size at coarser scales (Moody and Woodcock 1994).  

D.1.2  Approaches for multiscale land cover 
characterization 

Several approaches have been used to extract the fraction cover at sub-pixel level 
with remotely sensed data. One approach extracts the sub-pixel information during 
the image classification procedure using various models including linear mixture 
models (Adams et al. 1982; Roberts et al. 1993), linear mixture models with mul-
tiple end members (Robert et al. 1998; Dennison and Roberts 2003), neural net-
works (Liu et al. 2004; Carpenter et al. 1999; Foody 1998; Atkinson et al. 1997; 
Foody et al. 1997), fuzzy classifiers (Foody 1996), regression trees (DeFries et al. 
1999; Huang and Townshend 2003), Gaussian mixture discriminant analysis (Ju et 
al.. 2003), maximum likelihood classifiers (Foody et al. 1992; Schowengerdt 
1996; Eastman and Laney 2002), decision trees (McIver 2001) and support vector 
machines (Brown et al. 1999). Prior research has shown that linear mixture models 
generate acceptable results.  Carpenter et al. (1999) presented a non-linear algo-
rithm for mixture estimation based on an ARTMAP neural network for identifying 
life form components of the vegetation mixture. Fuzzy ARTMAP architecture 
achieves a synthesis of fuzzy logic and adaptive resonance theory (ART). Landsat 
TM imagery was used to estimate the sub-pixel information for life-form compo-
nents. ARTMAP-based mixture model was able to capture non-linear effects and 
thus performed better than the conventional linear mixture models. Atkinson et al. 
(1997) applied Multilayer Perceptron (MLP) based mixture model to decompose 
AVHRR imagery. The ‘unmixture’ information from the model was better com-
pared to that generated through a linear mixture model and a fuzzy c-means classi-
fier.  

A second approach is to use post-classification calibration procedure to cor-
rect biased area estimation (Mayaux and Lambin 1995; Moody and Woodcock 
1996; Moody 1998).  This method can calibrate the estimation from classification 
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result derived from coarse resolution image with the spatial arrangement of land 
covers at fine resolution. 

In the following, we describe two approaches that are used in this research for 
multiscale characterization of land cover. The first is based on linear mixture 
models that have been traditionally used in remote sensing for characterizing mix-
tures. The second approach is the ARTMAP neural network approach to mixture 
modeling in remote sensing. 

Linear mixture model. Linear mixture models have been widely used in re-
mote sensing for a variety of problems including, estimating crop area (Quarmby 
et al. 1992), green vegetation, non-photosynthetic vegetation and soil discrimi-
nance (Roberts et al. 1993) and measuring land cover change in the Amazon (Ad-
ams et al. 1995). The linear mixture model is defined in terms of a set of image 
end-members, with mixture compositions calculated by linear interpolation within 
the convex set defined by the end-members.  This model is based on an assump-
tion that the reflectance of the pixel is the summation of the component reflec-
tance value weighted by the respective proportion within the pixel 
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where R  is the reflectance value of one pixel, jr  is the reflectance value or ‘end-
member’ of land cover type j, Fj is the proportion of the pixel covered by type j, 
and e is an error term. One of critical issues for successful application of linear 
mixture model is the selection of ‘end-member’ or pure pixels. The ‘end-member’ 
can be selected from the field or laboratory measurement (Adams et al. 1995), or 
based on the result of principle component analysis (Bateson and Curtiss 1996). 
Recently, researchers have defined methods to select multiple end members that 
are linear combinations of end members that are allowed to vary in number and 
type on a per-pixel basis leading to a substantial improvement in accuracy (Denni-
son and Roberts 2003; Roberts et al. 1998). In this chapter, we are using the con-
ventional linear mixture model to benchmark the performance of the ARTMAP 
neural network while acknowledging that the non-linear mixture models and mul-
tiple end member approaches may provide improved results. 

ARTMAP neural network. ART stands for Adaptive Resonance Theory and 
was introduced by Stephen Grossberg in 1976. The main feature of ART systems 
is a pattern matching process that compares the current input with a selected 
learned category representation. ART is capable of developing stable clusters in 
response to arbitrary sequences of input patterns by self-organization. ARTMAP 
extends the ART design to include both supervised and unsupervised learning. 
Fuzzy ARTMAP (Carpenter et al. 1992) incorporates fuzzy logic (Zadeh 1965) in 
its ART modules and has fuzzy set theoretic operations instead of binary set theo-
retic operations.  
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The basic architecture of fuzzy ARTMAP consists of a pair of fuzzy ART mod-
ules, ARTa and ARTb, connected by an associative learning network called a Map 
Field. The other component of this architecture is a controller that uses a minimum 
learning rule to conjointly minimize predictive error and maximise code compres-
sion or predictive generalization (Carpenter et al. 1992). The ‘hidden units’ in 
ARTa and ARTb represent learned recognition categories.  

In the training phase, ARTa and ARTb modules of the system are presented 
with a stream of input pa  and desired output pairs pb  respectively.  The two 
modules classify the pa  and pb  vectors into categories and the map field makes 
the association between ARTa and ARTb categories. A mismatch between the ac-
tual pb  and predicted pb  causes a memory search in ARTa. A mechanism called 
match tracking then raises the ARTa vigilance aρ by the minimum amount neces-
sary to trigger a memory search.  This can lead to a selection of a new ARTa cate-
gory that is a better predictor of .pb  Between learning trials, the vigilance relaxes 
back to its baseline value aρ . Match tracking therefore sacrifices only the mini-
mum amount of generalization needed to correct a predictive error.  Fast learning 
and match tracking enable fuzzy ARTMAP to learn to predict novel events while 
maximizing code compression and preserving code stability. 

For the multisensor fusion framework, the ARTMAP neural network model is 
used to build an association between spectral value and class proportion in pixels 
(pattern) in any image during the learning process.  The trained ARTMAP net-
work can be used to predict class proportion for the test pixels whose spectral val-
ues are known but class proportions are unknown. In this study, the spectral values 
of the coarser resolution (MODIS) pixels form the input vector for ARTa and the 
land cover class proportions associated with the relative MODIS pixel form the 
input vector for ARTb. During training, ARTMAP is presented with a stream of 
ARTa and associated ARTb pairs of inputs. During testing, a stream of ARTa in-
puts is presented and the ARTMAP neural network model predicts the associated 
class proportions through ARTb.  

D.1.3  Research methodology and data  

The objective of the chapter is to describe a multisensor fusion framework for land 
cover characterization based on ARTMAP neural networks that can help to esti-
mate the proportions of land cover types presented within each coarse resolution 
pixel. Such an approach will support a wide range of applications within NASA's 
Earth Science Enterprise including global climate modeling, estimation of photo-
synthesis, and biophysical parameter estimation (Sellers et al. 1986; Tian et al. 
2000; Knyazikhin et al. 1998).  

Research methodology. In this research, images of the same region using two 
different sensors have to be co-registered. The methodology of multisensor fusion 
framework with an ARTMAP neural network consists of five steps. 
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• First, the Landsat 7 ETM+ image was classified into defined land cover classes 
with ART-VIP (ART for Visualization and Image Processing) (Liu et al. 2001).  

• Second, the classified Landsat 7 ETM+ image was registered with the coarser 
(MODIS) image using GCPs (ground control points) and image-to-image regis-
tration with Erdas Imagine software. 

• Third, the classification map was associated with the MODIS image to estimate 
the fraction of land cover classes for each pixel at MODIS scale. 

• Fourth, some training sites were randomly selected from the MODIS image in 
order to build a training vector with spectral value and the associated class pro-
portion of the training pixel. A series of such training vectors were used to train 
the ARTMAP multisensor model.  

• Fifth, the trained network was used to predict class proportions at MODIS scale 
in regions where Landsat TM imagery is not available.  
 

To evaluate the performance of the ARTMAP neural network multisensor mixture 
model, results from the model were compared with that from the conventional lin-
ear mixture model.  The research context is as follows. Multispectral measure-
ments from a low spatial resolution (one K) satellite (MODIS) comprise of a mix-
ture of spectral values from different land cover classes (such as 50 percent water, 
25 percent vegetation and 25 percent barren) within one pixel. The sub-pixel in-
formation was obtained from a high spatial resolution satellite such as Landsat TM 
(30m). In this contribution, the multisensor fusion framework was applied to ex-
tract the proportion of forest cover for a region of North Central Turkey. We com-
pared the results obtained from the neural network approach with that from a con-
ventional linear mixture model. 

Data. The area selected for this study is a portion of north central Turkey. 
Data consists of a Landsat 7 ETM+ image (path 168 and row 032) for August 19, 
1999 and a MODIS/Terra 16 day NBAR global one km image (20 horizontal and 
04 vertical (20-4)) for August 27, 2000 and October 31, 2000. The area of MODIS 
image is 139x146 cells each having a resolution of one km and the corresponding 
area of the Landsat 7 ETM+ image is 4905x5147 cells each having a resolution of 
30m.  

The Landsat 7 ETM+ image was classified into the following five land cover 
classes – barren, water, deciduous, conifer, and grass. These classes were aggre-
gated into four MODIS classes – conifer and deciduous were aggregated into a 
class called forest, barren, grass and water. For the purpose of training and test-
ing, a total of 1,884 MODIS pixels were randomly selected from the image. One 
half of the pixels were used for training while the remaining pixels were used for 
testing.  

For MODIS imagery with one km resolution, most pixels are mixed. Selecting 
end-member spectra for linear mixture models is problematic. Based on the land 
cover classification map of Landsat 7 ETM+ image, we selected the spectra of the 
MODIS pixels deemed to be pure for each class and then calculated the mean 
spectra value. For the data set of this chapter, it is difficult to find a good spectra 
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example for forest class; hence pure spectra examples were selected separately for 
deciduous and conifer class. The linear mixture model first predicted the propor-
tion of deciduous and conifer class respectively for each pixel. Then the summa-
tion of the proportion of the two classes was estimated as the fractional cover for 
class forest. 

A general practice in many prior studies for the estimation of land cover has 
been to use simulated coarser scale image by degrading a Landsat TM image (Kal-
luri et al. 1997). For comparison purposes, we have also used the degraded simu-
lated data generated with an algorithm for simulating MODIS image from Landsat 
TM imagery (Barket et al. 1992).   

D.1.4   Results and analysis 

First, this section compares the performance of the ARTMAP approach to the tra-
ditional linear mixture model. Second, the performance using a real MODIS im-
age is compared with that with the simulated MODIS data obtained from aggre-
gating a TM image in order to examine the potential sources of error in our model 
(including registration problems). We expect the aggregated data set to result in 
better performance compared with the real MODIS data. Third, performance using 
a single date MODIS image is compared with two dates MODIS image to analyze 
improvements in classification accuracy with multitemporal images. Three meas-
ures of performance are used – an analysis of error bound, root mean square 
(RMS) errors and analysis of classified land cover maps of the region. 

Performance of ARTMAP versus linear mixture model. We compared the per-
formance of the ARTMAP neural network with the linear mixture model. Fig. 
D.1.1 shows the accuracy in terms of the proportion of error plotted against the 
percent of total predictions for unseen testing data set. It can be seen that the 
ARTMAP neural network resulted in a better performance using the real as well 
as the simulated MODIS data. The best predicted class is water while grass is the 
worst predicted class. For each class, the ARTMAP model predicted above 80 
percent of pixels within the 20 percent error bound.  The linear mixture model did 
worse for both the simulated and the real MODIS data. The best predicted class is 
water while grass is the worst predicted class. The linear mixture model predicted 
less than 70 percent of the pixels of each class (other than water) within the 20 
percent error bound.  

Table D.1.1 shows RMS error using the ARTMAP and the linear mixture 
models for the real and the simulated MODIS testing data sets. First, RMS error 
results are less for ARTMAP indicating its better performance. Second, RMS er-
ror is less for the simulated data set for both the ARTMAP and the linear mixture 
models.  
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Fig. D.1.1. A comparison of error bound limits of ARTMAP and linear mixture models 

 

Fig. D.1.2. Predictive and actual forest fraction cover 
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Table D.1.1. RMS error 

Models Data Barren Water Grass Forest 

MODIS 0.34 0.15 0.19 0.26 Linear Mixture  
Simulated 0.33 0.17 0.18 0.14 
MODIS 0.14 0.05 0.16 0.14 

ARTMAP  
Simulated 0.09 0.04 0.10 0.08 

 
 
Figure D.1.2 shows the proportion of land cover classes estimated for the whole 
image using the two methods for the real MODIS and the simulated MODIS data 
sets. Performance was compared with ground truth data represented by the aggre-
gated land cover map drawn using the Landsat TM data shown in Fig. D.1.2(e). A 
visual inspection indicates that maps based on the ARTMAP model estimate simi-
lar forest fraction cover to the ground truth map shown in Fig. D.1.2(e). In con-
trast, the linear mixture models predicted different forest fraction cover. These 
figures also show that the ARTMAP model has predicted class proportions in the 
correct areas of the image. 

The next stage in analysis involves an estimation of the fraction of forest 
cover. For this purpose, the forest cover shown in Fig. D.1.2(e) was classified into 
five groups: sparse forest cover (0-20 percent), some forest cover (20-40 percent), 
moderate forest cover (40-60 percent), dense forest cover (60-80 percent) and very 
dense forest cover (80-100 percent).  Most pixels of the image (almost 56 percent) 
have sparse forest cover. In other words, other land cover classes dominate the 
image. Moderate to dense forest covers about 40 percent of the region, mostly in 
the north.  

 

Fig. D.1.3. Predicted forest cover using ARTMAP and linear mixture models 
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Figure D.1.3 shows the percent forest cover predicted using the two data sets. The 
ARTMAP model predicts some, moderate and dense forest cover classes reasona-
bly well. It underpredicts the very dense forest class and overpredicts the sparse 
forest class. Using the simulated data, the ARTMAP model overpredicts the dense 
forest class and underpredicts medium forest cover class. The performance of the 
ARTMAP model for other forest classes is good. The linear mixture model, in 
contrast, consistently overpredicts the some, medium and dense forest cover and 
underpredicts the sparse and very dense forest cover class. Its poor performance in 
predicting forest class is reflected in the overall RMS error.  

The analysis of forest cover has potential applications in areas where informa-
tion is needed on the spatial pattern and area of land cover. This is especially im-
portant in areas where input maps of sufficient spatial detail are unavailable. The 
methodology presented in this contribution can utilize widely available coarse spa-
tial resolution imagery to produce a land cover map at the required fine spatial 
resolution. The framework can also help in the estimation of forest cover from 
coarse resolution imagery that is useful for forest management and monitoring 
change.  
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Fig. D.1.4. Category visualization in the ARTMAP model 
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The ARTMAP model generates 453 categories in ARTb module to represent the 
class proportion information of the training samples. Figure D.1.4(a) shows the 
distribution of 25 out of all categories, Fig. D.1.4(b) the second category in ARTb 
with the following class proportions – barren (70 percent), water (0 percent), 
grass (30 percent) and forest (0 percent).  At the same time, ARTa produces 1,308 
categories to store the spectral information of the training samples. Fig. D.1.4(c) 
shows the spectral categories in ARTa associated with the class proportion cate-
gory in ARTb given in Fig. D.1.4(b).  The three plots in Fig. D.1.4 illustrate that 
the learning process of the ARTMAP model is able to capture many different 
combinations of class proportions. Thus, the ARTMAP model builds an associa-
tion between the spectral categories and class proportion categories. These plots il-
lustrate the uniqueness of ARTMAP related to its ability to create categories in re-
sponse different combinations of class proportions. Traditional linear mixture 
models, on the other hand, lack these capabilities. 

Performance comparison of MODIS data versus simulated data. Performance 
results of the real MODIS data and the simulated MODIS data are shown in Fig. 
D.1.3. The prediction accuracy of the simulated data is much better for both the 
ARTMAP model and the linear mixture model. Table D.1.1 shows that the RMS 
error for the ARTMAP model is superior for the simulated data set since it had the 
least RMS error. The reasons for such performance differences stems from many 
sources. Registering a TM image to a MODIS image needs a geometric registra-
tion algorithm that may introduce some errors.  The simulated data avoids regis-
tration error since it simply aggregates spectral values from TM images.  Registra-
tion error may be an important factor for such multisensor fusion models. 
Note that both the simulated and the real MODIS data may have pixels that have 
similar spectral signatures but characterized by different class proportions. For ex-
ample, a pixel characterized by 50 percent water and 50 percent barren may look 
similar to a pixel characterized by 65 percent water and 35 percent barren.  This is 
a potential source of error in our models. 

Multitemporal and multisensor image fusion. The prior section described the 
analysis relating to the performance of the two models using single time period 
images. In this section, we apply the single date and two dates image respectively 
to the ARTMAP multisensor fusion model for land cover class fractional estima-
tion in order to analyze if there are differences in performance. The composites of 
two temporal MODIS images were gathered in August 2000, and October of 2000. 
The second date image was registered to the first date MODIS image. This ensures 
that the second date image is co-registered with the Landsat 7 ETM+ image to ex-
tract sub-pixel information with the ARTMAP neural network approach. 

Performance is compared using the first date, the second date and the two 
dates image. This analysis shows no significant difference between using single 
date MODIS image and using two dates MODIS image for sub-pixel information 
extraction in terms of accuracy of testing data set.  For the whole image (see Fig. 
D.1.5), the predictions of forest cover class are very similar for the three types of 
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temporal data.  In general, there is an over prediction for some, and very dense. 
But there is an under prediction for other forest cover types in all three date types.  

 

Fig. D.1.5. Predictive and actual forest cover class using multi-temporal images 

 
Figure D.1.4 shows maps of percent forest cover using the scheme presented in   
Fig. D.1.1. There is no significant difference for the three predictions compared 
with the ground truth forest cover shown in Fig. D.1.4(d). Comparison of RMS er-
ror also provides similar results to support the general finding that there is no sig-
nificant difference using single date or two date images. All the three prediction 
results for testing data are similar as shown in Table D.1.2.  

Table D.1.2. RMS error of the testing data 

 Barren Water Grass Forest 
First date image 0.133 0.049 0.180 0.170 
Second date image 0.140 0.051 0.199 0.192 
Two dates image 0.124 0.040 0.178 0.176 

However, a different picture emerges on examining two dates MODIS  image for 
the whole image as shown in Table D.1.3. Compared with the results using one 
date image, there is two percent improvement for forest and grass class and one 
percent improvement for barren class.  Thus, the introduction of the second date 
(October of 2000) image is useful in discriminating forest from grass and simi-
larly barren from grass. 
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Table D.1.3. RMS error of the whole image 

 Barren Water Grass Forest 
First date image 0.145 0.031 0.219 0.216 
Second date image 0.140 0.031 0.213 0.213 
Two dates image 0.134 0.033 0.197 0.197 

D.1.5   Concluding remarks 

Results from this study highlight the importance of multisensor modeling in esti-
mating land cover proportions. This is especially critical in large regions where 
only coarse scale sensor data is available and there is a need to estimate the land 
cover proportions. This chapter presents a framework for multisensor fusion using 
an ARTMAP neural network to extract sub-pixel information from coarser resolu-
tion imagery for a region of North Central Turkey. Results in terms of analysis of 
errors and land cover maps demonstrate the utility of the ARTMAP neural net-
work in this context.  

The contribution shows that the ARTMAP models are better at estimating 
land cover class proportions compared with the traditional linear mixture models. 
They have the potential to predict accurately land cover patterns at the sub-pixel 
scale. Results in terms of RMS error of both the simulated MODIS data and the 
real MODIS data using the ARTMAP model are better compared with the linear 
mixture models. The advantages of the ARTMAP model in this context may be 
due to its ability to model non-linear relationships and it isn’t dependent on the 
availability of ‘end-member’. However, it does require enough high quality train-
ing samples containing sub-pixel information in order to accurately predict sub-
pixel fractions. The linear mixture models do not require such many training data 
as the ARTMAP model, but do require an accurate identification of pure ‘end-
members’. In many contexts, it is difficult to identify pure ‘end-member’ pixels in 
the area of interest; in addition, what is pure in a given situation maybe not be so 
in other regions.  The performance of the linear mixture model can be improved if 
there is a better algorithm for selecting pure ‘end-member’. In addition, non-linear 
mixture models and multiple end members may lead to significant improvements 
in accuracy.  

A major requirement in multisensor framework is the accurate registration of 
fine and coarse resolution images. The ARTMAP model shows poor performance 
using the real MODIS data compared with the simulated MODIS data obtained 
from aggregating Landsat data to MODIS scale may stem from different reasons. 
The error caused by mis-registration may be one important factor. Geometric reg-
istration can be done by a number of methods including matching of image fea-
tures, correlation in the spatial or frequency domain and phase estimation in the 
frequency domain. Eastman and Moigne (2001) present a comparison of various 
gradient descent techniques for image registration and discussed the advantages 
and disadvantages of such methods. In future research, better image registration 
method can be used to improve the performance of the ARTMAP model. The lin-
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ear mixture models offer an advantage in this regard since they do not need image 
registration. However, this advantage is offset by a need to correctly select end-
member spectra for each desired class.  

This chapter also demonstrates the performance differences using single date 
and two dates image. While there is no significant difference using one data or 
two date imagery for the testing data, there is a difference for the whole image. 
Performance of the ARTMAP model is improved for certain classes using two 
dates image. Multidate imagery may be useful when land cover changes season-
ally and this change will be useful to distinguish one class from another although 
the spectral value of two classes are similar in one season.  
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D.2  Model Selection in Markov Random Fields 
for High Spatial Resolution Hyperspectral 
Data 

Francesco Lagona 

D.2.1  Introduction 

The statistical analysis of high spatial resolution hyperspectral (HSRH) data is a 
challenging issue in remote sensing because conventional methods may be 
unmanageable, in terms of computational time, due to the large amount of data 
used to characterize hyperspectral images. This chapter focuses on efficient meth-
ods of model selection in the analysis of HSRH data. 

Hyperspectral remote sensing (see, for example, Landgrebe 2000) provides a 
stack of images of a scene acquired in contiguous bands over spectral range. This 
is often referred to as an ‘image cube’, because data can be arranged in a three-
dimensional array, where two spatial dimensions give the coordinates of each 
pixel and the third dimension is wavelength. The general aim in analysis is to as-
sess the local distribution of properties of interest in the image. Major steps in 
analysis include image restoration, segmentation and classification. Stochastic res-
toration (Geman and Geman 1984) is concerned with the estimation of the ‘true’ 
image from data that are known to have been contaminated by noise. Segmenta-
tion (Zhang et al. 1990) is concerned with the partitioning of the map into homo-
geneous regions (e.g., land cover types, morphological units, rivers, buildings, 
blocks). Classification (Hoffbeck and Landgrebe 1996) is concerned with assign-
ing classes (e.g., water, bare soil, grass) to pixels (and pixels to classes). 

These operations are usually addressed by automatic or semi-automatic algo-

 
 

 

rithms that have the remotely sensed image as an input and provide, as an output, 
information from  the image which can  be used to  refine maps or other spatial re- 
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presentations. Depending on the format of the output and the level of confidence 
in the results (accuracy), image-derived information can be directly used to refine 
maps with a Geographic Information System (GIS).  

In practice, algorithms for image analysis may either use training regions of 
the image where ground data are available (supervised methodology), or they en-
ter no field information and use an unsupervised classification method followed 
by use of ground survey data to validate the results. Since image data take the 
form of a multidimensional spatial series, recorded at the vertices (pixels) of a 
regular square lattice, standard multivariate techniques (e.g., principal component 
analysis, canonical correlations, multivariate linear and generalized linear models) 
could be implemented for handling these data and addressing restoration, segmen-
tation and classification. Unfortunately, though, spatial data are not independent, 
since data at neighboring pixels show similar values, and hence these procedures 
need to be corrected to account for the natural spatial dependence between obser-
vations (Amrhein and Griffith 1997; Wackernagel 1998). Additionally, HSRH 
datasets are very large, since they are generally composed of about 100–200 spec-
tral bands, whereas the number of bands in a multispectral image is typically about 
5–10, and the high spatial resolution means that values are recorded at a resolution 
of lm x 1m to 5m x 5m. As a result, the computational complexity of both statisti-
cal models and estimation procedures need to be taken into account at each stage 
of the analysis. 

A powerful approach to modeling spatial lattice data is provided by Markov 
Random Field (MRF) models, introduced by Besag (1974). MRFs have been used 
in the past for modeling and classifying textures (Cross and Jain 1983). Lately 
there have been approaches to model whole images with MRFs (Geman and Ge-
man 1984; Kelly et al. 1988; Derin and Howard 1987; Rignot and Chellappa 1992; 
Smits and Dellepiane 1997). Successful applications include the stochastic restora-
tion of multispectral images (Bennett and Khotanzad 1998), the spatial distribu-
tion of sedimentary facies in petroleum reservoirs (Tjelmeland 1996), the classifi-
cation of coastal environments using synthetic aperture radar (SAR) data 
(Crawford and Ricard 1998), and unsupervised classification for multi-sensor data 
(Lee and Crawford 1999). 

A major reason for the increasing role played by these models in remote sens-
ing analysis is that they make it easy to incorporate spatial constraints such as re-
gion continuity of the spatial scene, by modeling the global (complex) dependence 
structure between observations through the local (simple) conditional distribution 
of each observation given the rest of the dataset. What makes the functional form 
of the conditional distributions simple is the Markov property: a neighborhood is 
defined around each pixel and the conditional probability that each pixel belongs 
to a given color (class) depends only on the data at the neighboring pixels. As a 
result, while MRF distributions were first used in the statistical mechanics litera-
ture for modeling molecular interactions in ferromagnetic materials, they allow the 
development of computationally traceable and robust processing algorithms for 
what are basically ‘noncausal’ image models. 
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Unfortunately, the neighborhood system needs to be elicited a priori, but what of-
ten happens is that several different neighborhood structures seem viable. Since 
the definition of an erroneous adjacency can lead to poor quality estimates (Grif-
fith and Lagona 1998) a preliminary screening between candidate models is 
needed. 

As it is well known, model selection is related to a number of trade-offs. Ce-
teris paribus, the efficiency of any estimation procedure increases with the num-
ber of the degrees of freedom but a too simple model may give a poor fit of the 
data. On the other hand, a fully parameterized model is often capable of fitting the 
data perfectly, but the stability of the estimates is not guaranteed and the chance of 
a poor data summary is an issue to be addressed. Generally, a parsimonious model 
is preferable if data are fitted reasonably. Hence, the choice between a model with 
p parameters and one with q < p parameters is usually driven by both the defini-
tion of a measure of their discrepancy (in terms of goodness of fit) and the evalua-
tion of how discrepant they are, because while a small discrepancy might be toler-
able a large discrepancy is not. 

Limiting the discussion to the works that are directly applicable to HSRH data, 
a number of discrepancies for model selection are currently available in the statis-
tical literature, including identification criteria (Kashyap and Chellappa 1983; Ji 
and Seymour 1998; Jona Lasinio and Lagona 2003), the Coding Ratio (Besag 
1974; Guyon and Hardoum 1992), the Likelihood Ratio (Guyon 1995) and the 
Pseudo-Likelihood Ratio (PLR, Lagona 2001) tests. The asymptotic distribution 
of both the Coding Ratio (CR) and the Likelihood Ratio (LR) tests is known to be 
the usual Chi Square with p – q degrees of freedom, under standard regularity 
conditions. However, the Coding Ratio is computed by evaluating the conditional 
distributions of the field at those observation points belonging to the so-called 
‘coding set’, i.e. a subset D of the observation domain that is constructed in a way 
that, given any pair of data observed at two pixels belonging to D, these are condi-
tionally independent of each other, given the rest of the image. Hence, CRs can be 
easily constructed only when the random field is Markovian with respect to a sim-
ple neighborhood system and, even in this case, many coding tests can be defined 
as ways of coding the observation domain. These tests are correlated and it is not 
generally possible to construct global statistics that summarizes them (Guyon 
1995).  

On the other hand, the PLR test converges in distribution to a weighted sum of 
(p – q) Chi Square with one degree of freedom, but in the case of massive datasets 
(e.g., HSRH data) significant computational difficulties arise for estimating these 
weights (Lagona 2001). These limitations would lead to consideration of the LR 
as the method of choice. However, there are a number of computational difficul-
ties with LR, too. Since LR is based on the direct maximization of the likelihood 
function, a major issue is the presence of a distribution normalizing constant that 
is intractable (both analytically and numerically) as the sample size increases.  To 
obtain an approximate value of the LR statistic, an MCMC (Markov Chain Monte 
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Carlo) approximant to the likelihood function (MCMC-MLE, Geyer and Thomp-
son 1992) needs to be constructed.  

However, in an HSRH setting, MCMC-MLE can be heavily time consuming 
for at least two reasons. First, simulation of a multivariate random field through 
MCMC is not easy in many cases, because parameter estimates are often nega-
tively correlated in real case studies, which leads to an extremely slow mixing 
(Knorr-Held and Besag 1997). Second, MCMC-MLE requires an initial guess of 
the parameter value, and its efficiency depends on how close this is to the ‘true’ 
value, hence in case of little information about the data generating process, the 
procedure needs to be repeated for a grid of candidate values to avoid convergence 
to local maxima.  

Finally, ratio tests allow comparison of two different models at a time, this be-
ing time consuming when selection is from a battery of alternate models. On the 
other hand, identification criteria permit selection among several models. These 
criteria are based on the optimization of either a likelihood or a quasi-likelihood 
function, coupled with a penalization rate to account for model parsimony. The 
two most popular penalization rates are referred to as the AIC (Akaike Informa-
tion Criterion, Akaike 1974) and the BIC (Bayesian Identification Criterion, 
Schwartz 1978). The basic statistical property required of these procedures is con-
sistency, i.e. the probability that the criterion chooses the wrong model must tend 
to 0 as the sample size (e.g., the number of pixels of an image) increases, which is 
a nice property in the case of analysis of massive datasets (e.g., HSRH data). 

While AIC is not consistent for spatially dependent data (Kashyap and Chel-
lappa 1983), the BIC-penalized likelihood criterion (BIC-ML, Ji and Seymour 
1998) is consistent under very general conditions. Unfortunately, though, the latter 
procedure relies upon the direct maximization of the likelihood function and the 
aforementioned issues apply. Only in the case of Gaussian MRFs (e.g., spatial 
autoregressive models), is the normalizing constant analytically tractable and the 
penalized likelihood can be evaluated when the image dimension is reasonable 
(Kashyap and Chellappa 1983): numerical approximations are however necessary 
for handling high resolution datasets (Griffith 2002). Such computational difficul-
ties can be avoided by using a BIC-penalized pseudo-likelihood (BIC-PL) func-
tion. In small samples the performance of the resulting criterion is worse than that 
of its likelihood counterpart, since the Maximum Pseudo-Likelihood Estimator 
(MPLE) can overestimate the parameters, but the penalized PL criterion is consis-
tent under very general conditions and can be applied easily even in the frame-
work of multivariate, space-time data series (Jona Lasinio and Lagona 2003). 

In this chapter, implementation of MRFs in image restoration, segmentation 
and classification is briefly reviewed, highlighting the crucial role played by the 
adjacency definition. Then the practical implementation of the BIC-PL criterion 
for selecting adjacency is illustrated. Finally, the performance of the BIC-PL pro-
cedure and the BIC-ML criterion are compared for detecting spatial structures in a 
high spatial resolution hyperspectral image for the Lamar area in Yellowstone Na-
tional Park. 
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D.2.2  Restoration, segmentation and classification of 
HSRH images 

A HSRH dataset can be viewed as an N-by-B rectangular matrix Y, whose generic 
element, say yib, is the wavelength of the bth spectral band, recorded at pixel i. 
Each row yi of this matrix is referred to as the hyperspectral signature of the ith 
pixel. The bth column of Y, say yb, is the high resolution image of band b. For ex-
ample, the image considered in the application (Section D.2.4) is characterized by 
B = 128 bands recorded in a lattice of N=350×450 pixels. Classically, the general 
aim of image analysis is to couple prior field information with data, in order to 
update each observation yib, by estimating NB parameters θib, and hence obtaining 
a new N-by-B matrix Θ. Each column θb of Θ is usually referred to as a posteriori 
image. 

In image restoration, for example, each image yb is corrupted by noise and θb 
represents the ‘true image’: here, the prior information is that the components of 
each θb are spatially dependent. In image segmentation, instead, both the wave-
length given by each yb and the true image given by θb are discretized in, say, K 
colors (or grey levels) and the prior information is that the K-colored regions asso-
ciated to each possible realization of the true image θb are geometrically regular, 
i.e. they exhibit a specific shape. Finally, the prior information in image classifica-
tion is that there is a number, say H, of classes to which pixels belong; accord-
ingly, each θib assumes one of the H values relating to the different classes and 
image updating reduces to assigning each pixel to its own class. 

In this framework, MRFs may easily model prior information. To build a MRF 
model, we first need the definition of a neighborhood structure between pixels. 
More precisely, an N-by-N connectivity matrix C needs to be constructed in a way 
that its (i, j)-th entry is cij = 1 if pixels i and j are neighbors and zero otherwise. As 
a result, C is an N-by-N, symmetric, binary matrix where diagonal entries are 
equal to zero. Secondly, we assume that each vector θ b is sampled from the distri-
bution 

 

P(θb)= p(0) exp Φ (θb, C) (D.2.1) 

 
where p (0) = p (0, …, 0) is a normalizing constant and 
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Notice that the functions ϕi and ϕij are log-odds ratios of spatial configurations 
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Thus, for example, if ϕij= 0, identically, then Eq. (D.2.1) reduces to the distribu-
tion of a random vector with independent (not necessarily identically distributed) 
components. If, additionally, ϕi(θib) = ϕb(θ) for each pixel i, then θb is a simple 
random sample drawn from one random variable Y, with distribution p(θ) = p(0) 
exp [ϕb(θ)]. In other words, a unit increase in the function ϕij corresponds to an in-
crease of the log odds of observing the value θib to a different value at pixel i, 
given the values at the neighboring pixels. Moreover, the Markov property of 
model in Eq. (D.2.1) follows from the computation of the conditional distribution 
of each value θib, given the rest of the prior image, that takes the following form: 
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In Eq. (D.2.4), the pixel wise conditional distributions do not depend on the values 
attained by the wavelengths observed outside the neighborhood of each pixel, as 
defined by matrix C, i.e. model in Eq. (D.2.1) is Markov with respect to the 
neighborhood structure specified by C. 

D.2.3  Adjacency selection in Markov random fields 

Depending on the issue to be addressed, parametric MRF models can be elicited 
by defining a suitable neighborhood structure and assuming that the functions ϕ  
in Eq. (D.2.2) are known up to a vector of parameters, say β = (β1, ..., βΚ), to be es-
timated. As mentioned in Section D.2.1, maximum likelihood (ML) is not the 
standard method of parameter estimation, because the normalizing constant p(0) in 
Eq. (D.2.1) becomes unmanageable, both numerically and analytically, as the 
number of pixels in an image increases. As a result, a number of viable alternative 
estimation methods have been suggested, using numerically tractable objective 
functions. In summary, these procedures yield estimators that are less efficient 



D.2     Model selection in Markov random fields for HSRH data      551 

with respect to ML, although they are consistent and asymptotically normal (see 
Guyon 1995, for a discussion on these issues).  

In this chapter, we concentrate on the Besag’s (1974) Maximum Pseudo-
likelihood Estimator (MPLE), which is defined as  
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where Ub(β) is the pseudo-likelihood (PL) function. Under the specification 
(D.2.2), the PL function is concave and, as a result, the MPLE is unique. This es-
timator is moreover consistent and (asymptotically) normally distributed, under 
very general conditions, although less efficient than its ML counterpart (Guyon 
1995).  

The computational efficiency of MPLE relies on the form taken by the PL 
function. Under the specification given by Eq. (D.2.2), optimization of the pseudo-
likelihood function reduces to fitting a generalized linear model and can be hence 
implemented by using conventional software packages, such as R, STATA, SAS 
or GAUSS. To illustrate, we concentrate on the two examples that will be consid-
ered in the application of Section D.2.4. 

If the a priori image is binary (i.e., θib is equal to either zero or one), and iso-
tropic conditional distributions are assumed [(i.e. ϕi(θib) = β1 θib and ϕij(θib,θjb) = 
β2 θibθjb)], then Eq. (D.2.1) reduces to the popular spatial auto-logistic model (Be-
sag 1974), as follows: 
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Under (D.2.6), the conditional distributions at each pixel are given by 
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motivating the name of the model. For each hyperspectral band b, the PL function 
of an isotropic auto-logistic model can be written as 
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Function (D.2.8) therefore resembles the log-likelihood function of a logistic re-
gression with intercept β1 and regression coefficient β2. Therefore, the MPLEs of 
β1 and β2 can be computed by fitting a logistic regression, using θb as a vector of N 
‘response’ observations and the number of neighbors of each pixel, xi = Σjcij, as a 
covariate. 

Alternatively, if the a priori image is polychromous (i.e., each θib takes values 
in a set of K+1 grey levels), a spatial auto-binomial model (Besag 1974) can be 
specified as follows 
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Notice that Eq. (D.2.10) can be derived from Eq. (D.2.2) by choosing  
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and ϕij(θib,θjb) = β2 θibθjb. In the case of an auto-binomial model, therefore, the 
pixel wise conditional distributions are given by 
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Accordingly, the MPLEs of β1 and β2 can be computed by fitting a binomial re-
gression (with logit link), where β1 and β2 are respectively the intercept and the 
regression coefficient, by using θb as a vector of N ‘response’ observations and the 
number of neighbors of each pixel, xi = Σjcij, as a covariate. 

Specification of MRFs is based on the definition of a connectivity matrix C 
that characterizes the neighborhood structure among image pixels. When different 
adjacency relationships seem viable, a natural way to handle the specification 
problem is through the definition of a sequence of non-overlapping neighborhood 
structures.  In other  words,  we suggest to  specify a sequence  C1, C2, …, CH  of 
N-by-N  connectivity  matrices,  defined in a way that the corresponding entries 
hcij kcij = 0, as h≠k, hcij being the (i,j)-th entry of the hth matrix of the sequence. 
Under this setting, we obtain a sequence of candidate models 
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To choose among the H candidate models, we suggest selecting the model that 
minimizes the BIC-penalized Pseudo-likelihood (BIC-PL) function 
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where Ub is the PL function evaluated for the ith candidate and | βh | is the number 
of unknown parameters to be estimated in model h. This criterion chooses the 
most likely model (with respect to the pseudo-likelihood function), taking into ac-
count the parsimony principle, i.e. the model the smallest number of independent 
parameters is preferred, among equally likely models. The statistical properties of 
the BIC-PL criterion have been studied by Jona Lasinio and Lagona (2003) who 
proved its consistency under very general conditions and showed its good per-
formance even in small images (10m×10m), through an extensive simulation 
study. 

D.2.4  A study of adjacency selection from hyperspectral 
data 

To illustrate the BIC-PL selection criterion on a real dataset, we used data col-
lected as part of a Yellowstone Ecosystem Studies project funded through the 
NASA EOCAP (Earth Observing Commercial Applications Program) program of 
Stennis Space Flight Center, Mississippi. The Yellowstone HSRH data were col-
lected in August of 1999 using procedures described in detail by Marcus et al. 
(2000). The area of Lamar River within Yellowstone National Park was captured 
during clear weather conditions and 128 hyperspectral bands were recorded on 
350×450 pixels, with a 5m spatial resolution. Additional details on these data can 
be found in Jacquez et al. (2002). 

 

Fig. D.2.1. Grey levels image of the first principal scores of the Lamar imagery 
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Figure D.2.1 shows the image of the first principal scores that capture the 71 per-
cent of the total variance in the data, as obtained after running an ordinary princi-
pal component analysis on the whole HSRH data. For illustration purposes, only 
bands 7, 19, 24, 55, 62, 65, 66, 79, 109 have been considered for analysis. These 
bands have been selected as representatives of a number of clusters appearing after 
mapping bands on the correlations space spanned by the first two principal com-
ponents of the full Lamar imagery (see Fig. D.2.2). 

 

Fig. D.2.2. Lamar imagery scatter plot of the 128 bands mapped onto  
the correlation space spanned by the first two principal components  
and representative bands selected for subsequent analysis 

High resolution images have been fitted by a number of spatial statistical models. 
Specifically, each band-specific image has been first transformed to a binary im-
age by using a median cut-off, and fitted by a class of spatial auto-logistic models. 
In practical applications, a different cut-off might be chosen, based on field infor-
mation, in a way that wavelength is transformed to one if it belongs to a range of 
interest. Second, the range of each band has been divided in order to construct four 
grey levels, according to the three cut-offs specified by the three quartiles of the 
image distribution, and fitted by a class of spatial auto-binomial models. In case of 
prior field information, each grey level would correspond to a wavelength class of 
interest. 

Both the auto-logistic and the auto-binomial models were chosen by combin-
ing different adjacency definitions (Table D.2.1) and parametric constraints (Table 
D.2.2). In particular, Table D.2.1 shows the four connectivity matrices that have 
been  considered  for  analysis:  C1 and C2  respectively relate  to a  Bishop-  and a 
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Table D.2.1. Models used in the application 

Connectivity matrix cij=1 if pixel j has coordinates Number of neighbors 
C1 (xi ± 1, yi ± 1) 4 
C2 (xi, yi ± 1) or (xi ± 1, yi) 4 
C3 (xi ± l, yi ± m), 2 ≤ l+m ≤ 4 16 
C4 (xi ± l, yi ± m), 3 ≤ l+m ≤ 6 24 

 
Rook-type first-order adjacency structure, while C3 and C4 specify a second-order 
and third-order adjacency relationship, respectively. Matrices C1 and C2 have been 
exploited to specify four different specifications (m1 to m4), according to different 
parametric constraints. Including matrix C3 allows for the specification of m5 and 
m6. Finally, specifications m7 to m9 is defined by combining all the four connec-
tivity matrices of Table D.2.1. We thus obtain nine different auto-logistic models, 
namely 
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and nine different auto-binomial models, namely 
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In Eqs. (D.2.16) and (D.2.17), hcij is the (i,j)-th entry of the hth connectivity matrix 
of Table D.2.1 (h=1,2,3,4), while parameters β1, β2, β3, β4 are constrained accord-
ing to Table D.2.2. Table D.2.2 also displays the number of independent parame-
ters (model dimension) to be estimated under each specification, i.e. the difference 
between the number of parameters involved and the number of constraints. Fig-
ures D.2.3 to D.2.5 provide a graphical representation of the specifications used 
for analysis.   

Table D.2.2. Parametric specifications used in the application 

Model name Parameter constraints Model dimension 
m1 β1 = β3 = β4 = 0 1 
m2 β2 = β3 = β4 = 0 1 
m3 β1 = β2, β3 = β4 = 0 1 
m4 β3 = β4 = 0 2 
m5 β1 = β2 = β3, β4 = 0 1 
m6 β1 = β2, β4= 0 2 
m7 β1 = β2 = β3 = β4 1 
m8 β1 = β2, β3 = β4 2 
m9 β1 = β2 3 
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In particular, Fig. D.2.3 shows the first order adjacencies upon which specifica-
tions m1-m4 are based. Models m1 and m2 assume that the conditional distribu-
tion at each pixel is driven by the four nearest neighbors with respect to two dif-
ferent directions. Models m3 and m4 use Queen’s case adjacency (also known as 
the full adjacency in the engineering literature; Rose and Devijver 1984). How-
ever, m4 is the anisotropic version of m3. 

Figure D.2.4 illustrates both the isotropic (m5) and the anisotropic (m6) ver-
sions of a second order neighborhood structure. Finally, Fig. D.2.5 shows the iso-
tropic (m7) and two anisotropic versions (m8 and m9) of third order adjacencies. 
These second-order and third-order adjacency definitions have been often consid-
ered in the statistical analysis of images (Tjelmeland and Besag 1998).  

The BIC-PL criterion has been evaluated by considering the product of 
147,238 conditional distributions at the pixels belonging to an interior domain re-
sulting after constructing a 3-pixels-wide guard, or buffer, area for the 350×450 
pixels image of each band. For comparison purposes, the BIC-ML criterion men-
tioned in the Introduction was also been evaluated, by simulating a MCMC via 
block Metropolis steps to improve the mixing rate of the chain, as suggested by 
Smith and Roberts (1993). A Pentium 800 PC worked for several hours to get 
BIC-ML results for one band, while BIC-PL results were obtained in a few min-
utes. 

Figures D.2.6 and D.2.7 display the results after fitting the auto-logistic and 
auto-binomial models to the data. For binary images (Fig. D.2.6), m4 is always the 
model chosen. This result is in keeping with the remote sensing literature that sug-
gests first order, full adjacency as the neighborhood structure of choice for binary 
images. On the other hand, m4 is preferred to m3 because of the high level of spa-
tial heterogeneity (e.g., anisotropy) in the full image. Most of the time, the BIC-PL 
criterion agreed with its pseudo-likelihood counterpart, since the dataset under 
study is massive and both the procedures are consistent, i.e. they converge to the 
same model as the sample size increases. This result supports the idea that the 
pseudo-likelihood approach is to be pursued for massive datasets, since the 
evaluation of the likelihood function through MCMC was extremely time consum-
ing when implemented for the Lamar imagery, still giving outcomes similar to that 
given by BIC-PL. Finally, even when the BIC-PL criterion disagreed with the 
BIC-ML, model m3 was chosen (an exception was band 7), i.e. the isotropic ver-
sion of the model produced using the pseudo-likelihood approach. This is in line 
with the known (Geyer and Thompson 1992) behavior of MPLE that tends to 
overestimate spatial interaction parameters, hence preferring models that are less 
parsimonious than those chosen by the direct likelihood approach.  

For grey levels images, the two criteria were still concordant in most cases al-
though m4 was not always the model chosen. This is as expected, since data dis-
aggregation (from two to four categories) increases the spatial heterogeneity of the 
Lamar scene and the specific spatial distribution of each band emerges. In other 
words, bands do not exhibit the same spatial structure and, while this phenomenon 
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Fig. D.2.3. First-order lattice adjacencies 

 
Fig. D.2.4. Second-order lattice adjacencies 

 
Fig. D.2.5. Third-order lattice adjacencies 
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was hidden by the binary transformation, the ‘best’ adjacency definition for the 
full image simply does not exist and selection from a battery of adjacencies needs 
to be addressed, especially for multicolored images. Of note, furthermore, is that 
even when the two criteria disagree, the models chosen are still mostly the iso-
tropic/anisotropic versions of each other. In summary, both the BIC-PL and the 
BIC-ML criteria seem to agree in selecting the neighborhood structure but yield 
different results in the choice of model dimension. 

 
 

 
Fig. D.2.6. BIC-PL values of nine spatial auto-logistic models, fitted on a number of hyper-
spectral bands. Triangles indicate the minimum value attained by the BIC-PL criterion, 
while black bars indicate the model chosen by the BIC-ML criterion 
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Fig. D.2.7. BIC-PL values of nine spatial auto-binomial models, fitted on further hyper-
spectral bands. Triangles indicate the minimum value attained by the BIC-PL criterion, 
while black bars indicate the model chosen by the BIC-ML criterion 

D.2.5  Concluding remarks 

Typical objectives of statistical procedures for HSRH data are to restore the image 
by removing stochastic noise, classify and segment the image into areas exhibiting 
similar spectral properties, determine the composition of a mixture of material 
within a pixel, and locate signatures of unresolved objects with spatial magnitude 
less than a single pixel. In the last two decades, an increasing number of research 
papers have appeared in the Proceedings of the International Society for Optical 
Engineering, the IEEE Transactions on Pattern Analysis and Machine Intelligence, 
on Geoscience and Remote Sensing, showing that techniques for optimizing the 
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mismatch between model prediction and sensor data have passed the point of sci-
entific curiosity and are now under active evaluation by researchers in many 
fields. Within this framework, general purpose statistical techniques can be suc-
cessfully adapted to be useful tools in the multi-disciplinary analysis of HSHR 
data, by taking into account the spatial redundancy of the data and the computa-
tional difficulties relating to the impressive amount of data to be analyzed. 

MRF models play a central role in formalizing aprioristic information about 
spatial data dependence. Implementation of MRF is not automatic, since the 
choice of a neighborhood structure is not obvious in most cases. In this contribu-
tion a BIC-PL criterion is suggested for choosing both the model dimension (i.e., 
the number of independent parameters to be estimated) and spatial neighbors (i.e., 
adjacency). 

The discussion presented here highlights how the implementation of BIC-PL 
leads to selection procedures that match good statistical properties and computa-
tional feasibility, while still giving results that are similar to those resulting from 
pursuing approaches based on the direct maximization of the likelihood function. 
In particular, the criterion is consistent, i.e., the probability of choosing the wrong 
model decreases to zero as the sample size increases, which is a nice property for 
massive dataset (e.g., the Lamar imagery). Furthermore, since evaluation of BIC-
PL reduces to maximize objective functions that resemble likelihood functions of 
Generalized Linear Models (GLM, McCullough and Nelder 1983), advantage may 
be taken of the large number of efficient numerical GLM algorithms available in 
the literature. As a result, BIC-PL computation for HSRH datasets is dramatically 
faster than MCMC approximations of the likelihood function. On the other side, 
BIC-PL tends to overestimate the dimension of the model, while it seems to pro-
duce good results in selecting the neighborhood structure of the image. 
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D.3    Geographic Object-based Image Change 
Analysis 

Douglas Stow 

D.3.1  Introduction  

Remote sensing is an effective tool for mapping earth surface objects and phe-
nomena, and provides the sole means for comprehensive monitoring of land sur-
face changes. Normally captured in an image form by sensors mounted on aircraft 
or satellites, remotely sensed data are spatially contiguous and temporally periodic 
measurements of the reflected or emitted electromagnetic radiation (EMR) leaving 
the earth’s surface. In order to create or update maps of earth surface objects or 
phenomena, these image data must be visually interpreted by humans and/or proc-
essed by computer routines. For the past 30 years, a major emphasis has been 
placed on computer-assisted approaches to mapping and monitoring earth surface 
objects and phenomena, to achieve greater efficiency and objectivity, which are 
inherent to such approaches.  

Object-based approaches to semi-automated mapping and monitoring have 
been a primary focus area of remote sensing and image processing research in the 
past ten years conducted in disciplines such as computer science, electrical engi-
neering, and geography, and under interdisciplinary headings such as computer vi-
sion, image understanding, biomedical imaging, and forensic science. Relative to 
single- or per-pixel approaches, object-based image analysis (OBIA) attempts to 
exploit spatial relationships of groups of image picture elements (called pixels) in 
order to delineate and identify objects within an imaged scene (Benz et al. 2004). 
Object-based approaches are most applicable to the high or H-resolution remote 
sensing situation, where objects or features of interest are larger than the ground 
resolution element associated with a pixel (Strahler et al. 1986). For geographic 
object-based image analysis (GEOBIA) (Hay and Castilla 2008), such objects may 
be related to natural features of land and water surfaces (for example, trees and 
ocean fronts) or human-made features (for example, buildings or boats). While ob-
ject-based image processing techniques have been developed to support environ-
mental remote sensing for over 30 years (Ketting and Landgrebe 1976), the 
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greater research emphasis on such techniques in the past several years can be ex-
plained by several factors. One of the primary factors is the greater availability of 
digital remote sensing image data having high spatial resolution; such data are 
generally not amenable to achieving highly accurate mapping and monitoring re-
sults when generated with per-pixel image classification routines. Another factor 
is the greater availability and affordability of high performance computers and ob-
ject-based image processing software.  

The past five years have seen an initiation of research activity on GEOBIA 
techniques for detecting, identifying, and/or delineating earth surface changes. 
Such techniques may be referred to as geographic object-based image change 
analysis or GEOBICA, and are the focus of this chapter. GEOBICA is based on 
quantitative spatial analytical methods and generates data sets that can support 
spatial analysis of geographic areas.  

The emphasis of this chapter is on the use of multi-temporal remotely sensed 
image data to map earth surface changes from an object-based perspective. The 
chapter starts with a description of the reasons and purposes for conducting 
GEOBICA, which is followed by treatment of image acquisition and pre-
processing requirements, and the types of image data that are input to GEOBICA 
routines. Next, brief overviews of image segmentation and segment-based classi-
fication are provided. These are followed by discussions on approaches to multi-
temporal image analysis and GEOBICA strategies. Post-processing techniques are 
also covered. Finally, fundamentals of accuracy assessment for object-based and 
land cover change mapping are presented. 

D.3.2  Purpose of GEOBICA  

There are four general reasons or purposes for conducting GEOBICA: (i) land 
cover and land use change analysis, (ii) detection, inventory, and/or mapping of 
specific earth surface object types, (iii) map updating, and (iv) tracking move-
ments and measuring displacements of earth surface features. These reasons or 
purposes are not necessarily independent and can be complimentary, as is ex-
panded upon below.  

Land cover and land use change analysis (LCLUCA) is one of the primary 
and more successful applications of remote sensing (Gutman et al. 2004; Hayes 
and Sader 2001; Rogan and Chen 2004). Most remote sensing approaches to land 
cover and land use analysis have been pixel-based, meaning that changes are de-
tected or identified by comparing corresponding pixels on multi-temporal image 
data sets, one pixel at a time (Coppin et al. 2004; Mas 1999; Radke et al. 2005). 
Using an object-based approach, LCLUCA pertains to the delineation of pixel 
groupings which correspond to land surface units that have experienced a change 
in land cover (LC) or land use (LU), as well as the identification of the land cover 
or land use transition states associated with these units. Implicit to the identifica-
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tion of transitions is specification of both the initial (‘from’) and latter (‘to’) states 
of land cover or land use. Land cover pertains to the general surface material 
composition (for example, vegetation or rock type), while land use pertains to the 
predominant human activities or utilization of the land. Knowledge of the loca-
tions, distributions, and magnitudes of LCLUC is critical to effective urban plan-
ning and environmental management, and enables scientific analyses of processes 
such as urbanization, agricultural expansion, and vegetation response to climate 
change.  

Many earth surface features, particularly those created by humans, tend to be 
manifested on a remotely sensed image as objects having characteristic geometric 
shapes and/or patterns (Li and Narayanan 2003). Examples of such human gener-
ated features are roads and street networks, trails and trail networks, and buildings, 
while some natural features that have characteristic image signatures are geologi-
cal faults and fractures, lakes, ocean frontal boundaries, and clouds and atmos-
pheric storm systems. For example, newly built features are evident by the appear-
ance of the characteristic rectilinear-shaped objects on a multi-temporal difference 
image, or on the second date of imagery of a bi-temporal image pair, when the 
building is not evident on the first date. Inventory and mapping of new human-
created surface features is primarily conducted to support government and busi-
ness applications such as transportation planning, real estate development, or law 
enforcement, but can also be useful for humanitarian efforts such as disaster as-
sessment or studies of informal settlements. For naturally occurring features, the 
interest is often in tracking and measuring their movements.  

GEOBICA also provides a means for updating maps and GIS layers. Maps 
and GIS layers of dynamic landscapes become out of date because of LCLUC 
(Walter 1998). Even maps of relatively static themes such as soils types or topog-
raphy should be updated following human modification of the land surface (for 
example, covering soil with urban settlements or modifying the terrain during 
suburban grading). The same GEOBICA procedures that are used to study 
LCLUC, or monitor new human-created features can be utilized for map updating 
purposes. The primary difference is that the map or layer requiring revision is 
normally incorporated into the image analysis procedures. 

The fourth reason for implementing GEOBICA is to measure rates of move-
ments or displacements. The strategy of such analyses is to delineate, identify and 
track over time, a moving earth surface feature. Examples of earth surface features 
that may be tracked semi-automatically using time sequential remote imaging and 
GEOBICA are clouds and weather systems, ocean surface features such as fronts 
and eddies, wildfire flame fronts, earthquake faults and other geologic lineaments 
associated with seismic activity, vegetation boundaries such as ecotones or tree-
limits, expanding urban limits, large animals, automobiles, and marine vessels. 
The first step is to detect and delineate objects of interest on each image of a regis-
tered multi-temporal image sequence through GEOBIA. Next, specific objects or 
particular components of these objects (for example, leading edge or center of 
gravity) are located and matched on sequential images. The relative displacement 
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distance between corresponding objects or components is divided by the time in-
terval between sequential imaging to infer rates of movements based on a Lagran-
gian drift perspective (Stow 1987). 

D.3.3  Imagery and pre-processing requirements  

The success of GEOBICA depends on the type and quality of multi-temporal im-
age data that are input. Most GEOBICA are performed using a bi-temporal image 
data set, consisting of two images captured one or more years apart. Ideally, these 
images are captured by the same remote sensing system, at nearly the same date 
and time of day, and with a similar viewing geometry. Consistency in imaging 
systems and environmental conditions tends to reduce artifacts and false detec-
tions, and minimize pre-processing requirements.  

The spatial, spectral, and radiometric characteristics (resolution in particular) 
of multi-temporal image data sets will have a major influence on the success of 
GEOBICA. Image spatial resolution will determine the size of change objects that 
can be delineated. Spectral resolution and coverage pertains to the width and loca-
tions of EMR wavebands, which will influence the magnitude and types of surface 
changes that can be detected or identified. The highest spatial resolution images 
tend to be captured in a single broad panchromatic waveband, or in a few broad 
visible and near infrared wavebands (that is, multi-spectral imagery). Fine or hy-
perspectral imagery, and sensing in the shortwave and thermal infrared, and mi-
crowave part of the spectrum can provide additional levels of discrimination for 
quantifying or identifying surface changes, but normally at a reduced spatial reso-
lution. High radiometric resolution imagery enables subtle changes in surface re-
flectance or emittance to be detected, and normally over a broader reflec-
tance/emittance range. 

Several types of image processing steps are normally required prior to con-
ducting GEOBICA and therefore, are referred to as pre-processing steps. These 
can be grouped into geometric and radiometric pre-processing categories. Geomet-
ric pre-processing pertains to correction or restoration of the geo-spatial fidelity of 
multi-temporal images, and radiometric pre-processing pertains to refining the im-
age brightness or color characteristics.  Generally speaking, relative consistency in 
the geometric and radiometric characteristics of two or more multi-temporal im-
ages is more critical to effective GEOBICA than absolute geometric or radiomet-
ric precision.  

The three most common geometric pre-processing requirements are rectifica-
tion, geographic referencing, and registration  (Jensen 2005). Image rectification is 
the process of correcting geometric errors that result from platform, sensor, and 
earth distortion factors. Geographic referencing or georeferencing is the process of 
orienting a digital image grid according to an earth coordinate system and projec-
tion, such that each pixel has an associated coordinate location. Image registration 
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is achieved by relative co-alignment of pixels between two or more images, such 
that corresponding pixels are associated with the same patch of ground surface. 
These pre-processing steps are not necessarily independent, as rectification, geo-
referencing, and/or registration can be achieved in an integrated fashion. Image 
registration is the key requirement for GEOBICA, as misalignment between im-
ages can yield false change detections and even omissions of actual changes (Dai 
and Khorram 1998; Stow, 1999; Stow and Chen 2002). This may be less of an is-
sue for GEOBICA than pixel-based change analyses, as mis-registration artifacts 
may have characteristic object properties, which can be identified in the classifica-
tion phase. Georeferencing is required if maps or GIS layers are incorporated in 
the change analysis, or if map updating is the purpose for performing GEOBICA. 

Radiometric pre-processing for GEOBICA normally involves the adjustment 
of pixel brightness values such that they are relatively consistent within an image 
frame or strip, between adjacent frames or strips captured at nearly the same time, 
and between spatially corresponding frames or strips captured at different times. 
Such relative correction is commonly called radiometric normalization (Du et al. 
2002; Schott et al 1988; Yang and Lo 2000). While normalization can be achieved 
through more absolute radiometric corrections such as radiometric calibration, at-
mospheric correction, terrain illumination correction, and anisotropic reflectance 
correction, these more absolute or mechanistic corrections have substantially 
higher science, technology and data input requirements, and are not always neces-
sary (Song et al. 2001).  

Multi-temporal image inputs to GEOBICA routines can take the form of pre-
processed panchromatic and/or multi-spectral data, and/or transformed data de-
rived from panchromatic and/or multi-spectral imagery. Texture transforms are 
commonly applied to panchromatic images as a means for extracting information 
on local spatial variability and expanding the dimensionality of these single di-
mensional images. Spectral ratios and other linear algebraic combinations of 
multi-spectral data are derived to enhance surface materials, reduce or expand di-
mensionality, and/or normalize terrain and anisotropic reflectance effects. Spectral 
transformations such as spectral vegetation indices, principal components analysis 
(PCA), and the tasseled-cap transform (Li and Yeh 1998; Jin and Sader 2005) can 
be applied to individual dates of imagery to generate useful input images for 
GEOBICA. Transformations such as PCA (Byrne et al. 1980) and image correla-
tion analysis (Im et al. 2005) can also be applied to multi-temporal data sets to 
achieve change enhancement and data reduction for subsequent GEOBICA (Im et 
al. 2008). 

D.3.4   GEOBIA principles 

GEOBICA is based on the paradigm of GEOBIA, which is that image objects are 
delineated through segmentation, and then segments are classified and sometimes 
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generalized to identify object types (Hay and Castilla 2008). For GEOBICA, these 
objects pertain to earth surface changes or new earth surface features. Prior to dis-
cussing the approaches and strategies for GEOBICA, it is useful to cover the ba-
sics of image segmentation and segment classification. 

Segmentation refers to the process of partitioning an image into multiple pixel 
groups that may represent linear or polygonal features on the ground (Shapiro and 
Stockman 2001). This may be achieved by delineating linear features (Kaiser et al. 
2004) or boundaries of polygonal features that are represented by relatively sharp 
gradients in image brightness or edges (Hirschmugl et al. 2007; Pouliot et al 
2002), or by grouping contiguous pixels that share common image brightness, 
color or texture characteristics (Ketting and Landgrebe 1976; Ryherd and Wood-
cock 1996). A myriad of segmentation algorithms have been developed and tested 
by researchers in such fields as computer vision, image understanding, pattern 
recognition, and biomedical, forensic and remote sensing image processing (Bur-
nett and Blaschke 2003; Woodcock and Harward 1992). Readers are referred to 
Haralick and Shapiro (1985) and Pal and Pal (1993), which provide summaries of 
image segmentation algorithms. Neubert et al. (2008) evaluate and compare com-
mercial and open source segmentation routines. 

The second phase of GEOBIA is the identification of the object type or class 
memberships for image-derived segments. This means that groups of pixels be-
longing to each segment are classified based on their collective image properties, 
which differs from per-pixel classification where each pixel is classified one at a 
time (Lobo 1997). Assignment of class labels to image segments can be achieved 
by using a per-pixel classification, where a majority or plurality rule is used to as-
sign the most commonly occurring class for pixels composing a segment 
(Shandley et al 1996; Wang et al. 2004). Segment classification can also be 
achieved by deriving statistical measures of the frequency distribution of pixels 
composing a segment and then using those measures in a discriminant analysis or 
membership function classifier. Measures of central tendency (mean, median, 
mode) and variability (standard deviation or range) of image brightness, color, 
texture, spectral transforms, etc. are commonly utilized for this purpose. A poten-
tially promising but relatively unexplored approach is to utilize non-parametric 
frequency distribution metrics or histogram descriptors as metrics. An advantage 
of per-object classification approaches is that measures of segment size and shape, 
sub-object (that is, nested segment) characteristics, and contextual relationships 
such as adjacency and contiguity can also be incorporated into the classifier (Bur-
nett and Blaschke 2003). 

A large number of image classification routines or classifiers exist, which are 
applicable to both per-pixel and object-based approaches. In the context of 
GEOBIA, the statistical metrics of each image segment is compared to a template 
of metrics or signatures for training segments of known class type, or for a user-
supplied discriminant or membership function for each object type or class (Ga-
manya et al. 2007). In the case of supervised classification, the class signature 
template is based on analyst-selected pixel or segment samples representing 
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classes of interest (that is, training data). For unsupervised classification, the tem-
plate represents computer-derived cluster classes formed within the statistical fea-
ture space defined by the input data. Class labels are assigned by analysts after 
pixels or segments are classified according to cluster types. Classifiers may be 
based on parametric or non-parametric statistical assumptions and on hard or 
soft/fuzzy statistical rules or membership functions. Some of the simpler, yet reli-
able classifiers are parallelepiped, minimum distance to means (also known as 
nearest neighbor since an object is classified as the category to which it is nearest 
its training data in feature space), and maximum likelihood, which is the special 
case of the Bayesian probability classifier when equal a priori probabilities are as-
signed for all classes. Machine learning classifiers such as classification trees (La-
liberte et al. 2007), artificial neural networks, self organizing maps, support vector 
machines, and genetic algorithms have shown much promise for per-pixel classifi-
cation, but have received less attention for object-based classification to date. This 
may be due to the requirement for large training sample sets, which are more 
costly and challenging to generate for segments than for individual pixels. 

D.3.5  GEOBICA approaches  

Implicit to GEOBICA is that earth surface change objects are delineated and iden-
tified using multi-temporal geo-spatial data, with at least the latter date of data be-
ing a remotely sensed image. An analyst may select one of several available ap-
proaches to exploiting geo-spatial data when conducting GEOBICA, depending on 
the purpose or application objective, and the site-specific availability of geo-
spatial data. For the bi-temporal case, these approaches can be characterized as: (i) 
map-to-image, (ii) image-to-image, and (iii) map/image-to-image (Cao et al. 
2007). In this context, a map is a digital map or GIS layer, in vector or raster form. 

For the map-to-image approach, an older map depicting the theme of interest 
is compared in a spatially explicit manner to an image captured at some time later 
than the map’s production date. One of the main reasons for taking this approach 
is map updating. LCLUCA can also be conducted by using the map-to-image ap-
proach, but tends to be conducted more effectively when images from two or more 
dates are utilized. A vector map is more likely to be used in a map-to-image ap-
proach for GEOBICA, as it represents earth surface features as objects. A raster 
map would need to be generalized to form pixel groupings and/or vectorized. 
First, the image is segmented and then segments are classified as land use and land 
cover types, or identified as some type of earth surface feature. Parameter selec-
tion to determine the size and shape of image-derived segments should be guided 
by the size and shape of objects represented on the map that is to be updated. Map 
objects can be used to select training objects for supervised classification, or to de-
termine class labels for clusters derived using unsupervised classification. How-
ever, this implies that objects used for training or labeling have been determined to 
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be stable (that is, do not correspond to change areas). Image-generated objects are 
compared to those on the map, and objects with substantially different spatial 
characteristics and/or having different class attributes are deemed to be change ob-
jects. Change objects supercede previously mapped objects in map updating. They 
also provide the primary basis for LCLUCA. Walter (2004) is one of the first pub-
lished works on GEOBICA and describes a map-to-image approach to achieve 
GIS map updating. 

The image-to-image approach is the one most commonly used for GEOBICA, 
and for LCLUCA in general. A dated image is compared to a more recently cap-
tured image to infer and map LCLUC objects, or to detect and delineate new or 
moving earth surface features. The specific strategies for object comparisons with 
the image-to-image approach are discussed in the following section. 

The map/image-to-image approach is a hybrid of the first two, where a map 
depicting the theme of interest (for example, land cover and land use) and a re-
motely sensed corresponding to the first date of the bi-temporal sequence are both 
utilized, along with a more current image. In many cases, the dated map was de-
rived from the corresponding image. This approach is ideal for map updating, as 
the older image provides additional spatial information about prior states of earth 
surface features and in a manner that is more comparable with the recently ac-
quired image.  

Another potential use of the map/image-to-image approach is to detect or 
identify LCLUC within extant map units, rather than strictly on a per-pixel or per-
object basis. This is similar to the per-field approach used for image classification 
(Aplin et al. 1999). Mapped polygons that can provide the basis for summarizing 
LCLUC are agricultural field boundaries, forest or habitat management units, ur-
ban community planning areas, integrated terrain units, and statistical reporting 
units (for example, census tracts). While these change analysis units are a type of 
geographic object, changes per map unit could be based on products derived with 
either per-pixel change detection or GEOBICA methods.  

D.3.6   GEOBICA strategies  

The crux of GEOBICA is in the various strategies for image-to-image multi-
temporal analyses, which are conducted to delineate and identify LCLUC, or 
newly formed earth surface objects. Two general strategies exist: (i) post-classifi-
cation comparison and (ii) multi-temporal image object analysis.  

Post-classification comparison is the most straightforward strategy, where an 
initial and one or more subsequently captured images of the same geographic ex-
tent are subjected to OBIA and the resultant maps are compared to delineate and 
classify change objects. Effectively, this strategy transitions from an image-to-
image to a map-to-map analysis. Each of the images of the multi-temporal data set 
should be subjected to the same segmentation and classification routines, using 
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similar processing parameters, decision rules, class schemes, and output formats. 
This is done to minimize differences in the maps that are not related to actual earth 
surface changes. The resultant maps can be in either raster object or vector format. 
The output maps are compared using GIS techniques such as polygon overlay, 
raster cross-tabulation, or Boolean logic. Change objects occur as the intersection 
(in the set theory context) of bi-temporal map objects that have different class la-
bels. The disparate class types form the transitional change sequence of the change 
objects (that is, ‘from-to’ classes). Spatial and contextual filtering can be applied 
to remove apparent change objects that are likely artifacts from mis-registration 
errors, and inconsistencies in illumination, seasonality, segmentation and classifi-
cation between image dates. 

While GEOBICA is just beginning to emerge and only a handful of articles 
are evident in the earth remote sensing literature, a slight majority of these articles 
are based on post-classification comparison strategies (Blaschke 2005; Gamanya 
et al. in press; Laliberte et al. 2004; Lamar et al. 2005; Zhou et al. 2008). A frame-
work for GEOBICA based on post-classification comparison is provided by 
Blaschke (2005). While no empirical examples with actual image data sets are 
demonstrated, Blaschke (2005) offers a strong theoretical basis for the comparison 
of multi-temporal map objects to detect and identify changes. Laliberte et al. 
(2004) analyzed desert shrub encroachment through a time sequence of detailed 
vegetation maps generated by applying segmentation and segment classification 
methods to high spatial resolution aerial and satellite image data. Precise changes 
in shrub and grass cover were quantified from the resultant map time series. 

Lamar et al. (2005) applied segmentation and object-based image classifica-
tion to a three-date sequence of digital color aerial photographs to monitor patch-
level changes in hemlock trees. A challenging component of the research was the 
reconciliation of false changes and gaps in actual patches, and the development of 
an object-based accuracy assessment approach. Gamanya et al. (2007) incorpo-
rated a bi-temporal data set of moderate spatial resolution imagery from the Land-
sat TM/ETM+ systems to map and analyze land cover changes in a large African 
city. Each image was subjected to a hierarchical segmentation routine and then 
segments were classified based on a large number of segment-based statistical 
metrics. Land cover changes were derived using objects from the first date of 
Landsat imagery as the basis. Zhou et al. (2008) also implemented a post-
classification comparison strategy to GEOBICA to map land cover changes within 
an urban setting, only using very high spatial resolution (0.5 m) color infrared 
digital camera data. They found that the GEOBICA approach achieved a signifi-
cantly higher accuracy of change identification (approximately 90 percent) rela-
tive to a pixel-based approach (approximately 80 percent), when mapping five 
general land cover change types. 

Multi-temporal image object analysis is a strategy of the image-to-image 
GEOBICA approach that directly applies image segmentation and classification to 
multi-temporal image data sets. The input data set to segmentation and classifica-
tion routines is either a multi-temporal composite and/or a multi-temporal trans-
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form image data set. A multi-temporal composite image consists of one or more 
registered panchromatic, multi-spectral waveband, texture, and/or spectral trans-
form images for two or more image dates. In the simplest case, two registered 
panchromatic images captured on different dates could be combined to form a sin-
gle two-channel multi-temporal composite image. A multi-temporal transform im-
age is generated by transforming two or more dates of imagery through operations 
such as like-channel image differencing, change vector analysis (a coordinate 
transformation of multi-spectral image differencing), multi-temporal correlation 
(Im et al. 2005), and principal components analysis (Byrne et al. 1980).  

An advantage of multi-temporal transform data sets is that they can represent 
the same spectral-radiometric, texture, or transform data types with fewer channels 
to process and store (normally half as many) as multi-temporal composite data 
sets. A disadvantage is that only the change magnitude and direction are captured 
and not the actual ‘from-to’ signatures, such that multiple surface transition se-
quences with disparate reflectance characteristics could have non-unique change 
signatures.  Note that either of the two types of multi-temporal data set could be 
input to a segmentation routine and the other type used in the classification phase, 
such as was done by Desclée et al. (2006). 

Since two or more dates of imagery are incorporated into the segmentation 
phase of multi-temporal image object analysis, image-derived segments will gen-
erally conform to change and no-change surface features, as well as artifacts that 
may result from mis-registration and differences in shadowing between dates. In 
the case of LCLUCA, surface change objects may emerge at several different spa-
tial scales, pertaining to the scales associated with modified land units and their in-
ternal characteristic surface material components. For this reason, it may be desir-
able to implement hierarchical or multi-resolution segmentation. Such a 
segmentation approach can also be beneficial when mapping new earth surface 
features that occur over a wide range of sizes (for example, buildings and ephem-
eral water bodies).  

The occurrence of both change and no-change objects also means that the 
classification or identification phase of multi-temporal image object analysis can 
be particularly challenging. The classification scheme must consist of the surface 
change classes or new object identities of interest, plus at least a no-change cate-
gory. This means that classification signatures consist of both spatial-radiometric 
and temporal components, which provide a higher-level of complexity than single-
date classification. This also means that it can be challenging to delineate training 
objects for supervised classification or label cluster classes for unsupervised clas-
sification routines (Bruzzone and Prieto 2000). While more challenging, advan-
tages of this strategy (relative to post-classification comparison) is that there is not 
a need to apply map-to-map comparison methods and resultant accuracies are not 
dependent on the combined accuracy of multiple image-derived maps. 

One of the first published research article truly employing multi-temporal ob-
ject image analysis of Desclée et al. (2006), who did so to map forest cover 
changes. Three dates of SPOT multi-spectral (20 m) data were combined in a 
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multi-temporal composite data set, which was subjected to image segmentation. 
Multi-temporal differences were computed for image segments based on several 
spectral feature types for, and a multivariate iterative trimming technique was used 
to establish forest change/no-change thresholds. This GEOBICA approach yielded 
over 90 percent forest change detection accuracy, which was substantially higher 
than a pixel-based approach. A similar approach was taken by Bontemps et al. 
(2008) for a four-year time series of SPOT VEGETATION (one km) data to map 
forest change objects in the Brazilian Amazon region. Conchedda et al. (2008) and 
Stow et al. (2008) utilized multi-temporal composite images in both segmentation 
and classification phases to map vegetation change objects. For the Conchedda et 
al. (2008) study, SPOT multi-spectral (20 m) images captured 20 years apart were 
utilized to map changes in mangrove forests with greater than 85 percent accu-
racy. Fine-scale objects associated with shrub cover changes (‘to’ or ‘from’ shrub 
cover) were delineated by Stow et al. (2008) using a multi-temporal airborne digi-
tal CIR imagery (one m), enabling an assessment of human and climate distur-
bance factors on wildlife habitat reserves.   

While not truly an example of GEOBICA in the manner in which is defined in 
this chapter, one of the first published articles that combined GEOBIA and binary 
change detection was Hall and Hay (2003). The authors tested an object-based 
change enhancement procedure for analyzing landscape changes. Bi-temporal 
SPOT panchromatic images were spatially transformed individually to generate 
multi-scale image sets (Hay et al. 2001), which were then were subjected to a wa-
tershed segmentation routine. Per-pixel image differencing was applied to seg-
mented images such that the panchromatic brightness was represented as the seg-
ment mean value. Difference thresholds were derived to map ‘change’ and ‘no 
change’ features in a managed forest landscape context.  

D.3.7  Post-processing  

Upon completion of segmentation and classification phases, post-processing steps 
may be implemented prior to generating a final product or initiating change analy-
ses. These post-processing steps may be grouped into three categories: (i) auto-
mated map generalization and editing, (ii) change reconciliation, and (iii) manual 
editing. 

A common requirement for map generalization is the merging or aggregation 
of adjacent objects that have been classified as the same category in the single-
date classification phase of post-classification comparison, or the classification 
phase of multi-temporal image object analysis. This is achieved with simple poly-
gon merging techniques used for vector GIS. Another vector GIS generalization 
and editing technique that is useful for post-processing of GEOBICA products is 
filtering and removal of objects that are smaller than a specified threshold. Such 
objects may be smaller than the size of a designated minimum mapping unit for 
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change assessment and/or may be considered to be likely artifacts or noise-related 
objects rather than true change features. A typical source of noise objects in 
GEOBICA is mis-registration, where resultant features often have sliver-like 
shapes. Such objects may be removed or ‘filtered out’ by utilizing shape (narrow 
and elongated) and size criteria. Polygon smoothing is another map generalization 
post-processing technique that may be implemented if the segmentation or post-
classification overlay processes generate objects that are deemed to be excessively 
irregular. 

Temporal reconciliation is a post-processing step where initial products from 
GEOBICA (normally associated with LCLUCA) are evaluated and potentially 
modified based on the logic or likelihood of particular temporal transitions. For bi-
temporal image analysis, certain land LCLUC transition sequences may be 
deemed illogical (for example, from urban to agriculture). By using hard rules, an 
object initially classified as ‘change’ or as a change transition (‘from-to’) se-
quence are considered not to have changed, or in map updating, the original map 
class is preserved. A more probabilistic approach is to incorporate Markov Chain 
probabilities of LCLU transitions in the classification phase, by using transition 
probabilities as a priori probabilities of a Bayesian classifier (Strahler et al 1980). 
When the post-classification comparison strategy is applied to a multi-temporal 
data set consisting of more than two dates of imagery, temporal persistence rules 
may be used to filter out apparent transitions that likely result from image process-
ing errors. A type of persistence-based filtering is panel analysis, which has been 
implemented successfully for per-pixel LCLUCA by Crews-Meyer (2002). 

D.3.8  Accuracy assessment  

The penultimate step in GEOBICA, prior to conducting spatial-temporal analyses, 
should be the assessment of accuracy of image-derived products. Unfortunately, 
this step is often avoided for two reasons; it can be very expensive and it is very 
challenging to generate reference data. In fact, assessing the accuracy of object-
based change analysis products may be one the most challenging accuracy as-
sessment tasks in remote sensing, because of both the temporal (Biging et al. 
1999; Morisette and Khorram 2000) and the object-oriented nature of the prod-
ucts. Adding to the expense and challenge is that reference data may first and 
foremost be required for training segmentation and classification routines, with 
accuracy assessment being a secondary and less essential requirement. Most of the 
items discussed in this section are pertinent to any approach to geographic image 
change analysis (that is, not just object-based approaches). 

Reference data (sometimes known erroneously as ‘ground truth’) must be an 
independent source of data or knowledge about changing states represented on the 
final GEOBICA product, which are deemed to be more reliable and of greater ac-
curacy than the product being assessed. For most GEOBICA products, this re-
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quires knowledge of both the prior and more current states of land cover, or what-
ever earth surface feature is being examined for change. Since it is impossible to 
capture reference data for a time in the past (until time machines become reality), 
some form of archived data must be utilized. This means that a long-term field 
measurement or finer spatial resolution imaging program has already been imple-
mented, or that one is fortunate to find and access suitable extant data captured for 
other purposes. As a fallback, GEOBICA products that are semi-automatically 
generated from a multi-temporal image data set may be assessed for accuracy us-
ing reference data generated from visual interpretation of the same image data set 
(Zhou et al. 2008); the assumption being that the manually-derived data are more 
accurate and reliable, even if they were not generated in as efficient or repeatable 
manner. 

The two main types of map errors are positional and attribute, where in the 
case of remote sensing products, the latter pertains primarily to the classification 
process. For OBIA products, the accuracy of boundary delineation can be influ-
enced by geometric image processing (that is, rectification and georeferencing), 
and the preciseness and reliability of image segmentation. Complicating matters 
for boundary delineation accuracy in GEOBICA is the preciseness of image regis-
tration and to some degree, the mutual reliability of classifying and overlaying two 
or more dates of imagery. Image classification or feature identification errors will 
also influence the attribute representation error of change classes assigned to each 
change object. While it has been suggested that positional and attribute errors of 
image-derived maps can be isolated and quantified separately (Pontius 2002), do-
ing so for GEOBICA products is likely intractable.  

The spatial unit of analysis for assessing the accuracy of GEOBICA products 
may be a pixel, an image-derived segment, an independently derived linear or po-
lygonal unit, or an image-derived change object. Using a sample of reference data 
pixels to assess accuracy is similar to a ‘point in polygon’ vector GIS approach 
and has been applied by Conchedda et al. (2008) and Zhou et al. (2008). This en-
ables a general assessment of product accuracy without examining specifically 
boundary delineation and classification accuracy. Similarly, using image-derived 
segments of known class attributes will only enable determination of the multi-
temporal class accuracy, since such segments will either coincide with or be 
nested within the final map objects (Stow et al. 2008). This would also hold true if 
the change objects on the final image-derived map were the spatial unit of assess-
ment.  

The only spatial unit that would enable both boundary and class representation 
accuracy to be considered is to use linear or polygonal objects (depending if im-
age-derived change objects are linear or polygonal) derived independently, to 
conduct a GIS polygon overlay analysis. For analyses of single change objects 
such as roads or trees, accuracy assessment can be performed using relative count 
comparisons between image-derived and reference data for larger reporting units 
(for example, forest stands or census blocks) (Lamar et al. 2005). Note that if a 
complete reference change map is available rather than ground reference samples, 
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or if different GEOBICA products are to be compared in a relative, spatially-
explicit manner, either a raster or polygon overlay analysis can be conducted to 
determine relative map agreement or accuracy (Bontemps et al. 2008; Desclée et 
al. 2006). 

Comparisons of GEOBICA products to reference data can yield a variety of 
different accuracy/error measures on how well change has been detected, or if spe-
cific types of changes are identified in a reliable manner. If reference data are 
sampled randomly or are in the form of a complete change map, then the error in 
the proportion of area representation (that is, inventory perspective) of change ob-
jects can be estimated. Conversely, site-specific accuracy is assessed through spa-
tially-explicit comparison of reference data samples or maps to the GEOBICA 
product (Jensen 2005).  Measures such as overall agreement, kappa index of 
agreement, producers and users accuracy, and class-specific accuracy can be de-
rived in a change detection (change/no-change classes or presence/absence of spe-
cific change features), and/or a change identification (from-to class sequences) 
context. 

D.3.9  Concluding remarks 

The ‘A’ in GEOBICA stands for analysis and the ultimate purpose for conducting 
GEOBICA is to analyze earth surface changes, even if the immediate objective 
may be to update a map or GIS layer. While the emphasis of this chapter has been 
on semi-automated, object-based digital image processing for deriving maps of 
earth surface changes, the analysis of change is ultimately conducted by humans 
examining statistics, maps, or time series visualizations. To facilitate analyses and 
provide greater rigor and objectivity, many of the spatial analysis techniques 
summarized in the other chapters of this book can by applied to image-derived 
change maps to generate quantitative measures or test statistical relationships be-
tween change features and potential causal factors. Products derived through 
GEOBICA may also be suitable for modeling and forecasting future LCLUC 
(Raza and Kainz 2001). 

While research on GEOBICA techniques has just begun to emerge in the refe-
reed remote sensing and image processing literature over the past five years, it is 
likely that some experimentation of object-based approaches to mapping earth sur-
face changes have been conducted for many years. Based on the relative prolifera-
tion of such article in the past two years and the number of commercially available 
and open source software packages that support object-based image analysis, it is 
possible that GEOBICA will become the predominant approach to map updating 
and LCLUCA. When earth surface changes are manifested as identifiable objects, 
it makes sense to use object-based approaches that exploit the spatial characteris-
tics of remotely sensed data, and not just the spectral, radiometric, and temporal 
properties. 
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E.1 The Impact of Human Capital on Regional 
Labor Productivity in Europe 
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Sardadvar and Andrea Kunnert 

E.1.1 Introduction 

Economists have long stressed the importance of human capital to the process of 
economic growth. However, recent cross-country studies have shown that 
economic growth appears to be unrelated to increases in human capital (Griliches 
2000). Benhabib and Spiegel (1994), for example, have found only a weak 
correlation between growth and increases in human capital, measured in terms of 
educational attainment. Pritchett (2001) has arrived at similar results using a 
different dataset and more extensive robustness testing. These findings are in 
contrast to a great deal of evidence indicating high returns to human capital 
investments in both developing and developed countries (Temple 1999).  

Increasing evidence suggests that regional rather than national economies are 
the decisive units at which growth takes place (Ohmae 1995; Storper 1997; 
Cheshire and Malecki 2004). Thus, we depart from previous research by shifting 
attention from countries to regions as objects of the analysis, and focus on levels 
rather than rates of growth. 

The objective of this chapter is to provide empirical evidence on the 
contribution of human capital to labor productivity differences among regions in 
Europe.  Labor productivity is measured in terms of gross value added per worker. 
There is no clear-cut definition on how human capital should be represented and 
measured. As in most previous studies, emphasis is on education rather than on 
any broader concept of human capital. In this vein, human capital is measured in 
terms of educational attainment based on data for the active population aged 15 
years and older that attained the level of tertiary education. This variable is clearly 

 
and does not account for the quality of education. 
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The presence of unobserved human capital in conjunction with the educational 
attainment variable motivates the use of a spatial Durbin model (SDM) to 
characterize the relationship between human capital and regional labor 
productivity. This motivation is independent of any economic theoretical 
justification in that it rests entirely on the plausibility of a conjunction of two 
circumstances (see LeSage and Fischer 2008). One of these is spatial dependence 
of the observed and unobserved forms of human capital. The second is that both 
variables are correlated by virtue of common (correlated) shocks to the spatial 
autoregressive processes governing these variables1.  

The remainder of this contribution is organized as follows. Section E.1.2 sets 
forth the spatial Durbin model that describes the basic relationship between 
regional human capital and labor productivity levels, and outlines the associated 
methodology for quantifying the direct and indirect impacts of human capital on 
labor productivity. Section E.1.3 applies the methodology to a sample of 198 
NUTS-2 regions, and provides a correct assessment of both direct and indirect 
effects, in terms of the approach suggested by LeSage and Pace (2009a). A 
simulation approach is used with 10,000 random draws to produce an empirical 
distribution of the model parameters that are needed for computing measures of 
dispersion for the impact estimates. Section E.1.4 offers some closing comments. 

E.1.2 Framework and methodology 

The  spatial Durbin model that describes the relationship between human capital 
and labor productivity is given by 

 

nα ρ= + + + +y X W y W Xι β γ ε  (E.1.1) 

 
with the associated data generating process 

 
1( ) ( )n nα−= − + + +y I W X W Xρ ι β γ ε  (E.1.2) 

 
and the expectation 

 
1( ) ( ) ( )n nE α−= − + +y I W X W Xρ ι β γ  (E.1.3) 

                                                           
1  See LeSage and Fischer (2008, 2009) for details on the econometric derivation of the 

relationship. 
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ε ~ N (0, σ 2
 In). (E.1.4) 

 
All variables are in log form. y represents an n-by-1 vector of observations on the 
labor productivity level at the end of the sample period, with n being the number 
of observations (regions). ι  is an n-by-1 vector of ones with the associated scalar 
parameter .α  X is an n-by-Q matrix of observations on the Q (non-constant) 
explanatory variables (here: Q = 2): labor productivity and human capital at the 
beginning of the sample  period, while β is the associated  Q-by-1  parameter 
vector. 

W is an n-by-n non-stochastic, non-negative spatial weight matrix that 
specifies the spatial dependence among observations (regions), or in other words 
expresses for each row (observation/region) those regions (columns) which belong 
to its neighborhood2 set as non-zero elements. We assume 0 1ijW≤ ≤  and 0ijW =  
if  .i j=  The matrix W is row standardized so that 1j ijW =Σ  for 1,..., .i n=  This 
facilitates the interpretation of operations with the spatial weight matrix as an 
averaging of neighboring values3. 

The n-by-1 vector Wy is the spatial lag of y that captures spatial effects 
working through the dependent variable, i.e. labor productivity at the end of the 
sample period. ρ  is the scalar parameter of the first order spatial autoregressive 
(SAR) process, and is typically referred to as the spatial autoregressive parameter 
assumed to lie in (–1, 1). This parameter reflects spatial dependence, which is 
expected to be positive in our model, indicating that regional productivity levels 
are positively related to a linear combination of neighboring regions’ productivity. 
The presence of the spatial lag variable Wy on the right hand side of the equation 
will induce a non-zero correlation with ε  that represents an n-by-1 normally dis-
tributed, constant variance disturbance term. The spatial lag for an observation 
(region) i is not only correlated with the error term at i, but also with the error 
terms at .j i≠   

WX is the n-by-Q matrix of the spatially lagged non-constant explanatory 
variables. γ contains the regression parameters associated with these variables. 
The coefficient estimates on the spatial lag of the explanatory variables capture 
two types of spatial externalities: spatial effects working through the level of labor 
productivity and spatial effects working through the level of human capital, both 
at the beginning of the sample period. 
 

                                                           
2  Note that the term neighborhood is used here in a more general sense of spatial 

relatedness, despite that we will use it later in the more restricted sense of map-based 
first-order contiguity relations. 

3  Row  normalizing is also helpful  to guarantee that  (In − ρ W) is non-singular for all ρ ∈   
(− 1, 1).  
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This spatial Durbin model occupies an interesting position in the field of spatial 
regression analysis because it nests many of the models widely used in the 
literature (see, for example, Abreu et al. 2005; Fingleton and López-Bazo 2006; 
LeSage and Fischer 2008, 2009): 

 
(a) Imposing the restriction = 0γ  leads to the spatial autoregressive (SAR) model 

that includes a spatial lag of labor productivity from neighboring regions, but 
excludes the influence of the spatially lagged explanatory variables. 

(b) The so-called common factor parameter restriction ρ= −γ β  yields the spatial 
error regression model (SEM) specification that assumes that externalities 
across regions are mostly a nuisance spatial dependence problem caused by 
the regional transmission of random shocks4. 

(c) The restriction 0ρ =  results in a least-squares spatially lagged X regression 
model (labeled SLX by LeSage and Pace 2009a, b) that assumes independence 
between regional productivity levels, but includes characteristics from 
neighboring regions in the form of spatially lagged explanatory variables. 

(d) Finally, imposing the restrictions 0 andρ = = 0γ  yields the standard least-
squares regression model (LSM). 

 
Testing whether the restrictions hold or not implies not much effort. Of particular 
importance are common factor tests that discriminate between the unrestricted 
SDM and the SEM specifications, or in other words between substantive and 
residual dependence in the analysis. The likelihood ratio test proposed by Burridge 
(1981) is the most popular test in this context (see LeSage and Pace 2009a; Mur 
and Angulo 2006 for alternative tests and a comparison based on Monte Carlo 
evidence). 

Model estimation 

Estimation of the SDM via least-squares can lead to inconsistent estimates of the 
regression parameters. In constrast, maximum likelihood is consistent for this 
model. Maximizing the full log-likelihood involves setting the first derivatives 
with respect to the coefficient vector T( , , )α=δ β γ  equal to zero and 
simultaneously solving these first-order conditions for all the parameters. 
Equivalent maximum likelihood estimates can be found using the log-likelihood 
function concentrated (with respect to δ  and the noise variance parameter 2 )σ  
which takes the form 

 

                                                           
4  Note that the spatial Durbin error model (SDEM), which includes a spatial lag of the 

explanatory variables as well as spatially dependent disturbances, does not nest the SDM 
and vice versa. It can arise only if there would be no unobserved human capital, or if this 
unobserved variable would not be correlated with the educational attainment variable, 
both of which are very unlikely. 
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T
0 0

1 ˆ ˆ ˆ ˆln ( ) ln 2 ln | | ln ( ) ( ).
2 2 L L
NL ρ π ρ ρ ρ= + − − − −I W e e e e  (E.1.5) 

 
The notation ln ( )L ρ  in this equation indicates that the scalar concentrated log-
likelihood function value depends on the parameter ρ . 0ê  and ˆLe  are the 
estimated residuals in a regression of y on Z and Wy  on Z, respectively, with 

[ ]n=Z X WXι . 
Optimizing ln ( )L ρ  with respect to ρ  permits us to find the ML estimate ρ̂  

and to use this estimate in the closed form expressions for ˆ ˆ( )ρβ , ˆ ˆ( )ργ  and 
2ˆ ( )σ ρ  to produce ML estimates for these parameters. A variety of univariate 

techniques may be used for optimizing the concentrated log-likelihood function. 
In this study we used the simplex optimization technique. 

Model interpretation 

While linear regression parameters have a straightforward interpretation as the 
partial derivatives of the dependent variable with respect to the explanatory 
variables, in the SDM specification given by Eq. (E.1.1) interpretation of the 
parameters becomes more complicated. This comes from the simultaneous 
feedback nature of the SDM model that originates from the dependence 
relationships embodied in the spatial lag terms. These lead to feedback effects 
from changes in the explanatory variables in a region that neighbors i, say region j, 
that will impact the dependent variable for region i. This feature of the spatial 
Durbin model enables to quantify spatial spillover effects associated with human 
capital (see Chapter C.1).  

In our spatial Durbin regression setting labor productivity of region i (that we 
denote by )iy  depends on 

 
• first, labor productivity in regions neighboring i, captured by the spatial lag 

variable iW y , where iW  represents the ith row of the spatial weight matrix W, 
• second, the own-region initial period level of productivity, represented by Xi1,  

the first column of the n-by-Q matrix X, 
• third, the initial period levels of labor productivity in the neighboring regions, 

represented by the spatially lagged variable Wi Xi1,  
• fourth, the own-region initial period level of human capital, represented by Xi2, 

the second column of X, 
• fifth, the initial period levels of human capital in the neighboring regions,  

represented  by the spatially lagged variable  Wi Xi2. 
 
Thus, a change in the human capital level in region (observation) i will not only 
exert a direct effect on the productivity level of this region, but also an indirect 
effect on productivity levels in other regions .j i≠  This type of impact arises due 
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to the interdependence between observations in the model. To see this, consider 
the SDM model expressed in Eqs. (E.1.6) to (E.1.7) 

 

1 1

1

( ) ( ) ( )
Q

q q n n n
q

S ρ α ρ− −

=

= + − + −∑y W X I W I Wι ε  (E.1.6) 

 

Sq (W) = (In  – ρW)–1 (In  βq + Wγq) (E.1.7) 

 
where the index q runs from 1 to Q, and Xq is the qth explanatory variable (qth 
column of X). There are Q explanatory variables. The Q-by-1 vector β contains 
the regression parameters associated with the non-constant explanatory variables 
in X, and the Q-by-1 vector γ  the regression parameters associated with the 
spatially lagged variables WX . 

To make the role of Sq (W) more transparent, we consider the case of a single 
dependent variable observation in Eq. (E.1.8) 

 

1 1 2 2
1

( ) ( ) ( )
Q

i q i q q i q q in nq
q

y S W X S W X S W X
=

= + + +∑ K  

 
1 1( ) ( )n n nρ α ρ− −+ − + −Ι W I Wι ε  (E.1.8)

 
where Sq(W)ij  represents the (i, j)th element from the matrix Sq(W). It follows 
from Eq. (E.1.8) that   

 

( ) .i
q ij

jq

y S W
X
∂

=
∂

 (E.1.9)

 
This implies that a change in the human capital level for a single region j can 
potentially affect the dependent variable in all regions i, with i j≠ . This is a 
consequence of our spatial Durbin model.  

The canonical case of own derivative for the ith region shown in Eq. (E.1.10) 
yields an expression Sq(W)ii  that represents the impact on the dependent variable 
observation i from a change in Xiq  
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( )i
q ii

iq

y S W
X
∂

=
∂

 (E.1.10)

 
where Sq(W)ii denotes the (i, i)th element of the matrix Sq(W). 
LeSage and Pace (2009a) label Sq(W)ii  the direct impact that is measured by the (i, 
i)th element of Sq(W). This includes feedback influences that arise as a result of  
impacts passing  through neighbors, and back to the observation (region) itself5. 
The indirect impact that arises from changes in all observations j = 1, …, n,  with 
j i≠ , of an explanatory variable Xq are found as the sum of the off-diagonal 

elements of row i from the matrix Sq(W), for each observation i. Direct plus 
indirect effects equal the total effect from ceteris paribus changes in variable Xq . 

Since the impact of changes in an explanatory variable differs over all 
observations, LeSage and Pace (2009a, b) suggest the following scalar summary 
measures6: 
 
(a) the average direct effect constructed as an average of the diagonal elements 

of Sq(W),  
(b) the average indirect effect constructed as an average of the off-diagonal 

elements of Sq(W), where the off-diagonal row elements are summed up 
first, and then an average of these sums is taken, 

(c) the average total effect is the sum of the direct and indirect impacts. 

 
We will use these scalar summary measures to quantify the set of non-linear 
impacts that fall on all regions as a result of changes in the human capital level in 
a region, and  rely on LeSage and Pace’s (2009a) approach to calculating 
measures of dispersion to draw inferences regarding the statistical significance of 
direct or indirect effects. These are based on simulating parameters from the 
normally distributed parameters , , ρβ γ  and 2 ,σ  using the estimated means and 
variance-covariance matrix. The simulated draws are then used in computationally 
efficient formulas to calculate the implied distribution of the scalar summary 
measures. 

                                                           
5  Despite the fact that the main diagonal of the spatial weight matrix W contains zeros, the 

main diagonal of higher order matrices Wm (m integer) that arise in the infinite series 
expansion representation of the matrix inverse are non-zero. 2 ,iiW  for example, is non-
zero to reflect the fact that region i is a second-order neighbor to itself, that is a neighbor 
to its neighbor. This accounts for the feedback effects. 

6  Of course, one could analyze direct and indirect impacts for an individual region i 
without averaging, but this would take the form of an 1-by-n row vector for each i 
considered. This type of limited analysis can be found, for example, in Anselin and 
LeGallo (2006), and Kelejian et al. (2006). 
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E.1.3 Application of the methodology 

The definition of a spatial lag in spatial regression models depends on the choice 
of a spatial weight matrix that specifies ‘neighborhood sets’ for each observation7. 
In this study the weight matrix takes the form of a binary first-order contiguity 
matrix8, in which only direct interaction between geographically neighboring 
regions is allowed for. This matrix is constructed on the basis of digital boundary 
files in a GIS and implemented in row-standardized form. Two regions are defined 
as neighbors when they show a common boundary. 

Our sample includes 198 NUTS-2 regions9 in continental Europe including 
159 regions located in Western Europe covering Austria (nine regions), Belgium 
(11 regions), Denmark (one region), Finland (four regions), France (21 regions), 
Germany (40 regions), Italy (18 regions), Luxembourg (one region), the 
Netherlands (12 regions), Norway (seven regions), Portugal (five regions), Spain 
(15 regions), Sweden (eight regions) and Switzerland (seven regions), and 39 
regions in Central and Eastern Europe covering the Baltic states (three regions), 
Czech Republic (eight regions), Hungary (seven regions), Poland (16 regions), 
Slovakia (four regions) and Slovenia (one region). 

All variables are in log form. The dependent variable is labor productivity in 
2004, and there are two (non-constant) explanatory variables, labor productivity 
and human capital in 1995. Human capital is proxied by the skills of the 
workforce as given by the level of tertiary educational attainment of the active 
population (aged 15 and over). Labor productivity is measured in terms of gross 
value added per worker, expressed in euros. Gross value added is the net result of 
output at basic prices less intermediate consumption valued at purchasers’ prices, 
and measured in accordance with the European system of accounts 1995. Our 
main data source is Eurostat’s Regio database. The data for Norway and 
Switzerland stem from Statistics Norway (Division for National Accounts) and the 
Swiss Office Féderal de la Statistique (Comptes Nationaux), respectively.  

The time period from 1995 to 2004 is short due to a lack of reliable figures for 
the regions in Central and Eastern Europe (see Fischer and Stirböck 2006). The 
political changes since 1989 have resulted in the emergence of new or re-
established states with only a very short history as sovereign national entities. In 
                                                           
7  The specification of the spatial weight matrix is a matter of some arbitrariness. A range 

of suggestions has been offered in the literature, based on first-order contiguity (thereby 
precluding islands), (inverse square) distance with or without a critical cutoff, as well as 
more general metrics. For extensive reviews see Cliff and Ord (1981), Anselin (1988), 
Anselin and Bera (1998), and Griffith (1995). 

8  This specification is well in line with empirical evidence on the geographic bounding of 
spatial externalities (see, for example, Fischer et al. 2009) 

9  NUTS-2 regions are defined according to formal rather than functional criteria and thus 
represent a less satisfactory definition of the region for the purposes of our study. But 
since data on functionally defined regions is not publicly available we had to make use of 
the NUTS classification. 
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most of these states historical series simply do not exist. Even for states such as 
Hungary and Poland that existed for much longer in their present boundaries, the 
quality of data referring to the period of central planning imposes serious 
limitations on a regional analysis. This is closely related to the change in 
accounting conventions, from the material product system to the European system 
of accounts 1995. Cross-region comparisons require interregionally comparable 
data which are not only statistically consistent but also expressed in the same 
numéraire such as euros. The absence of market exchange rates in the planned 
economies is seen as a further impediment. 

Table E.1.1 reports the parameter estimates, the associated t-statistics and 
standard deviations not only for the SDM, but also for the SEM specification. A 
likelihood ratio test rejects the common factor restriction (test statistic: 13.79, 

0.001)p =  and consequently the SEM specification. This indicates that spatial 
externalities are substantive phenomena rather than random shocks diffusing 
through space. The parameter estimate of the spatial autoregressive parameter 

ˆ( 0.664)ρ =  provides evidence for the existence of significant spatial effects 
working through the dependent variable. This result is evidently in accordance 
with Fingleton and López-Bazo (2006). 

Table E.1.1. Parameter estimates from SDM and SEM specifications 

  SDM    SEM  
Variables Parameter Standard  

deviation 
t-statistic  Parameter Standard  

deviation 
t-statistic 

Constant 1.0831 0.2098 5.1631  3.3926 0.1915 17.7190 

Initial labor prod. (ß
1
) 0.6621 0.0260 25.4287  0.6716 0.0197 34.1043 

Human capital (ß
2
) 0.1476 0.0198 7.4576  0.1365 0.0194 7.0218 

W-initial labor prod. (γ
1
) −0.4150 0.0503 −8.2482  –  – – 

W-human capital (γ
2
) −0.1691 0.0247 −6.8577  –  – – 

Spatial autoregressive 
parameter (ρ) 

0.6640 0.0598 11.1002  0.7380 0.0500 14.7480 

Sigma squared  0.0064    0.0066  
Log-LIK/n  1.3974    1.3626  

Notes: The dependent variable is labor productivity in 2004, the independent variables are labor 
productivity and human capital in 1995. The dependent and the independent variables are in log form. 
Thus, the coefficient estimates can be interpreted on an elasticity scale 

As emphasized in the previous section, it is necessary to calculate the direct and 
indirect effects associated with changes in human capital on regional labor 
productivity to arrive at a correct interpretation of the model, in terms of the 
LeSage and Pace (2009a, b) approach. Table E.1.2 presents the corresponding 
impact estimates, along with inferential statistics. The estimates were produced by 
simulating parameters using the ML multivariate normal parameter distribution. A 
series of 10,000 simulated draws was used. The reported means and t-statistics 
were constructed from the simulation output. 

If we consider the direct impacts, we see that these are close to the SDM 
model coefficient estimates reported in Table E.1.1. The difference between the 
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human capital parameter estimate of 0.1476 and the direct impact estimate of 
0.1317 equal to 0.0159 represents feedback effects that arise as a result of impacts 
passing through neighboring regions and back to the region itself. The discrepancy 
is negative since the coefficient estimate exceeds the impact estimate, reflecting 
some negative feedback. Since the difference between the coefficient estimate and 
the direct impact estimate is rather small, we conclude that feedback effects are 
small and not likely of economic significance. 

The indirect impact estimates are what economists usually refer to as spatial 
spillovers. The presence or absence of significant spillovers depends on whether 
the indirect effects that arise result in statistically significant effects. We 
emphasize that it would be a mistake to interpret the γ-coefficient estimates as 
representing spatial spillover magnitudes.  

To see how incorrect this is, consider the difference between the spatial lag 
coefficient 2γ  for human capital from the SDM (reported in Table E.1.1) and the 
indirect impact estimate calculated from the partial derivatives of the model (given 
in Table E.1.2). The indirect impact estimate for  human capital is –0.1968, and 
significantly different from zero, while the SDM coefficient estimate associated 
with the spatially lagged human capital variable is –0.1691, and significant. If we 
would incorrectly view the coefficient 2γ  as reflecting the indirect impact, this 
would lead us to an inference that the human capital variable exerts a lower 
negative indirect impact on regional labor productivity. The true impact estimate 
points to a larger negative indirect impact calculated from the partial derivatives of 
the model. 

Table E.1.2. Direct, indirect and total impact estimates (t-statistics in parentheses) 

 Variables Spatial Durbin model 
 Mean 

direct impact 
Mean 

indirect impact 
Mean 

total impact 
Initial labor productivity  0.6677 0.0683 0.7361 
 (27.5716) (1.8992) (26.3921) 
Human capital 0.1317 –0.1968 –0.0650 
 (6.8644) (–3.7637) (–1.1847) 

Note: t-statistics based on 10,000 sampled raw parameter estimates of the SDM 

The indirect impact estimate can be interpreted in two ways. One interpretation 
reflects how a change in the human capital level of all regions by some constant 
would impact the labor productivity of a typical region (observation). The estimate 
of the indirect impact is equal to –0.1968, so an increase in the initial level of 
human capital of all other regions would decrease the productivity level of a 
typical region. This indirect impact takes into account the fact that the change in 
initial human capital level negatively impacts other regions’ labor productivity, 
which in turn negatively influences our typical region’s labor productivity due to 
the presence of positive spatial dependence on neighboring regions’ labor 
productivity levels (see Table E.1.2). 
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The second interpretation measures the cumulative impact of a change in region’s 
i initial level of human capital averaged over all other regions. The impact from 
changing a single region’s initial level of human capital on each of the other 
regions’ labor productivity is  small,  but  cumulatively  the  impact  measures –
0.1968. Of course the impact on regions closely related to region i whose initial 
human capital level has been changed will be greater than the impact on more 
remotely related regions.  

In thinking about these results we note that it may be more intuitive to think 
about the impact of changes in the human capital variable by taking one or the 
other of the above two interpretative views. Since the scalar summary magnitudes 
representing the average over all impacts are numerically equivalent, we are free 
to do so (LeSage and Fischer 2008). Regarding the lack of impact on labor 
productivity arising from human capital, it seems more intuitive that raising initial 
levels of human capital for all regions would likely to have no significant total 
impact on the labor productivity level of a typical region. This represents the 
Average Total Impact to an Observation view of a change in the human capital 
levels during the initial period.  

The intuition here arises from the notion that it is relative regional advantages 
in human capital that matter most for labor productivity, so changing human 
capital across all regions should have little or no total impact on (average) labor 
productivity levels. This interpretative view is consistent with our finding that the 
scalar summary measure for total impact of a change in human capital is not 
sufficiently different from zero (see Table E.1.2). It is interesting to note that the 
results obtained are consistent with the findings in LeSage and Fischer (2008). 

E.1.4 Concluding remarks 

The inherent complexity of the spatial Durbin model means that treating the 
parameter estimates like least-squares parameter estimates is incorrect. A change 
to a single observation of the human capital variable leads to changes in the 
dependent variable at each of the n locations. Consequently, our model leads to n2 
= 39,204 derivatives to analyze, and this provides too much information to easily 
digest. To quantify the impact of human capital on regional labor productivity, we 
used the LeSage and Pace (2009a) approach to calculating scalar summary impact 
measures. The direct impact is defined as the average impact of a change in the 
human capital variable at each of the n locations on the dependent variable at the 
same location, while the indirect impact is summarized using the average impact 
of a change in the explanatory variable at each location on the dependent variable 
at different locations. 

Since the model is specified using logged levels of labor productivity and 
human capital, we can interpret the impact estimates obtained as elasticities. 
Based on the 0.1317 estimate for the direct impact of human capital, we find that a 
ten percent increase in human capital will on average result in a 1.3 percent 



596      Manfred M. Fischer et al. 

increase in the final period level of labor productivity. This positive direct impact 
is offset by a significant and negative indirect impact producing a negative total 
impact that is not significantly different from zero. 

The inferences were made conditional on the data and the specification of the 
spatial weight matrix10. The assumption that a particular spatial weight matrix 
specification is correct may be relaxed by treating spatial weight specification as 
an additional unknown feature, that is, by explicitly incorporating model 
uncertainty in the statistical analysis. To accommodate this uncertainty issue one 
may follow LeSage and Fischer (2008) in endorsing the use of Bayesian methods 
such as Bayesian model averaging in combination with Markov Chain Monte 
Carlo Model Composition (see also Chapter C.4). Another avenue for future 
research is to extend our framework to allow not only for geographical, but also 
for time dependence. This would permit us to study the impact of human capital 
over time. 
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E.2 Income Distribution Dynamics and  
Cross-Region Convergence in Europe 

Manfred M. Fischer and Peter Stumpner 

E.2.1 Introduction 

Whether income levels of poorer regions are converging to those of richer is a 
question of paramount importance for human welfare (Islam 2003). In Europe 
interest in this question has been enhanced in recent years, with the entry of new 
countries to the European Union. This chapter looks at evidence for regional 
income convergence in Europe. By Europe we mean the European Union of 27 
member states. The notion of convergence is a fuzzy term that can mean different 
things (see Quah 1999). In this chapter we understand this notion in the sense of 
poorer regions catching-up with the richer. The observation units are NUTS-2 
regions which the European Commission has chosen as targets for the 
convergence process and defined as the geographical level at which the 
persistence or disappearance of inequalities should be measured. 

Measuring regional income and the extent to which convergence across 
regions – or what the European Commission calls regional cohesion – exists is a 
difficult issue. But per capita gross regional product [GRP] measured in 
purchasing power units seems like a natural definition if one is interested in an 
important determinant of average welfare. By focusing upon per capita GRP we 
are interested in the economic performance of regions and the claims that people 
living in those regions have over that wealth. Cohesion depends on the degree of 
equality in the distribution of per capita income and the extent to which there are 
processes of catch-up, in which less wealthy regions enjoy faster rates of income 
growth than more developed ones. The data were calculated on the basis of the 
1995 European System of Accounts [ESA 95] and refer to the time period from 
1995 to 2003. This shorter time span makes apparent the need for a model, before 
we can speak of the underlying dynamic regularities in these data. 
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Empirical research on regional income convergence has proceeded in many 
directions, using different definitions and methodologies1. Most research has, 
however, concentrated on the cross-section regression approach to investigate 

-convergence β  where β  is the generic notion for the coefficient on the initial 
income variable in the growth-initial level regressions. A negative β  is inter-
preted as evidence of convergence in terms of both income level and growth rate. 
But Quah (1993b), Friedman (1992) and others have emphasized that a negative 
β  can just be an example of the more general phenomenon of reversion to the 
mean, and, by interpreting it as convergence, growth analysts falling into Galton’s 
fallacy. 

This study follows the tradition of the non-parametric approach that views the 
catching-up question as a question about the evolution of the cross-section 
distribution of income, and diverts attention from the individual or representative 
region to the entire distribution as object of interest (see, in particular, Quah 
1993a, 1996a, b, 1997a, b, c). The distribution that is relevant here is the 
distribution of income across regions, not that within a given region. Purpose of 
the analysis is to find the law of motion that describes transition dynamics and 
implied long-run behaviour of regional income. In the spirit of Quah (1996a, b) 
we assume that each region’s income follows a first-order Markov process with 
time-invariant transition probabilities. That is, a region’s (uncertain) income 
tomorrow depends only on its income today. 

Most of the applications of this approach have worked in a discrete state space 
set up (see Quah 1996a, b; Fingleton 1997, 1999; Paap and van Dijk 1998; López-
Bazo et al. 1999; Magrini 1999; Rey 2001; LeGallo 2004 to mention some). This 
set up has several advantages, but the process of discretising the state space of a 
continuous variable is necessarily arbitrary. Experience from the study of income 
distributions shows that this arbitrariness can matter in the sense that statements 
on inferred dynamic behaviour of the distribution in question and the apparent 
long-run implications of that behaviour are sensitive to the choice of the 
discretisation (Jones 1997; Reichlin 1999). Indeed, it is well known that the 
Markov property itself can be distorted from inappropriate discretisation (Bulli 
2001). 

This chapter avoids arbitrary discretisation of the income space and its 
possible effects on the results by using the stochastic kernel, the continuous 
equivalent of the transition probability matrix, as a suitable tool to overcome the 
problem. The remainder of the chapter is divided into two parts. The first, Section 
E.2.2, provides an empirical framework that extends current research by 
incorporating two novel techniques into the existing research: kernel estimation 
and graphical devices for the representation of the stochastic kernel (see Hyndman 

                                                           
1 Recent surveys of the new growth literature in general and the convergence literature in 

particular can be found in Durlauf and Quah (1999), Temple (1999) and Islam (2003), 
while Fingleton (2003), Abreu et al. (2004), and Magrini (2004) survey the regional 
convergence literature, with region denoting a subnational unit. 
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et al. 1996), and Getis’ spatial filtering technique that enables to account for the 
effects of spatial autocorrelation. The second part of the contribution, Section 
E.2.3, applies this framework to analyse income distribution dynamics and cross-
region convergence in Europe, looking at evolving distributions of purchasing 
power standardized per capita (relative) gross regional product across 257 NUTS-2 
regions in 27 EU-countries from 1995 to 2003. Some concluding remarks are 
given in the final section. 

E.2.2 The empirical framework  

A distribution perspective to the study of income dynamics and cross-region 
convergence directs attention to the evolution of the entire cross-region income 
distribution, emphasising shape and intra-distribution dynamics, and long-run 
(ergodic) behaviour. The section introduces a continuous version of the standard 
model of explicit distribution dynamics, pioneered by Quah (1993a), and argues 
that the stochastic kernel can be described as a conditional density function. Then 
we present a product kernel estimator for estimating this transition function, and 
briefly describe a three-step-strategy for solving the bandwidth selection problem, 
that appears to be crucial for estimation. Finally, we combine Getis’ spatial 
filtering view with stochastic kernel estimation to account for the issue of spatial 
autocorrelation that may misguide inferences and interpretations if not properly 
handled. 

A continuous version of the model of distribution dynamics 

Let  F  denote the cross-section distribution of regional incomes at time t, then the 
simplest scheme for modelling the intra-distribution dynamics of { }| integertF t  is 
a first-order Markov process with time-invariant transition probabilities. The 
distribution evolves according to 

 

Ft+1 = M Ft (E.2.1) 

 
where M maps the distribution from time t to time t+1, and tracks where points in 

tF  end up in 1tF + . Iteration of Eq. (E.2.1) gives a prediction for future 
distributions of the ex-post probabilities 

 

Ft+τ = Mτ Ft       for τ  > 0       τ = 1, 2, … (E.2.2) 
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In this framework, there are two goals, the estimation of M will give us 
information on persistence of regional income inequalities, and the computation of 
the ergodic (steady-state) distribution. The latter provides information on the 
limiting behaviour of the regional income distribution. Convergence then might 
manifest in { }tF τ+  tending towards a point mass. A bimodal limit distribution can 
be interpreted as a tendency towards stratification into two different ‘convergence 
clubs’. 

In the discrete version of the model, the operator M can be interpreted as the 
transition probability matrix of the Markov process. The operator is approximated 
by partitioning the set of possible income values into a finite number of intervals. 
These intervals then constitute the states of a (time-homogeneous) finite Markov 
process, and all the relevant properties of M are described by a Markov Chain 
transition matrix whose (i, j) entry is the probability that a region in state i transits 
to state j in income space, in one time step. The inferred dynamic behaviour and 
the long-run implications of that behaviour are conditional on the discretisation 
chosen. 

Regional income, however, is by nature a continuous variable, and hence 
discretisation may induce a possible bias. Instead of a state being a fixed interval 
we let the state be all possible intervals, including the infinitesimal small ones. In 
this case one may think of the number of distinct cells to tend to infinity and then 
to continuum. The corresponding transition probability matrix then tends to a 
matrix with a continuum of rows and columns. In this case, the operator M in    
Eq. (E.2.1) may be viewed as a stochastic kernel or transition function that 
describes the (time-invariant) evolution of the cross-section distribution in time. 
Convergence can then be studied by visualising and interpreting the shape of the 
income distribution at time t τ+  over the range of incomes observed at time t. 

For notational convenience let Y and Z denote the variable (per capita) 
regional income at times t and ( 0),t τ τ+ >  respectively. The sample may be 
denoted then by {(Y1, Z1), …, (Yn, Zn)} and the observations by {(y1, z1), …, (yn, 
zn)} where n indicates the number of regions. We assume that the cross-region 
distribution of Y can be described by the density function ft (y). This distribution 
will evolve over time so that the density prevailing at t τ+  is ( ).tf zτ+  If we 
continue to maintain the assumptions of time-invariance and first-order of the 
transition process, the relationship between the cross-region income distributions, 
at time t and τ-periods later, can be written as 

 

∫
∞

+ =
0

d)()|()( yyfyzgzf tt ττ
 (E.2.3) 

 
where ( | )g z yτ  is the conditional density function giving the -periodτ  ahead 
density of income z, conditional on income y at time t. Evidently, the (first-order) 
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stochastic kernel can be described by a conditional density function assuming that 
the marginal and conditional income distributions have density functions. 

So long as ( | )g z yτ  exists, the long-run (ergodic) density, ( ),f z∞  implied by 
the estimated ( | )g z yτ  function can then be found as solution to 

 

.d)()|()(
0
∫
∞

∞∞ = yyfyzgzf τ
 (E.2.4) 

 
In this contribution we will use the solution procedure outlined in Johnson (2004) 
to estimate this long-run distribution of regional income per capita. 

Kernel estimation of the conditional density function 

If , ( , )t tf y zτ+  denotes the joint density of ( , )Y Z  and ( )tf y  the marginal density 
of Y, then the conditional density of | ( )Z Y y=  is given by 
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Probably, the most obvious estimator of this conditional density function2 (see 
Hyndman et al. 1996) is 
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where 
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is the kernel estimator of ft,t+τ (y,z), and 
 

                                                           
2  For alternative estimators see Hyndman and Yao (2002), and Basile (2006). 
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( )1

1

1ˆ ( )
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t ih y
iy

f y K y Y
n h =

= −∑  (E.2.8) 

 
the kernel estimator of ( )tf y  (see Hyndman et al. 1996). yh  and zh  are 
bandwidth parameters that control the degree of smoothing applied to the density 
estimate. yh  controls the smoothness between conditional densities in the 

-direction,y  and zh  the smoothness of each conditional density in the 
-direction.z  .

y
 and .

z
 are distance metrics on the spaces Y and Z, 

respectively. In this contribution we use the standard euclidean distances, 
. . and  . . .

y y z z
= =  

A multivariate kernel other than the product kernel might be used to define 
ˆ ( | ).g z yτ  But the product kernel is simpler to work with, leads to conditional 

density estimators with several nice properties and is only slightly less efficient 
than other multivariate kernels (Wand and Jones 1995). The kernel ( ),K x  where x 
is variously y or z, is a real, integrable, non-negative, even function on R 
concentrated at the origin so that (Silverman 1986) 

 
.d)(   and   0d)(,1d)( 22 ∞==== ∫∫∫

RRR
xxKxxxKxxxK Kσ  (E.2.9)

 
Popular choices for ( )K x  are defined in terms of univariate and unimodal 
probability density functions. In this contribution we use the Gaussian kernel3 
given by 

 

( ) ).exp(2)( 2
2
1

1
xxK −=

−
π  (E.2.10)

 
Whatever kernel is being used, bandwidth parameters chosen to minimize the 
asymptotic mean square error give a trade-off between bias and variance. Small 
bandwidths yield small bias but large variance, while large bandwidths lead to 
large bias and small variance. The problem of choosing, how much to smooth, is 
of crucial importance in conditional density estimation, and the results of the 
continuous state space approach to distribution dynamics strongly depend on the 
bandwidth parameters chosen. 
 
 

                                                           
3 On the basis of the mean integrated square error criterion, Silverman (1986) has shown 

that there is very little to choose between alternatives. In contrast, the choice of the 
bandwidths plays a crucial role. See also Chapter C.5 for this issue. 
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In this study we follow Bashtannyk and Hyndman (2001) to solve this bandwidth 
selection problem4 by a three-step-strategy that combines three different 
procedures: a Silverman (1986) inspired normal reference rule that has proven 
useful in univariate kernel density estimation5, a bootstrap bandwidth selection 
approach following the approach of Hall et al. (1999) for estimating conditional 
distribution functions, and a regression-based bandwidth selector6 (see Fan et al. 
1996). Step 1 involves finding an initial value for the smoothing parameter zh  
using the rule with normal marginal density. Given this value of zh , Step 2 makes 
use of the regression-based bandwidth selector to find a value for .yh  In Step 3 the 
bootstrap method is used to revise the estimate of zh  by minimising the bootstrap 
estimator of a weighted mean square error function. Step 2 and Step 3 may be 
repeated one or more times. 

Spatial autocorrelation and stochastic kernel estimation 

Stochastic kernel estimation rests on the implicit assumption that each region 
represents an independent observation providing unique information that can be 
used to estimate the transition dynamics of income. In essence, the cross-section 
observations at one point in time are viewed as a random sample from a univariate 
distribution, or in other words, X (where X stands variously for Y and Z) is 
assumed to be univariate and random. If the Xi (I = 1, …, n) are independent, we 
say that there is no spatial structure. Independence implies the absence of spatial 
autocorrelation7. Spatial autocorrelation reflects a lack of independence between 
regions. Dependence may arise from a variety of measurement problems, such as 
boundary mismatches between the NUTS-2 regions and the growth processes. But 
also interactions or externalities across regions such as, for example, knowledge 
spillovers, trade as well as commuting and migration flows are likely to be a major 
source of the violation of the assumption (see Abreu et al. 2004 for a survey of the 
existing evidence). 

A violation of the independence assumption may result in misguided 
inferences and interpretations (Rey and Janikas 2005). This problem has been 

                                                           
4 It is well known that the selection of the bandwidth parameters rather than the choice 

between various kernels is of crucial importance in density estimation. 
5 The rule is to assume that the underlying density is normal and to find the bandwidth 

which could minimise the integrated mean square error function. 
6 For a given zh  and a given value z, finding ˆ ( | )g z y  is viewed here as a standard non-

parametric problem of regressing 
1 1( | | ) on .z z i ih K h z Z Y− − −  

7 The controverse is not necessarily true (Ord and Getis 1995). Nevertheless, tests for 
spatial autocorrelation are typically viewed as appropriate assessments of spatial 
dependence. Moran’s I and Geary’s c statistics are typical testing tools (see Chapter B.3). 
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largely neglected in distribution analysis so far. One way8 to dealing with the 
problem involves the filtering of the variable X in order to separate spatial effects 
from the variable’s total effects. While insuring spatial independence, this allows 
us to use the stochastic kernel to properly estimate the underlying regional income 
distribution and to analyse its evolution over time. The motivation for a spatial 
filter is simply that a spatially autocorrelated variable can be transformed into an 
independent variable by removing the spatial dependence embedded in it. The 
original variable, X, is hence partitioned into two parts, a filtered non-spatial 
variable, say ,X%  and a residual spatial variable XL . The transformation procedure 
depends on identifying an appropriate distance δ  within which nearby regions are 
spatially dependent, and examining each individual observation for its 
contribution to the spatial dependence embedded in the original variable (Getis 
and Griffith 2002). 

There have been several suggestions for identifying δ , but in this 
contribution we adopt the Getis filtering approach (see Getis 1990, 1995) which is 
based on the local spatial autocorrelation statistic iG  (Getis and Ord 1992) to be 
evaluated at a series of increasing distances until no further spatial autocorrelation 
is evident. As distance increases from an observation (region i), the -valueiG  also 
increases if spatial autocorrelation is present. Once the -valueiG  begins to 
decrease, the limit on spatial autocorrelation is assumed to have been reached, and 
the associated critical δ  identified. The filtered observation ix%  is given as 

 

[ ]1
1

( )
i in

i
i

x W
x

G δ
−=%  (E.2.11)

 
where ix  is the original income observation for region i, n is the number of 
observations and  
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8 Griffith’s eigenfunction decomposition approach that uses an eigenfunction decompo-

sition based on the geographic connectivity matrix used to compute a Moran’s I statistic 
provides an alternative way (see Griffith 2006, and Chapter B.5). 
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with ( ) 1ijw δ =  if the distance9 from region i to region ( ),j i j≠  say ijd , is 
smaller than the critical distance band ,δ  and ( ) 0ijw δ =  otherwise. ( )iG δ  is the 
spatial autocorrelation statistic10 of Getis and Ord (1992) defined as 
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 (E.2.13)

 
The numerator in Eq. (E.2.13) is the sum of all jx  within δ  of i but not including 

.ix  The denominator is the sum of  all jx  not including .ix  
Equation (E.2.11) compares the observed value of ( )iG δ  with its expected 

value, 1( 1) .in W−−  [ ( )]iE G δ  represents the realisation, ,X%  of the variable X at 
region i when no autocorrelation occurs. If there is no autocorrelation at i to 
distance ,δ  then the observed and expected values, and ,i ix x%  will be the same. 
When ( )iG δ  is high relative to its expectation, the difference i ix x− %  will be 
positive, indicating spatial autocorrelation among high observations of X. When 

( )iG δ  is low relative to its expectation, the difference will be negative, indicating 
spatial autocorrelation among low observations of X. Thus, the difference between 

 and i ix x%  represents the spatial component of the variable X at i. Taken together 
for all i, XL represents a spatial variable associated, but not correlated, with the 
variable X. Thus, XL X X+ =%  (Getis and Griffith 2002). 

Combining this spatial filtering approach with stochastic kernel estimation as 
described in the previous section yields the long-run (ergodic) density, ( ),f z∞ %  
implied by the estimated ( | )g z yτ %%  function 

 

0

( ) ( | ) ( ) df z g z y f y yτ∞ ∞

∞

= ∫ % % %% %  (E.2.14)

 
where y%  and z%  denote the spatially filtered observations of Y and Z, respectively. 
To assess the role played by space on income growth and convergence dynamics 

                                                           
19 In this study distances are measured in terms of geodesic distances between regional 

centers. 
10 Getis and Ord (1992), and Ord and Getis (1995) show that the statistic ( )G δ  is 

asymptotically normally distributed as δ  increases. When the underlying distribution of 
the variable in question is skewed, appropriate normality of the statistic can be 
guaranteed when the number of j neighbors is large. 
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across the regions, we consider a specific stochastic kernel11 that maps the 
distribution Y to the spatially filtered distribution |Y Y%  so that 

 

( , )( | )
( )

f y yg y y
f y

=
%

%  (E.2.15)

 

where the stochastic kernel does not describe transitions over time, but transitions 
from unfiltered to spatially filtered regional income distributions, and, thus, 
quantifies the effects of spatial dependence. If spatial effects caused by spatial 
interaction among regions and measurement problems would not matter, then the 
stochastic kernel would be the identity map. 

E.2.3 Revealing empirics 

This section applies the above framework to study regional income dynamics and 
convergence in Europe. In this section we describe the data and the observation 
units. Kernel smoothed densities and Tukey boxplots are used then to study the 
shape dynamics of the distribution. Cross-profile plots, continuous stochastic 
kernels and implied ergodic distributions are taken to investigate intra-distribution 
dynamics and long-run tendencies in the data. Finally, the section proceeds to the 
spatial filtering view of the data to gain insights not affected by the spatial 
autocorrelation problem. 

Data and observation units 

We use per capita GRP over the period 1995-2003 expressed in Euros. The GRP 
figures were calculated on the basis of the 1995 European System of Integrated 
Economic Accounts (ESA 95)12  and extracted from the  Eurostat  Regio database. 

 
 
 
 

                                                           
11 Combining stochastic kernel estimation with the conditioning scheme suggested by 

Quah (1996b, 1997a) is an alternative way to evaluate the role of spatial interactions 
among neighboring regions. Conditioning means here normalising each region’s 
observations by the (population weighted) average income of its neighbors. This 
approach removes substantive, but not nuisance spatial dependence effects.  

12 In order to deal with the widely known problem measuring Groningen’s GRP figure we 
replaced its energy specific gross value added component by the average of the 
neighboring regions (Drenthe and Friesland). 
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We use GRP per capita in national PPS (purchasing power standards) as defined 
by Eurostat.13 

The time period is relatively short due to a lack of reliable figures for the 
regions in the new member states of the EU. This comes partly from the 
substantial change in measurement methods of national accounts in Central and 
East Europe (CEE) between 1991 and 1995. But more important, even if estimates 
of the change in the volume of output did exist, these would be impossible to 
interpret meaningfully because of the fundamental change of production from a 
centrally planned to a market system. As a consequence, figures for GRP are 
difficult to compare until the mid-1990s (Fischer and Stirböck 2006). 

The observation units of the analysis are NUTS-2 regions14. Although varying 
considerably in size, NUTS-2 regions are those regions that are adopted by the 
European Commission for the evaluation of regional growth and convergence 
processes. NUTS is an acronym of the French for ‘the nomenclature of territorial 
units for statistic’, which is a hierarchical system of regions used by the statistical 
office of the European Community for the production of regional statistics. Our 
sample includes 257 NUTS-2 regions15 covering the 27 member states of the EU 
(see the appendix for a description of the regions): 

 
• the EU-15 member states: Austria (nine regions), Belgium (eleven regions), 

Denmark (one region), Finland (five regions), France (22 regions), Germany 
(40 regions), Greece (thirteen regions), Ireland (two regions), Italy (20 regions), 
Luxembourg (one region), Netherlands (twelve regions), Portugal (five 
regions), Spain (16 regions), Sweden (eight regions), UK (37 regions); 

• the twelve new member states: Bulgaria (six regions), Cyprus (one region), 
Czech Republic (eight regions), Estonia (one region), Hungary (seven regions), 
Latvia (one region), Lithuania (one region), Malta (one region), Poland (16 
regions), Romania (eight regions), Slovakia (four regions), Slovenia (one 
region). 

                                                           
13 Figures given in PPPs are derived from figures expressed in national currency by using 

PPPs as conversion factors. These parities are obtained as a weighted average of relative 
price ratios in respect to a homogeneous basket of goods and services, both comparable 
and representative for each individual country. The use of national purchasing power 
parities is based on the assumption that there are no – or negligible – purchasing power 
disparities between the regions within individual countries. This assumption may not 
appear to be entirely realistic, but it is inevitable in view of the data available. 

14 Note that the use of administratively defined regions, such as NUTS-2 regions, can lead 
to misleading inferences due to the presence of significant nuisance spatial dependence. 
In the case of Hamburg, for example, the NUTS-2 boundary is very narrowly drawn 
with respect to the corresponding functional region so that residential areas extend well 
beyond the boundary and substantial in-commuting takes place. This implies that per 
capita GRP is overestimated, while in the surrounding NUTS-2 regions underestimated. 

15 We exclude the Spanish North African territories of Ceuta y Melilla, the Portuguese 
non-continental territories Azores and Madeira, and the French Départements d’Outre-
Mer Guadeloupe, Martinique, French Guayana and Réunion. 
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Shape dynamics of the distribution 

When studying income distribution dynamics across regions in Europe, one can 
consider incomes per region in absolute terms. Alternatively, one can study 
regional incomes normalized by the European average. Although there are merits 
to using the absolute income distribution, it is more natural to take relative 
incomes when considering changes in income distributions over time. Relative 
incomes allow us to abstract from overall changes in income levels16. A natural 
approach to assess the shape dynamics of the distribution change over the 
observation period 1995-2003 is to estimate the cross-sectional distributions by 
using non-parametric kernel smoothing procedures, which avoid the strong 
restrictions imposed by parametric estimation. In this framework, if there is a 
bimodal density at a given point in time, indicating the presence of two groups in 
the population of regions, convergence implies a tendency of the distribution to 
move progressively towards unimodality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E.2.1. Distributions of relative (per capita) regional income, 1995 versus 2003  
Notes: The plots are densities calculated non-parametrically using a Gaussian kernel with bandwidth 
chosen as suggested in Silverman (1986), restricting the domain to be non-negative. The solid line 
shows the density for 2003 and the dashed line that for 1995 

                                                           
16 This normalization makes it possible to separate the global (European) effects on the 

cross-section distribution of European forces from the effects from regional-specific 
effects.  

Relative (per capita) income        

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2003 1995

 

D
en

si
ty

 e
st

im
at

e 



E.2     Income distribution dynamics      611 

Figure E.2.1 plots the distribution of (per capita) GRP relative to the average of all 
257 regions – what we call the Europe relative (per capita) income or simply the 
relative income. The plots are densities and can be interpreted as the continuous 
equivalent of a histogram, where the number of intervals has been let tend to 
infinity and then to the continuum. All densities were calculated non-
parametrically using a Gaussian kernel with bandwidths chosen as suggested in 
Silverman (1986), restricting the range to the positive interval. The solid line 
shows the distribution in 2003, and the dashed line that in 1995. To read this type 
of figure, note that 1.0 on the horizontal axis indicates the European average of 
regional income, 2.0 indicates twice the average, and so on. The height of the 
curve over any point gives the probability that any particular region will have that 
relative income. Since the height of the curve at any particular point gives the 
probability, the area under the curve between, say 0.0 and 1.0, gives the total 
likelihood that a region will have a relative income that is between 0.0 and 1.0. 

The figure shows a distribution with twin-peaks – to use the appellation coined 
by Quah (1993a) – in 1995, one corresponding to low income regions and the 
other to middle-income ranges, and a long tail with two smaller bumps at the 
upper end of the distribution. Technically, the income distribution is said to show 
a bimodal shape. The main mode17 is located at about 110 percent of the European 
average, and the second mode at about 38 percent. The estimated densities reveal 
several changes over the observation period. The kernel estimated median value 
decreases by two percent, while the level of dispersion exhibits a small reduction. 
The kernel estimated standard deviation decreases by 3.3 percent from 0.393 in 
1995 to 0.380 in 2003. 

Perhaps most remarkable is the change in the shape of the distributions. By 
2003, the peaks have become closer together, and the richer peak has risen 
moderately at the expense of the poorer. We see this by noting that the area under 
the 2003 curve, that is between 0.5 and 1.1, is greater than the corresponding area 
under the 1995 curve, while the area that is to the left of 0.5 is smaller. The 
smaller peak seems to progressively collapse over time. This finding may suggest 
an improvement in economic conditions of the poorest regions and reflect a trend, 
in some sense, of catching-up. 

Figure E.2.2 gives a sequence of Tukey boxplots for the 257 NUTS-2 regions. 
Recall that the units of income are PPS units scaled to the EU-27 average. Time 
appears on the horizontal axis, while the vertical axis maps relative per capita 
income values. To understand these pictures, recall the construction of a Tukey 
boxplot. Each boxplot includes a box bounded by 1Q  and 3Q  denoting sample 
quartiles. Thus, the box contains the middle 50 percent of the distribution. The 
thick line in the box locates the median. The upwards and downwards distances 
from the median to the top and bottom of the box provide information on the 
shape of the distribution. If these distances differ, then the distribution is 
asymmetric. Thin dashed vertical lines emanating from the box both upwards and 

                                                           
17 A mode is defined as a point at which the gradient changes from positive to negative. 
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downwards, reach upper and lower adjacent values, respectively. The upper 
adjacent value is the largest value observed that is not greater than the top quartile 
plus 1.5 times 3 1( ).Q Q−  The lower quartile is similarly defined, extending 
downwards from the 25th percentile. Dots indicate upper and lower outside 
values, that is, observations that lie outside the upper and lower adjacent values, 
respectively. These denote regions which have performed extraordinarily well or 
extraordinarily poorly relative to the set of other regions. Of course, upper and 
lower outside values might not exist. The adjacent values might already be the 
extreme points in a specific realisation. 

There are no extraordinarily poorly performing regions, more accurately when 
regions performed especially badly, they were not alone. On the upside, by 
contrast, the figure shows several outstanding performers. At the beginning of the 
sample, five regions showed upper outside values, and by the end of the sample 
six outside values. The spreading apart in the regional income distribution has one 
distinct source, the pulling away of the upper outside values – representing Inner 
London, Brussels, Luxembourg, Hamburg, Île-de-France and Vienna – from the 
rest of the regions. The figure, moreover, makes clear that the interquartile range 
is decreasing by more than 15 percent, and this falling is due to a decrease of 3Q  
rather than 1.Q  

The matching counterparts in Fig. E.2.1 and Fig. E.2.2 use exactly the same 
data. But they emphasize different empirical regularities. The bimodal shape is 
striking in Fig. E.2.1, but is far from obvious in Fig. E.2.2. The spreading out of 
the upper tail of the distribution is apparent in Fig. E.2.2. It appears in form of two 
smaller bumps in Fig. E.2.1. 
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Fig. E.2.2. Tukey boxplots of relative (per capita) regional income across 257 European 
regions 
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Intra-distribution dynamics and long-run tendencies 

Thus far, we have considered only point-in-time snapshots of the income 
distribution across the regions. This section takes the next step in the analysis, and 
looks at the intra-distribution dynamics and then at the long-run (ergodic) 
tendencies. We start with Fig. E.2.3 showing cross-profile dynamics18. The 
vertical axis is the log of relative (per capita) incomes. Each curve in the figure 
refers to the situation at a given point in time. The lowest curve gives the cross-
section of regions at time 1995 in increasing order. This ordering is then 
maintained throughout the time periods considered. Proceeding upwards, we see 
curves for 1999 and 2003. The character of the upper plots, thus, depends on 1995 
when the ordering is taken. 

 

0 20 40 60 80 100 120 140 160 180 200 220 240

LV00
EE00

PL12
GR41

HU10

SK01

IE02 FI20

CZ08

DE93

DEF0 DE30

LU00
UKI1

UKJ1

 

Fig. E.2.3. Cross-profile dynamics across 257 European regions, retaining the ranking fixed 
at the initial year, relative (per capita) income, advancing upwards: 1995, 1999 and 2003 (a 
guide to region codes can be found in the appendix) 

In the plots, increasing jaggedness indicates intra-distribution mobility. In 
contrast, if each cross-profile would always monotonically increase over time, 
then income rankings were invariant. The most striking feature of Fig. E.2.3 is not 
this comparative stability through time. It is the change in choppiness through 

                                                           
18 The idea for this picture comes from Quah (1997a), and López-Bazo et al. (1999). 



614     Manfred M. Fischer and Peter Stumpner 

time in the cross-profile plots indicated by local peaks. By 2003, we observe local 
peaks, for example, at the lower end of the distribution around regions ranked 9th, 
19th, 42nd and 66th poorest in 1995, and at the upper end around regions ranked 
second and fourth richest. These turn out to be Latvia, Estonia, Mazowieckie 
(Warszawa) and Közép-Magyarország (Budapest), and Inner London and 
Luxembourg, respectively. By contrast, Moravskoslezko (57th poorest in 1995) in 
the Czech Republic, Lüneburg (129th poorest) and Berlin (the 41st richest region) 
experienced economically significant relative declines by 2003. The cross-profile 
dynamics are informative. They illustrate when regions overtake one another, fall 
behind, or pull ahead. But they do not identify underlying dynamic regularities in 
the data. We thus turn to the stochastic kernel representation of intra-distribution 
dynamics next. 

Figure E.2.4 shows the conditional kernel density estimate ˆ ( | )g z yτ  with 
fixed bandwidths ( 0.036, 0.023)y zh h= = 19 that describes the stochastic kernel 
across the 257 regions, averaging over 1995 through 2003. The stochastic kernel 
has been estimated for a five-year transition period, setting 5.τ =  The figure 
displays the estimate, using Hyndman’s (1996) visualisation tools. Figure E.2.4(a) 
presents the stochastic kernel in terms of a three-dimensional stacked conditional 
density plot in which a number of conditional densities are plotted side by side in 
a perspective plot. For any point y on the period t axis, looking in the direction 
parallel to the 5t +  time axis traces out a conditional probability density. The 
graph shows how the cross-section income distribution at time t evolves into that 
at time 5.t +  Just as with a transition probability matrix in a discrete set up, the 
45-degree diagonal in the graph indicates persistence properties. When most of the 
graph is concentrated along this diagonal, then the elements in the cross-section 
distribution remain where they started. As evident from Fig. E.2.4(a), a large 
portion of the probability mass remains clustered along the main diagonal over the 
five-year horizon, and most of the peaks lie along this line indicating a low degree 
mobility and modest change in the regional income distribution. 

The highest density regions (HDRs) boxplot, given in Fig. E.2.4(b), makes 
this clearer. A highest density region is the smallest region of the sample space 
containing a given probability. Figure E.2.4(b) shows a plot of the 50 percent and 
99 percent highest density regions20, computed from the density estimates shown 
in Fig. E.2.4(a). Each vertical strip represents the conditional density for one y 
value. The darker shaded region in each strip is a 50 percent HDR, and the lighter 
shaded region is a 99 percent HDR. The mode for each conditional density is 
shown as a bullet •. 

                                                           
19 The bandwidths for the estimator were chosen according to Bashtannyk and Hyndman’s 

three-step-strategy. See Section E.2.2 for more details. 
20 An HDR boxplot replaces the box bounded by the interquartile range with the 50 

percent HDR, the region bounded by the upper and lower adjacent values is replaced by 
the 99 percent HDR that roughly reflects the probability coverage of the adjacent values 
on a standard boxplot for a normal distribution. In keeping with the emphasis on highest 
density, the mode rather than the median is marked. 
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Fig. E.2.4. Relative income dynamics across 257 European regions, the estimated g5(z|y), 
see Eq. (E.2.6): (a) stacked density plot, and (b) highest density regions boxplot 

Notes: ad (b) The lighter shaded regions in each strip is a 99% HDR, and the darker shaded regions a 
50% HDR. The mode for each conditional density is shown as a bullet •. Technical notes: The 
conditional density gτ (z|y) is estimated over a 5-year transition horizon 5τ =  between 1995-2003. 
Estimates are based on a Gaussian product kernel density estimator with bandwidth selection (hy = 
0.036, hz = 0.023) based on the three-step-strategy suggested by Bashtannyk and Hyndman (2001). The 
stacked conditional density plot and the high density region boxplot were estimated at 70 and 150 
points, respectively. Calculations of the plots were performed using the R package HRDCDE, provided 
by Rob Hyndman 
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The vertical dashed line at 1.0 marks regions with income equal to the European 
average at time t, and the horizontal dashed line at 1.0 those with income equal to 
the average at 5.t +  The 45-degree diagonal indicates intra-distribution 
persistence over the five-year transition horizon. 

To read this type of boxplot note that strong persistence is evidenced when the 
main diagonal crosses the 50 percent HDRs. It means that most of the elements in 
the distribution remain where they started. There is a low persistence and more 
intra-distribution mobility if that diagonal crosses only the 99 percent HDRs. 
Strong (weak) global convergence towards equality would manifest in fifty 
percent (99 percent) HDRs crossed by the horizontal line at 1.0. Fifty percent 
HDRs consisting of two disjoint intervals would indicate a two-peaks property of 
the distribution. 

The plot not only reveals persistence, but also mobility and polarisation 
features. Regions with an income range of 0.8–1.2 times the European average 
show strong persistence. Some mobility occurs at the extremes of the distribution, 
more at the upper extreme than at the lower. Some portions of the cross-section in 
the income range below 0.8 times the average tend to slightly increase their 
relative position over the five-year transition horizon, indicating a process of 
catching-up of the poorest regions with the richer ones. In contrast, portions in the 
income range above 1.2–1.8 times the average lose out their relative position, 
becoming relatively poorer. The boxplot also shows signs of polarisation, the 
opposite of catching-up. This is indicated by the disjoint intervals of the 50 and 99 
percent HDRs at the upper extreme of the income range. We see that regions 
starting with an income of 2.0–2.3 times the European average at time t are 
unlikely to remain there. Most see their European relative income fall and others 
rise, with the result that this income class appears to vanish. The position of a 
small very rich group around 2.3–2.6 times the average remains either unchanged 
or shifting away. 

The evidence of Fig. E.2.4 is corroborated by the ergodic density function that 
is obtained by solving Eq. (E.2.4). Figure E.2.5 plots the estimated long-run 
(ergodic) density21, ˆ ( ),f z∞  implied by the estimated ( | )g z yτ  function for 5,τ =  
along with the initial income distribution. The solid line shows the point estimate 
of the ergodic distribution and the dashed line the initial income distribution. 
Comparing these two distributions we see that the ergodic distribution is wider, 
both at the top and at the bottom. This reflects a shift in the mass of the 
distribution away from the lower end to the middle, and from the middle to the 
upper end. In particular, the peak in the initial distribution between 20 and 50 

                                                           
21 It is well known that the shape of the estimated ergodic density is sensitive to the 

bandwidths chosen in computing the underlying estimated joint density functions. Wider 
bandwidths tend to obscure detail in the shapes while narrower bandwidths tend to 
increase it but possibly spuriously so. It is important to note that smaller equi-
proportionate decreases and increases in bandwidths do not remove the tendency to 
bimodality in the ergodic density. 
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percent of the European relative per capita income has shifted upward into the 60 
to 100 percentage range and shows a tendency to disappear. 

The stationary distribution across the 257 regions, plotted in Fig. E.2.5, is 
distinctively bimodal. The dominant peak22 represents regions clustered just below 
the European average income, while a small group of relatively rich regions 
gathers around three times of the average European (per capita) income. The 
bimodal nature of the ergodic distribution in comparison with the initial income 
distribution provides indication for two types of processes at work over time: a 
gradual and slow catching-up of the poorest regions which turn out to be – with 
very few exceptions – regions in Central and Eastern Europe, and simultaneously 
a tendency towards polarisation – a small group of richer regions separating from 
the rest of the cross-section. 
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Fig. E.2.5. The ergodic density f∞(z) implied by the estimated g5(z|y) and the marginal 
density function f1995(y)  
Notes: The solid line shows the point estimate for f∞(z) and the dashed line the estimate for the 
marginal density f1995(y). The ergodic function f∞(z) has been found as solution to Eq. (E.2.4) 

The bimodal shape of the ergodic distribution contradicts with Quah’s (1996a) 
unimodal ergodic solution found in a discrete state space set up with a largely 
reduced set of 78 European regions over 1980-1989. The observation, however, is 

                                                           
22 The upper peak, however, is imprecisely estimated. Only few observations were actually 

made there, and the precision of the estimate is low. 
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in line with Pittau and Zelli’s (2006) findings, obtained for a set of 110 regions 
covering twelve EU member countries over the time period from 1977 to 1996. 

To sum up this first pass through the data, we conclude that the data show a 
wide spectrum of intra-distribution dynamics. Overtaking and catching-up occur 
simultaneously with persistence and polarisation. Polarisation manifests itself in 
the emergence of a twin-peak structure in the long-run regional income 
distribution. 

The spatial filtering perspective 

Large significant and positive values of Moran’s I reveal the presence of spatial 
association of similar values of neighbouring European regions in relative (per 
capita) income23. This motivates a spatial filtering pass24 through the data to avoid 
inferences and interpretations, misguided by the violation of the independence 
assumption in the previous analysis. 

Figure E.2.6 presents the spatially filtered counterpart of Fig. E.2.1. 
Comparing these densities with those in Fig. E.2.1 indicates that the mode, which 
was situated at around 38 percent of the European average, has disappeared. 
Consequently, the economic performance of the regions is well explained by the 
neighbouring regions’ performances, except may be for regions with very high 
relative (per capita) income.  

The filtered distributions in this figure are tighter and more concentrated than 
those in Fig. E.2.1. The boxplots in Fig. E.2.7 make this particularly clear. Upper 
and lower outliers exist here, but the 25th and 75th percentiles are located close to 
the average income. Lower and upper adjacent values are compactly situated 
within about 0.5 and 1.5 times average income levels. The filtered distribution has 
a kernel estimated standard deviation of 0.262 in 1995, which increases to 0.283 in 
1999, and then to 0.310 in 2003. The increase over the time 1995-2003 is 15 
percent. The estimated standard deviations of the unfiltered data were found to 
be 0.393 in 1995 and 0.380 in 2003, indicating a slight decline by 3.3 percent. 

From this, it is clear that the evidence for σ-convergence found above is 
caused by spatial dependence embedded in the income data25. 

 
 

                                                           
23 Using Moran’s I, the spatial autocorrelation latent in each of the income variables ranges 

from z(MI)=8.86 for the 1995 income variable to z(MI)=8.06 for the 2003 income 
variable where z(MI) denotes the z-score value of Moran’s I. From this, it is clear that 
there is a strong spatial autocorrelation, and hence the assumption of spatial 
independence does not hold. 

24 Rather than use an individual δ for each observation, the modal value for δ was chosen 
for each income variable as recommended by Getis and Griffith (2002). 

25 See Rey and Dev (2006) for appropriate inference methods of σ-convergence in the 
presence of spatial effects. 
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Fig. E.2.6. Densities of relative (per capita) income, 1995 versus 2003: the spatial  
filtering view 
Notes: The plots are densities calculated non-parametrically using a Gaussian kernel with  
bandwidth chosen as suggested in Silverman (1986), restricting the domain to be non-negative.  
The solid line shows the density for 2003 and the dashed line that for 1995 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E.2.7. Tukey boxplots of relative (per capita) income, across 257 European  
regions:  the spatial filtering view 

1995 1997 1999 2001 2003
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
pa

tia
lly

 fi
lte

re
d 

re
la

tiv
e 

(p
er

 c
ap

ita
) i

nc
om

e
D

en
si

ty
 e

st
im

at
e 

Spatially filtered (per capita) income 



620     Manfred M. Fischer and Peter Stumpner 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E.2.8. Stochastic kernel mapping from the original to the spatially filtered distribution, 
the estimated g (ỹ|y): (a) the stacked conditional density plot, and (b) the highest density 
regions boxplot  

Notes: ad (b) The lighter shaded region in each strip is a 99 percent HDR, and the darker shaded 
region a 50 percent HDR. The mode for each conditional density is shown as a bullet •. Technical 
notes: The conditional density g(ỹ|y) is estimated over a 5-year transition horizon 5τ =  between 1995 
and 2003. Estimates are based on a Gaussian product kernel density estimation with bandwidth 
selection (hy = 0.103, yh% = 0.052) based on the three-step-strategy suggested by Bashtannyk and 
Hyndman (2001). The stacked conditional density plot and the high density region boxplot were 
estimated at 70 and 150 points, respectively. Calculations of the plots were performed using the R 
package HRDCDE, provided by Rob Hyndman, and spatial filtering, using the PPA package, provided 
by Arthur Getis 
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Fig. E.2.9. The spatial filter view of relative income dynamics: the estimated g5 ( | )z y%% ,  
(a) stacked density plot, and (b) highest density regions boxplot 

Notes: ad (b) The lighter shaded region in each strip is a 99% HDR, and the darker shaded region a 
50% HDR. The mode for each conditional density is shown as a bullet •. Technical notes: The 
conditional density gτ ( )z|y%%  is estimated over a 5-year transition horizon 5τ =  between 1995-2003. 
Estimates are based on a Gaussian product kernel density estimator with bandwidth selection ( yh% = 
0.061, zh% = 0.047) based on the three-step-strategy suggested by Bashtannyk and Hyndman (2001). 
The stacked conditional density plot and the high density region boxplot were estimated at 70 and 150 
points, respectively. Calculations of the plots were performed using the R package HRDCDE, provided 
by Rob Hyndman, and spatial filtering using the PPA package, provided by Arthur Getis 
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More information on the role of spatial effects becomes evident when looking at 
the stochastic kernel in Fig. E.2.8 that shows how the original (unfiltered) relative 
(per capita) income distribution is transformed into the spatially filtered one. 
Figure E.2.8(a) displays the conditional kernel density estimate ˆ( | )g y y%  with 
fixed bandwidths ( 0.103, 0.052)y yh h= =%  in terms of a three-dimensional stacked 
conditional plot as given in Fig. E.2.8(a), and an HDR boxplot in Fig. E.2.8(b). 

If spatial effects account for a substantial part of the distribution, then the 
stochastic kernel mapping from the original (unfiltered) to the spatially filtered 
distribution would depart from the identity map. Indeed, Fig. E.2.8(a) precisely 
conveys this message. The graph shows the kernel mapping the original to the 
filtered distribution in the same year. The evident clockwise reversal on the lower, 
but also on the higher part of the distribution indicates that spatial effects do 
account for a large part of income dynamics in Europe. Figure E.2.8(b) reinforces 
this interpretation. The dominant feature in this figure appears to be intra-
distribution mobility rather than persistence. Regions with an income less than 0.7 
times the European average show a clear tendency towards cohesion. There are 
strong indications that the probability of the poorest regions to move up is 
negatively affected by the presence of spatial dependence effects. This is 
evidenced by the 99 percent HDRs crossing the horizontal line at 1.0 and by the 
50 percent HDRs coming much closer to this line. However, while this is 
happening, the very highest parts of the income distribution show tendencies away 
from cohesion, and provide evidence for emerging twin peaks. 

Figure E.2.9 provides stochastic kernel representations of five-year transition 
dynamics in the spatially filtered income space, using again a stochastic kernel 
estimator with fixed bandwidths ( 0.061, 0.047).y zh h= =% %  This figure is the 
counterpart to Fig. E.2.4 for spatially filtered relative (per capita) regional 
incomes. Figure E.2.9(a) presents the stochastic kernel in terms of a three-
dimensional stacked conditional density plot, and Fig. E.2.9(b) in terms of a 
highest density regions boxplot. 

The picture that emerges from the estimates here is that of a substantial degree 
of intra-distribution mobility at the upper and lower tails of the income 
distribution. The remarkably different dynamics that emerge – in comparison to 
the unfiltered regional income case – suggest that – if we are to evaluate growth 
and convergence dynamics across regions correctly – the use of spatially filtered 
data is pretty much essential to avoid misleading interpretations. 

E.2.4 Concluding remarks 

The study follows the tradition of the non-parametric approach studying both the 
shape and mobility dynamics of cross-sectional distributions of relative (per 
capita) income that appears to be generally more informative about the actual 
patterns of cross-sectional growth than convergence empirics within the β-
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convergence regression approach. It differs from most of the previous work by 
going for a continuous kernel route which is more informative than research with 
discretely-defined income cells. 

This contribution incorporates two novel techniques into the continuous 
analysis: kernel estimation and more powerful graphical devices for the 
representation of the stochastic kernel, and Getis’ spatial filtering technique to 
explicitly account for the spatial dimension of the growth process. The chapter 
illustrates that the use of spatially filtered data is pretty much essential to evaluate 
growth and convergence dynamics across regions. The lack of an appropriate 
inferential theory, however, restricts the study to a descriptive stage. 

The study has produced some interesting results. First, there is no 
development trap in the long-run into which the poorer Central and Eastern 
European regions will be permanently condemned. Second, the findings suggest a 
tendency of the cross-section distribution of regional per capita income to split up 
into two separate groups, where a small group of richer metropolitan regions is 
growing away from the rest of the European regions. This evidence is coherent to 
Pittau and Zelli’s (2006) stationary distribution estimated on a sample of 110 EU-
12 regions over the period 1977-1996. Third, spatial effects explain a substantial 
part of the income distribution, but not the emergence of the two-club regional 
world in the long-run. Growth theories now need to explain these facts. The 
distribution dynamics analysis carried out in this chapter does not help further in 
this respect. 
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Appendix 

NUTS is an acronym of the French for the ‘nomenclature of territorial units for 
statistics", which is a hierarchical system of regions used by the statistical office 
of the European Community for the production of regional statistics. At the top of 
the hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions 
and then NUTS-2 regions. The sample is composed of 257 NUTS-2 regions 
located in 27 EU member states (NUTS revision 1999, except for Finland NUTS 
revision 2003). We exclude the Spanish North African territories of Ceuta and 
Melilla, and the French Départements d'Outre-Mer Guadeloupe, Martinique, 
French Guayana and Réunion, and the Portuguese non-continental territories 
Azores and Madeira. Thus, we include the NUTS-2 regions listed in the table. 

 
 
 

Country  ID Code Region  Country  ID Code Region 

Austria AT11 Burgenland  Finland FI13 Itä-Suomi 
 AT12 Niederösterreich   FI18 Etelä-Suomi 
 AT13 Wien   FI19 Länsi-Suomi 
 AT21 Kärnten   FI1A Pohjois-Suomi 
 AT22 Steiermark   FI20 Åland 
 AT31 Oberösterreich  France FR10 Île de France 
 AT32 Salzburg   FR21 Champagne-Ardenne 
 AT33 Tirol   FR22 Picardie 
 AT34 Vorarlberg   FR23 Haute-Normandie 
Belgium BE10 Région de Bruxelles-Capitale   FR24 Centre 
 BE21 Prov. Antwerpen   FR26 Bourgogne 
 BE22 Prov. Limburg (B)   FR30 Nord-Pas-de-Calais 
 BE23 Prov. Oost-Vlaanderen   FR41 Lorraine 
 BE24 Prov. Vlaams Brabant   FR42 Alsace 
 BE25 Prov. West-Vlaanderen   FR43 Franche-Comté 
 BE31 Prov. Brabant Wallon   FR51 Pays de la Loire 
 BE32 Prov. Hainaut   FR52 Bretagne 
 BE33 Prov. Liège   FR53 Poitou-Charentes 
 BE34 Prov. Luxembourg (B)   FR61 Aquitaine 
 BE35 Prov. Namur   FR62 Midi-Pyrénées 
Bulgaria BG11 Severozapaden   FR63 Limousin 
 BG12 Severen tsentralen   FR71 Rhône-Alpes 
 BG13 Severoiztochen   FR72 Auvergne 
 BG21 Yugozapaden   FR81 Languedoc-Roussillon 
 BG22 Yuzhen tsentralen   FR82 Provence-Alpes-Côte d'Azur 
 BG23 Yugoiztochen   FR83 Corse 
Cyprus CY00 Kypros / Kibris  Germany DE11 Stuttgart 
Czech  CZ01 Praha   DE12 Karlsruhe 
Republic CZ02 Strední Cechy   DE13 Freiburg 
 CZ03 Jihozápad   DE14 Tübingen 
 CZ04 Severozápad   DE21 Oberbayern 
 CZ05 Severovýchod   DE22 Niederbayern 
 CZ06 Jihovýchod   DE23 Oberpfalz 
 CZ07 Strední Morava   DE24 Oberfranken 
 CZ08 Moravskoslezko   DE25 Mittelfranken 
Denmark DK00 Danmark   DE26 Unterfranken 
Estonia EE00 Eesti   DE27 Schwaben 
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                          cont. 

Country  ID Code Region  Country  ID Code Region 

Germany DE30 Berlin  Italy ITD5 Emilia-Romagna 
 DE40 Brandenburg (Südwest and Nordost)  ITE1 Toscana 
 DE50 Bremen   ITE2 Umbria 
 DE60 Hamburg   ITE3 Marche 
 DE71 Darmstadt   ITE4 Lazio 
 DE72 Gießen   ITF1 Abruzzo 
 DE73 Kassel   ITF2 Molise 
 DE80 Mecklenburg-Vorpommern   ITF3 Campania 
 DE91 Braunschweig   ITF4 Puglia 
 DE92 Hannover   ITF5 Basilicata 
 DE93 Lüneburg   ITF6 Calabria 
 DE94 Weser-Ems   ITG1 Sicilia 
 DEA1 Düsseldorf   ITG2 Sardegna 
 DEA2 Köln  Lithuania LT00 Lietuva 
 DEA3 Münster  Luxembourg LU00 Luxembourg (Grand-Duché) 
 DEA4 Detmold  Latvia LV00 Latvija 
 DEA5 Arnsberg  Malta MT00 Malta 
 DEB1 Koblenz  Netherlands NL11 Groningen 
 DEB2 Trier   NL12 Friesland 
 DEB3 Rheinhessen-Pfalz   NL13 Drenthe 
 DEC0 Saarland   NL21 Overijssel 
 DED1 Chemnitz   NL22 Gelderland 
 DED2 Dresden   NL23 Flevoland 
 DED3 Leipzig   NL31 Utrecht 
 DEE1 Dessau   NL32 Noord-Holland 
 DEE2 Halle   NL33 Zuid-Holland 
 DEE3 Magdeburg   NL34 Zeeland 
 DEF0 Schleswig-Holstein   NL41 Noord-Brabant 
 DEG0 Thüringen   NL42 Limburg (NL) 
Greece GR11 Anatoliki Makedonia, Thraki  Poland PL11 Lódzkie 
 GR12 Kentriki Makedonia   PL12 Mazowieckie 
 GR13 Dytiki Makedonia   PL21 Malopolskie 
 GR14 Thessalia   PL22 Slaskie 
 GR21 Ipeiros   PL31 Lubelskie 
 GR22 Ionia Nisia   PL32 Podkarpackie 
 GR23 Dytiki Ellada   PL33 Swietokrzyskie 
 GR24 Sterea Ellada   PL34 Podlaskie 
 GR25 Peloponnisos   PL41 Wielkopolskie 
 GR30 Attiki   PL42 Zachodniopomorskie 
 GR41 Voreio Aigaio   PL43 Lubuskie 
 GR42 Notio Aigaio   PL51 Dolnoslaskie 
 GR43 Kriti   PL52 Opolskie 
Hungary HU10 Közép-Magyarország   PL61 Kujawsko-Pomorskie 
 HU21 Közép-Dunántúl   PL62 Warminsko-Mazurskie 
 HU22 Nyugat-Dunántúl   PL63 Pomorskie 
 HU23 Dél-Dunántúl  Portugal PT11 Norte 
 HU31 Észak-Magyarország   PT15 Algarve 
 HU32 Észak-Alföld   PT16 Centro (P) 
 HU33 Dél-Alföld   PT17 Lisboa 
Ireland IE01 Border, Midlands and Western   PT18 Alentejo 
 IE02 Southern and Eastern  Romania RO01 Nord-Est 
Italy IT31 Bolzano-Bozen e Trento   RO02 Sud-Est 
 ITC1 Piemonte   RO03 Sud 
 ITC2 Valle d'Aosta/Vallée d'Aoste   RO04 Sud-Vest 
 ITC3 Liguria   RO05 Vest 
 ITC4 Lombardia   RO06 Nord-Vest 
 ITD3 Veneto   RO07 Centru 
 ITD4 Friuli-Venezia Giulia   RO08 Bucuresti 
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                         cont. 

Country  ID Code Region  Country  ID 
Code Region 

Slovakia SK01 Bratislavský kraj  United UKE1 East Riding and North  
 SK02 Západné Slovensko  Kingdom  Lincolnshire 
 SK03 Stredné Slovensko   UKE2 North Yorkshire 
 SK04 Východné Slovensko   UKE3 South Yorkshire 
Slovenia SI00 Slovenija   UKE4 West Yorkshire 
Spain ES11 Galicia   UKF1 Derbyshire and Nottinghamshire 
 ES12 Principado de Asturias   UKF2 Leicestershire, Rutland and  
 ES13 Cantabria    Northants 
 ES21 País Vasco   UKF3 Lincolnshire 
 ES22 Comunidad Foral de Navarra   UKG1 Herefordshire, Worcestershire  
 ES23 La Rioja    and Warks 
 ES24 Aragón   UKG2 Shropshire and Staffordshire 
 ES30 Comunidad de Madrid   UKG3 West Midlands 
 ES41 Castilla y León   UKH1 East Anglia 
 ES42 Castilla-La Mancha   UKH2 Bedfordshire, Hertfordshire 
 ES43 Extremadura   UKH3 Essex 
 ES51 Cataluña   UKI1 Inner London 
 ES52 Comunidad Valenciana   UKI2 Outer London 
 ES53 Illes Balears   UKJ1 Berkshire, Bucks and  
 ES61 Andalucía    Oxfordshire 
 ES62 Región de Murcia   UKJ2 Surrey, East and West Sussex 
Sweden SE01 Stockholm   UKJ3 Hampshire and Isle of Wight 
 SE02 Östra Mellansverige   UKJ4 Kent 
 SE04 Sydsverige   UKK1 Gloucestershire, Wiltshire and  
 SE06 Norra Mellansverige    North Somerset 
 SE07 Mellersta Norrland   UKK2 Dorset and Somerset 
 SE08 Övre Norrland   UKK3 Cornwall and Isles of Scilly 
 SE09 Småland med öarna   UKK4 Devon 
 SE0A Västsverige   UKL1 West Wales and The Valleys 
United  UKC1 Tees Valley and Durham   UKL2 East Wales 
Kingdom UKC2 Northumberland, Tyne and Wear   UKM1 North Eastern Scotland 
 UKD1 Cumbria   UKM2 Eastern Scotland 
 UKD2 Cheshire   UKM3 South Western Scotland 
 UKD3 Greater Manchester   UKM4 Highlands and Islands 
 UKD4 Lancashire   UKN0 Northern Ireland 
 UKD5 Merseyside     

 
 



E.3 A Multi-Equation Spatial Econometric 
Model, with Application to EU 
Manufacturing Productivity Growth  

Bernard Fingleton 

E.3.1  Introduction 

Recently major new advances have occurred in urban economics and economic 
geography (Huriot and Thisse  2000; Fujita et al. 1999; Brakman et al.  2001) 
which provide a formal, general equilibrium, theory of economic geography and 
urban agglomeration. One of the most significant aspect of this new theory is that 
it accommodates increasing returns, which is more or less universally agreed to be 
the ‘sine qua non’ of urban and regional economics (Fingleton and McCombie 
1998; Fingleton 2003), but which has previously restricted the integration of re-
gional economics into the economic mainstream. Also the theory goes some way 
towards realism by explicitly incorporating a monopolistic competition market 
structure (Dixit and Stiglitz 1977) with each agent solving a clearly defined eco-
nomic problem, and by introducing externalities.   

One of the criticisms that has been made in the past of the new economic ge-
ography theory is that hitherto there has been little or no empirical testing of its 
assumptions and predictions.  One reason for this is that the theory as presented by 
Fujita et al. (1999) is largely deductive and abstract, designed to provide a window 
on the real world by logical argument clarified by simplifying assumption.  It is 
not particularly designed for a confrontation with data. However the situation is 
changing rapidly, and latterly there has been an outpouring of work which takes 
the new theory as its starting point, but which strives to estimate some of the fun-
damental parameters, or in various ways to operationalize various version and ex-
tensions of the new theory (Combes and Lafourcade 2001, 2004; Combes  and 
Overman 2003; Forslid et. al.  2002; Head and Mayer 2003; Redding and Venables 
2004; Rice and Venables  2003; Fingleton 2005a, 2005b, 2006).   
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In this chapter, the focus is on a model with the same provenance as the foregoing 
theory, but which comes from the urban economics wing of the literature (Rivera 
Batiz 1988; Abdel-Rahman and Fujita 1990; Ciccone and Hall 1996), since this 
has tended to be somewhat overshadowed and yet in many ways it offers a more 
straightforward route to modeling urban and regional disparities. Implementing 
new economic geography models can be difficult, partly because of problems of 
obtaining realistic indicators of transport costs and market potential (McCann 
2005; Fingleton 2005a; Fingleton and McCann 2007). Moreover there is some 
evidence that, at the regional level, models based on urban economic theory com-
pare favourably with those with a basis in new economic geography (Fingleton 
2006).   

The econometric approach adopted is spatial seemingly unrelated regression 
(SUR) with spatially lagged dependent variables (see Anselin 1988; Fingleton  
2001b). While the current chapter uses the same data and underlying theory as in 
this earlier paper (see also Fingleton 2000, 2001a), it builds on the earlier analysis 
with new findings based on data (taken from Cambridge Econometrics’ European 
regional database) allowing the division of the 178 EU regions into two groups, 
namely a core group and a periphery group (see Appendix). The regions are con-
fined to the UK, Ireland, France, Italy, Germany, Spain, Portugal, Austria, Nether-
lands, Belgium, Luxembourg, Denmark, Greece.  With space partitioned in this 
way, and time divided into three periods, 1975-81, 1981-89, 1989-95, the systems 
modelling approach allows testing for parameter homogeneity across space and 
time. While more recent data are available, this period of history is one of consid-
erable interest, since it was an era of rapid adjustment by new entrants to the EU. 
The chapter begins by setting out the theoretical basis of the reduced form which 
lies at the heart of the empirical model.  It then introduces spatial heterogeneity 
and spatial interaction between regions thus allowing geographically-conditioned 
technology growth.  The kernel of the chapter is dedicated to the quest for a pre-
ferred model, which is a simplification of an initial unrestricted spatial SUR 
model.  The chapter concludes by interpreting the results in a policy context, and 
by calling for a new layer of theory, in which the constant parameter assumptions, 
which have largely dominated the literature, are replaced by a more realistic ap-
proach.  

E.3.2  Theory 

This section sketches the theory behind the econometric model, following Fingle-
ton (2001b).  In order to save space, and because this has been set out in detail 
elsewhere, it is necessarily brief. It is well known (see for instance Abdel-Rahman 
and Fujita 1990) that assuming a two–sector characterization of the economy of 
each region, divided between a competitive ‘manufacturing’ sector  and a mono-
polistically competitive ‘producer services’ sector, we obtain the following re-
duced form 
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Q N γφ=  (E.3.1) 

 
in which competitive sector output (Q) relates nonlinearly to the intensity of activ-
ity in a unit area (given by the total labour per unit area N), and in which  the elas-
ticity γ  depends on the exogenous parameters α, β and µ, and is a measure of ex-
ternal increasing returns.  

 

[1 (1 )( 1)]γ α β μ= + − −  (E.3.2) 

 
The level of monopoly power in the imperfectly competitive sector is given by the 
exogenous parameter µ ≥ 1. As μ  increases, we see rising monopoly power and 
falling elasticity of substitution. The parameter β determines the relative impor-
tance of labour in the competitive sector (M) versus services (in the form of a 
composite index I), as indicated by the Cobb-Douglas production function 

 

1 1( )Q M I Lβ β α α− −=  (E.3.3) 

 
in which L is land area used in production. However L is redundant as a factor af-
fecting the growth of productivity, which is the subject of this contribution, since 
it is constant across time and therefore is eliminated on differentiation with respect 
to time (see Eq. (E.3.15)). In order to simplify the notation, we set L = 1 at this 
juncture so that we have production per unit area, hence 1( )Q M Iβ β α−= . This 
means that the output level Q is reduced by restricting land area, and the parame-
ter 1α <   can be seen to represent the impact of congestion  which, to some ex-
tent, will offset increasing returns, as indicated by Eq. (E.3.2) (Ciccone and  Hall 
1996).      

For increasing returns, simultaneously, producer services (I) have to be rele-
vant (β < 1) to competitive sector output, service firms have to exert a degree of 
monopoly power under monopolistic competition (µ > 1), and the effect of con-
gestion (α < 1) has to be sufficiently small, in order to ensure that γ < 1. There are 
a priori reasons why the value of the estimable returns to scale parameter γ may 
not be constant between core and (typically) later EU entrants in the periphery, 
and vary between different time periods. For instance the importance (β) of pro-
ducer services for competitive sector output may change as economic structure 
changes in response to the exposure of formerly protected markets to EU and 
global competition. Likewise congestion (α), considered in the widest sense,  may 
reflect variations in infrastructural investment over time and between core and pe-
riphery, due perhaps to the impact of EU investment programmes in the periphery 
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and slower infrastructure investment in the well-established infrastructure of the 
core. The degree of monopoly power (µ) is also unlikely to be a constant, as a re-
sult of institutional and structural differences and changes over time.  

Although of less direct consequence for the empirical analysis, it is worth not-
ing that φ  is also a function of constants given by 

 

φ = [ββ (1 – β)μ(1–β) α–(1–β) s–(1–1/μ)(1-β)μ (1/μ)1–β (1–1/μ) (1–1/μ) (1–β)μ] (E.3.4) 

 
Equation (E.3.4) extends Eq. (E.3.18) in Abdel-Rahman and Fujita (1990) by in-
corporating the congestion-induced diminishing returns of the current set up.  

In order to move closer to a convenient reduced form, we linearize Eq. (E.3.1) 
by taking natural logarithms and rearranging to give an expression in terms of the 
level of manufacturing output per labour unit as a function of the level of manu-
facturing output, thus 

 

ln( ) ln( ) [( 1) ]ln( )Q N Qφ γ γ γ/ = / + − /  (E.3.5) 

 
Also, standard competitive equilibrium theory (see for example Fingleton 2003) 
allows us to assume M / N = β , the preferred expression is in terms of the level of 
manufacturing output per unit of manufacturing labour, thus  

 

ln( ) ln( ) [( 1) ]ln( ) ln( ).Q M Qφ γ γ γ β/ = / + − / −  (E.3.6) 

E.3.3  Incorporating technical progress variations 

Technological externalities involving information spillovers within and between 
regions and cities are increasingly recognized (e.g. Fujita and Thisse 1996) as an 
important contributor to the spatial concentration of economic activity, reflecting 
the earlier work of Jacobs (1969) among others. In the current empirical modeling 
context, their presence is compelled by the need to avoid estimation bias. In what 
follows, attention focuses on the rate of technical progress as a manifestation of 
technological externalities. We see that technical progress is not confined by arti-
ficial region boundaries but influences and is influenced by technical progress in 
other regions, so that it varies by region rather than being an unmodeled constant.  
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In order to model the technical progress rate, the approach again follows that in 
Fingleton (2001b) and Fingleton (2000). First we consider the labour units re-
ferred to above to be labour efficiency units, hence 

 

Mt = Et At = Et A0 exp (λt) (E.3.7) 

 
where tE  is the level of manufacturing employment and tA  is the efficiency level 
at time t that is determined by the initial level 0A  and the rate of technical pro-
gress λ . It then become possible to re-express the model in terms of the level of 
manufacturing productivity per unit area by substitution, hence 

 

0ln( ) ln( ) [( 1) ]ln( ) ln( ) ln( )Q E Q A tφ γ γ γ β λ/ = / + − / − + +  (E.3.8)

 
The submodel for the technical progress rate λ proposes that  

 

Wλ λ ρ λ∗= +  (E.3.9) 

 
so that the technical progress rate depends partially on the rate of technical pro-
gress due to within-region factors as represented by λ∗ , and on the rate of techni-
cal progress in ‘nearby’ regions ( )Wλ .  

Consider first the determinants of technical progress which exist within the 
region. The basic assumption is that λ∗  is determined by H, the stock of human 
capital within a region, and the ‘technology gap’ G which is (a function of) the 
level of technology within a region, hence  

 

.G Hλ π ν∗ = +  (E.3.10)

 
In Eq. (E.3.10), G reflects the ubiquitous public good dimension of knowledge. 
There is no distance effect involved and some components of knowledge are free 
to diffuse to any region, irrespective of geography.  However, the hypothesis is 
that the impact will be spatially variegated.  The reason is differential acceptance 
of knowledge because of its varying usefulness. Some regions will gain great 
benefit from the diffusion of knowledge from the technological frontier region, 
others that are close to the technological frontier will see only minor gains. We 
therefore envisage that there will be a positive relationship ( 0)π >  between the 
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technical progress rate and the initial technology gap, although this is a testable 
hypothesis and not an assumption of the model. A positive relationship indicates 
catching-up due to the faster growth of the initially lower level technology re-
gions, but a negative relationship implies regional divergence.  

There are several proxies for initial level of technology and thus the techno-
logy gap (see Fingleton and  McCombie 1998), but here we work with the (initial) 
level of technology gap 1975 19751 /G P P∗= −  in which 1975P  is the level of manufac-
turing productivity in 1975, and 1975P∗  is the level of the leading technology 
(manufacturing productivity) region. Since it is defined for the initial year, it is 
treated as exogenous in the analysis that follows.  

Independently of catching-up, it is hypothesized that regions with substantial 
human capital assets will make faster technical progress ( 0)ν >  since human 
capital facilitates the research and development on which technical progress de-
pends.  Human capital level (H) is proxied by two exogenous variables, namely 
the start-of-period population density (U) and remoteness (L).  In high population 
density regions, which are invariably highly urbanized, we envisage dense social 
networks and institutions in which, compared to more rural regions, there is more 
scope for the exchange of (embodied and disembodied) information leading to 
technical progress.  This type of knowledge spillover is seen as a technological ex-
ternality. The assumption that remote  regions tend to possess less human capital 
than more central regions is based on their traditionally comparatively large agri-
cultural and non-market services sectors, which partly because of additional trans-
actions costs have not fostered a strong manufacturing research and development 
and skills base.  Combining the dual effects of remoteness and urbanization gives 

 

H L Uε θ τ= + +  (E.3.11)

 
in which remoteness variable (L) is measured by km distance between each re-
gion’s centre and Luxembourg, and population density (U) relates to 1975.  

Next we turn to spatially impeded information flows. The hypothesis is that 
regions with fast technical progress occurring in ‘neighbouring’ regions will see 
faster than otherwise technical progress, and regions with slower technical pro-
gress neighbours will see a technical progress slowdown.  ‘Who your neighbours 
are’ matters in this context, because of the impedance to information flow across 
space. Working with the so-called NUTS-2 regional system of the EU means that 
we are likely to see flows across region boundaries. This is because this regional-
izing does not define self-contained economic regions but rather regions are 
largely defined on a formal or administrative basis.  In addition, national barriers 
have been progressively reduced within the EU with the consequence that there 
are minimal barriers to remote cross-region spillover.  Hence we anticipate that 
the strength and significance of spillover effects will strengthen over time, as in-
deed is evident from the empirical analysis reported later.  
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Two cross-region spillover mechanisms are envisaged. One is based on the shar-
ing of the same labour pool in a common local labour market area straddling re-
gional boundaries, the thesis being that the rate of productivity growth occurring 
in one region will be transmitted to other nearby regions as workers embodying 
technical progress switch jobs within local labour market (i.e. journey to work) ar-
eas. The second mechanism involves inter-firm interaction across region bounda-
ries. Because of proximity, firms locally and in nearby regions may be competitors 
for the same local markets, or collaborate as part of a localized production chain. 
In either case, fast technical progress in neighbouring regions will tend to induce 
technical progress and thus fast productivity growth locally.   

The assumptions set out above result in Wλ  in Eq. (E.3.9) being specified as 
the weighted average of technical progress in ‘surrounding’ regions, with sur-
rounding broadly defined so as to acknowledge that even the remotest regions in-
teract and that the EU comprises a more or less integrated economy.  Size also is 
considered relevant, and to a degree offsets remoteness, because of the extensive 
trade and labour market that a large diverse local economy naturally generates.  
This is apparent in the definition of the absolute (conditional) level of interaction 
between regions i and j, 

 

1975 .ij j ijW Q dη δ∗ −=  (E.3.12)

 
In Eq. (E.3.12), the term 1975jQ  represents the economy size proxy, the 1975 level 
of output in region j, so that given the size of region i, the interaction with region j 
is likely to be stronger if region j possesses a larger economy. The definition of 

ijW ∗  ignores the size of region i as an influence. The size of i could be represented 
by 1975iQ ,  so that the unconditional interaction is then 1975 1975ij i j ijW Q Q dϑ η δ∗ −=  in 
which ϑ  is an additional parameter, but the outcome with respect to W is the same 
irrespective of whether conditional or unconditional specifications are used. Prox-
imity is represented by the great circle distance ( )ijd  between the centres of re-
gions i and j.  Given a presumably negative parameter (δ), increasing distance re-
duces the absolute conditional interaction between i and j. The importance of the 
size of the economy is controlled by the parameter η. It is assumed that δ = 2 and 
η = 1 as a result of trials of different values reported in Fingleton (2001b). Like-
wise, comparison between the power function of Eq. (E.3.12) and the negative ex-
ponential function 1975 exp( )ij j ijW Q dη δ∗ = −  provide empirical support for 
Eq. (E.3.12).  

The standardized matrix W has cell entries for regions i and j equal to  

 

∑ ∗

∗

=
j ij

ij
ij W

W
W  (E.3.13)
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which sum to unity across rows with zeros on the main diagonal, so that the matrix 
product Wλ  is a vector of weighted averages. Note that because it has been stan-
dardized, W is asymmetrical with the consequence that i’s effect on j may not 
equal j’s effect on i, since j may dominate i but the reverse may not be true, hence 
the spillover effects are conditional on the spatial context of each region. This 
means that the parameter ρ in Eq. (E.3.9) is the change in technical progress per 
unit change in the ‘average’ in ‘surrounding’ regions.  

Combining the earlier equations, we obtain 

 

( )W G L Uλ ρ λ π ν ε θ τ= + + + +  (E.3.14)

 
and differentiating Eq. (E.3.8) with respect to time, we obtain 

 

( 1) ( )p q W G L Uγ γ ρ λ π ν ε θ τ= − / + + + + +  (E.3.15) 

 
The rate of technical progress is unknown but if we treat it as a ‘residual’,  

( 1)p qλ γ γ= − − /  and ( 1)Wp W Wqλ γ γ= + − / . In fact it is simpler for the pur-
poses of estimation to assume that pλ =  and therefore W Wpλ = . Otherwise we 
need to include both Wp and Wq in the specification, and estimation involves a 
constraint. Therefore we specify the model as 

 

( 1) ( )p q Wp G L Uγ γ ρ π ν ε θ τ= − / + + + + + . (E.3.16) 

 
An advantage of this specification is that it is easily estimated by maximum likeli-
hood in the single equation context.  Given a standardized W matrix, estimated ρ  
is automatically less than an upper bound equal to one, thus facilitating interpreta-
tion (see Fingleton 2000). A similar outcome is produced by scaling all values by 
the maximum eigenvalue of the matrix. The emphasis given by row standardiza-
tion is on relative rather than absolute distance. With the equation system defined 
here, ρ is also typically below one, although alternative estimation techniques are 
employed as outlined below. Writing this in matrix terms, simplifying the parame-
terization and adding an error term gives 

 

p Wp Xb uρ= + +  (E.3.17)
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in which p is the exponential growth rate of manufacturing productivity by EU re-
gion, X is the matrix of regressors q G L U, , ,  and a constant with composite pa-
rameters b, and u ~ N (0, σ 2) is an error term capturing other unmodeled effects. 

E.3.4  The econometric model 

The model set out in Eq. (E.3.17) is a conventional spatial lag model as commonly 
found in the spatial econometrics literature.  From the point of view of estimation, 
the main feature of the model is the endogenous term Wp (it is assumed that the 
remaining variables are exogenous), so that for consistent estimation in the single 
equation context, maximum likelihood or two-stage least squares (2sls) is re-
quired.  

The subsequent analysis focuses on the question of whether the basic model in 
Eq. (E.3.17) has constant parameters across different regions and times. In order to 
test these hypotheses, we adopt a systems modeling approach, using three stage 
least squares estimation via LIMDEP, with results replicated by PcFIML. The 
equations  are linked by error covariance, in other words we apply three stage least 
squares to spatial SUR with spatially lagged dependent variables (see Anselin 
1988).  While this preserves the basic specification given by Eq. (E.3.17), it im-
proves the efficiency of estimation giving estimates with smaller asymptotic vari-
ance, and captures potential omitted variables that different equations might have 
in common. Most importantly, it also facilitates nested hypothesis tests of parame-
ter equality across equations. This approach was first used in the current context 
by Fingleton (2001b), but here is extended to both space and time contrasts.  

Given the possible existence of structural instability over both space and time, 
and assuming 3T =  time periods, 1975-81, 1981-89, and 1989-95  and 2R =  ar-
eas (core and periphery), the consequence is 2 12RT =  equations. There are six 
equations for the rate of manufacturing productivity growth p, collectively the six 
equations are 

 

rt rt rt rt rt rtp Wp X bρ η= + +% . (E.3.18)

 
In Eq. (E.3.18), the matrix rtX  denotes the exogenous variables specific to time t 
and area r, and rtb  denotes parameter vectors (with elements 0 1rt rtb b, , etc.). The 
parameter set rtρ  allows space and time varying effects of the endogenous lags 
derived from the matrix products rtWp .  Since these involve the matrix W which 
applies to all regions irrespective of whether they are core or periphery, this prod-
uct by itself gives a vector with non-zero elements for all regions.  Zeros are intro-
duced for non-core regions by multiplying the vector by a dummy variable with 
ones indicating core regions and zeros indicating periphery regions. Similarly ze-
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ros are introduced for non-periphery regions by multiplying by the periphery re-
gion dummy (see below).  Therefore rtWp% denotes these modified variables, with 
zeros in place as appropriate.  

The other six equations relate to the set of endogenous vectors rtWp .%  It is as-
sumed that the lagged causal variables matrices rtWX%  (treated as above with mul-
tiplication by the appropriate area dummy) are the exogenous determinants of 

rtWp%  and there is also feed back from rtp  to rtWp% .  This is summarized by 

 

rt rt rt rt rt rtWp WX m p n ξ= + +% %  (E.3.19)

 
with parameter sets rtm  and rtn . Subsequently, while restrictions are imposed on  

rtb and rtρ , rtm  and rtn  remain unrestricted in all models fitted and are unreported 
in the tables of estimates given below. 

The matrix of variances and covariances of the error terms rtη  and rtξ  is of 
dimension twelve and so is omitted here.  The main diagonal of this matrix is 

 

1 2 3 1 2 3 1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2( , )
c c c c c c p p p p p pη η η ξ ξ ξ η η η ξ ξ ξσ σ σ σ σ σ σ σ σ σ σ σ, , , , , , , , , , . (E.3.20) 

 
Off the main diagonal, the elements of the matrix relating to core regions are 
given by ( )

ct ctct ctE η ηη η σ ,, = , ( )
ct ctct ctE ξ ξξ ξ σ ,, = and ( )

ct ctct ctE ξ ηξ η σ, = with 1 2 3t = , , . 
For periphery regions the same equations apply, but with suffix c replaced by p.  
Non-zero covariance is therefore confined to equations for different times, but 
there is no covariance between the equations for the core and periphery. The as-
sumption is that unmodelled effects in the core are confined to the core but carry 
across time giving non-zero covariance, and likewise for unmodelled effects spe-
cific to the periphery. Hence ( ) 0ct ptE η η, = ,  ( ) 0ct ptE ξ ξ, = , ( ) 0ct ptE ξ η, =  and 

( ) 0ct ptE η ξ, = , giving the twelve by twelve covariance matrix which is block-
diagonal with zeros in the top right and bottom left quadrants.  From the computa-
tional perspective, this is achieved by defining dummy variables for core and pe-
riphery areas, and multiplying the variables by these dummies to give area-
specific variables, as described above and as exemplified in the appendix. These 
covariances are set to zero by using the appropriate area-specific variables in each 
of the twelve equations, together with the appropriate dummy variable as an addi-
tional regressor.  
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E.3.5   Model restriction 

Table E.3.1 gives the unrestricted 3sls parameter estimates which are the starting 
point for the process of producing a parsimonious final model in which parameters 
across location and time are the subject of simplifying restrictions. On the whole 
the parameter estimates in Table E.3.1 are similar to those reported in Fingleton 
(2001b), the difference being that in this chapter core and periphery regions are 
separated. There is a positive parameter on q indicating increasing returns which is 
highly significant regardless of location or of time, although there are variations in 
magnitude. Likewise the initial technology gap variable G parameter is consis-
tently positive and largely significant, reaffirming the importance attributed earlier 
to innovation diffusion. As one would anticipate from the previous study, the ef-
fect of distance from Luxembourg (L) is negative throughout, although in this case 
it is not significant for all times and locations. The effect of population density (U) 
is significant and positive across all periods in core regions, but is only significant 
in the earliest period for the peripheral regions. There are also core-periphery dif-
ferences in the strength and significance of the effect of ‘neighbouring’ productiv-
ity growth captured by the endogenous variable Wp. 

Table E.3.1. Unrestricted model estimates 

 Core    Periphery   
Variable Parameter t-ratio Goodness-of-fit  Parameter t-ratio Goodness-of-fit 

 1975-81         

Constant  –0.24930E-01 –2.862 RSS= 3.4576E-02  0.28396E–03 0.042 RSS= 3.6658E-02 
 q  0.83893 9.960 Adj R-sq= 0.68785  0.79776 25.439 Adj R-sq =  0.84175 
 G  0.11286 8.183 F = 79.01  0.69615E–01 5.151 F = 189.30 
 L  –0.54168E–03 –3.973   –0.12850E–03 –2.795  
 U  0.64439E–02 3.365   0.51569E–02 2.550  
 Wp  0.13541 0.621   –0.22766 –1.762  
        

 1981-89         
Constant  –0.10269E–01 –2.047 RSS= 1.3157E-02  –0.34152E–01 –3.753 RSS= 4.4630E-02 
 q  0.82019 19.692 Adj R-sq = 0.86339  0.44494 7.585 Adj R-sq = 0. 69873 
 G  0.35955E–01 4.332 F = 224.73  0.65461E–01 4.189 F = 83.10 
 L  –0.20727E–03 –2.550   –0.90314E–04 –1.655  
 U  0.29026E–02 2.639   0.33179E–02 1.408  
 Wp  0.47948 4.560   0.86547 4.978  
        

 1989-95         
Constant  –0.11683E–01 –1.389 RSS= 4.8366E-02  0.47115E–02 0.446 RSS= 5.2430E-02 
 q  0.53722 5.618 Adj R-sq = 0.28533  0.68412 9.699 Adj R-sq = 0. 60963 
 G  0.30547E–01 1.979 F = 15.13  0.11012E–01 0.661 F = 56.28 
 L  –0.39709E–04 –0.244   –0.14016E–03 –2.327  
 U  0.82493E–02 3.982   –0.32429E–02 –1.273  
 Wp  0.53137 2.758   0.79522 3.383  

Across-space restrictions. The above preliminary interpretation takes no account 
of random variation which may be partly responsible for apparent trends and dif-
ferences in parameter estimates across space and time. This section imposes vari-
ous restrictions on the parameters of the unrestricted model reported in Table 
E.3.1 to produce restricted models which indicate, via the loss-of-fit incurred, 
whether the across-space restrictions are consistent with the data or whether we do 
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actually need separate estimates for core and periphery. The analysis commences 
with the joint test (see Table E.3.2) in which the thirty-six parameters of the unre-
stricted model relating to q G L U Wp, , , ,  and the constant are replaced by eighteen 
parameters. For example, the restriction 1 1 0ct ptb b− =  is imposed equalizing the 
core and periphery q parameters for each of 1 2 3t = , , , with similar restrictions 
nullifying core-periphery differences for the other variables. The joint test is there-
fore a test of the overall significance of core-periphery effects, given the presence 
of time-period effects. It turns out that this restricted model produces a significant 
loss-of-fit compared to the unrestricted model, since the 2χ  test statistic of 86.58 
is significantly large when referred to the 2

18χ  distribution. Clearly there are some, 
as yet unspecified, core-periphery differences required to be present in a final 
model, and this motivates the subsequent analysis.  

The lack-of-fit of the model nullifying core-periphery differences may be at-
tributable to only a subset of variables. More insight regarding the sources of lack-
of-fit is provided in Table E.3.2 which summarizes conditional tests in which the 
unrestricted model (Table E.3.1) is compared to models with variable-specific re-
strictions.  For example, in order to test whether there are core-periphery differ-
ences in the effect of q, the six parameters differentiating the q effect by time and 
space are replaced by three (one per time period) thus giving three degrees of 
freedom for this test conditional on the existence of time and space differences in 
all other parameters. Table E.3.2 indicates that, given time differences, we also 
need parameters reflecting locational differences across the range of variables, al-
though for Wq the test is only significant at the 10 percent level. 

Table E.3.2. Conditional tests of core-periphery contrasts 

Variable Chi-square test statistic df Prob 
q  28.64 3 0.00000 
G  11.381 3 0.00984 
L  11.458 3 0.00949 
U  13.372 3 0.00392 
Wp  6.906 3 0.07497 
Constant 12.408 3 0.00611 
Joint test 86.577 18 0.00000 

Across-time restrictions. Given the evidence suggesting the need to allow for core-
periphery contrasts, we now reconsider the case for time homogeneity.  Previously 
(Fingleton 2001b), it appeared that there was a strong case for differences across 
time period in the strength and significance of all the model parameters, with the 
possible exception of U  which was only significant at the 10% level.  This exis-
tence of some time inhomogeneity is reaffirmed in the current analysis, as shown 
by the joint test in Table 3. This indicates the consequence in terms of loss-of-fit 
of imposing restrictions on the thirty-six parameters (six per endogenous variable, 

1 3, ,c pp p... ) in order to completely eliminate time-inhomogeneity.  For example, 
the three parameters reflecting time differences in the effect of q in core regions 
are replaced by a single parameter via the restrictions 1 1 1 2 0c cb b− =  and 
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1 1 1 3 0c cb b− =  with equivalent restrictions ( 1 1 1 2 0p pb b− =  and 1 1 1 3 0)p pb b− =  on the 
effects of q  in peripheral regions.  These restrictions are repeated across all vari-
ables simultaneously to create a restricted model in which twelve parameters (two 
per endogenous variable) replace the thirty-six of the unrestricted model. The re-
sulting Wald test statistic (163.69) is highly significant when referred to the 2

24χ  
distribution. Conditional on regional inhomogeneity, there is significant evidence 
for time inhomogeneity.    

The question now arises as to whether these time inhomogeneities are a fea-
ture of all variables, or apply to a specific subset. Table E.3.3 also shows the out-
come of variable-specific tests in which the models being compared are the unre-
stricted model (Table E.3.1) and a model restricted to time homogeneity across the 
parameters of the specific variable, conditional on time inhomogeneity for the 
other variables.  Hence, the three parameters needed to pick up time differentiated 
effects of the variable are replaced by a single parameter, thus giving two degrees 
of freedom.  The results show that this restriction produces a significant loss-of-fit 
for the majority of variables, implying that a successful final model will include 
parameters controlling time variation in location-specific parameters. The excep-
tions are that for core regions there is no strong evidence that the effect of Wp var-
ies across time, and for peripheral regions the effect of L is apparently constant 
over time.  

Table E.3.3. Conditional tests of time homogeneity 

Variable Chi-square test statistic df Prob 
Core    
q 7.904 2 0.01922 
G 42.836 2 0.00000 
L 11.088 2 0.00391 
U 6.066 2 0.04818 
Wp 2.790 2 0.24789 
Constant 3.098 2 0.21249 
Periphery    
q 31.437 2 0.00000 
G 11.486 2 0.00321 
L 0.464 2 0.79292 
U 10.954 2 0.00418 
Wp 28.933 2 0.00000 
Constant 10.987 2 0.00411 
Joint test 163.690 24 0.00000 

Space-time restrictions. An additional question is whether the parameter differ-
ences that exist are evidence that peripheral regions lag core regions, so that the 
parameters for peripheral regions equal core region parameters for an earlier pe-
riod. Thus across-region inhomogeneity may conceal across-region homogeneity 
across time. Broadly speaking peripheral regions tend to be more recent EU mem-
bers or have lagged economic development or moves to closer economic integra-
tion which have occurred in the core, so it seems reasonable to hypothesize that 
peripheral regions may go through stages of development which were experienced 
earlier by core regions.  
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In order to test this hypothesis, peripheral region parameters are first of all jointly 
restricted to equal core region parameters for an earlier period. Hence the six pa-
rameters for 1981-89 for peripheral regions and for 1975-81 for core regions are 
constrained to be equal. This provides six degrees of freedom and a Wald test sta-
tistic equal to 27.17 which has a p-value of 0.00013 in the chi-squared distribution 
with six degrees of freedom. A similar test jointly restricting the 1989-95 and 
1975-81 parameters (since the time lag may be longer) produces a test statistic 
equal to 50.38. It is clearly evident that the set of parameters in peripheral regions 
do not simply mimic the values of the earlier periods in the core.  

The joint test conceals possible variable-specific across-region across-time 
equalities.  The equalization of a subset of the parameters could be the outcome of 
peripheral regions partially replicating at a later stage the process determining 
productivity growth in the core, while other determinants of productivity growth 
possess a significantly different effect in the periphery. An initial investigation of 
this involves constraining to equality of the six parameters in turn, while allowing 
the remaining parameters to vary. This produces a conditional test with one degree 
of freedom. In all cases, equating periphery parameters to core parameters for an 
earlier period produced a significant loss-of-fit, with the Wald test statistic exceed-
ing the upper 5% point of the chi-squared distribution with one degree of freedom. 
The exceptions1 to this rule were the equalization of the periphery q parameter for 
1989-95 and the core q parameter for 1975-81 (Wald test statistic equal to 1.99), 
and the 1975-81 core U parameter and constant and 1981-89 periphery U parame-
ter and constant (1.06 and 0.54 respectively).  

E.3.6  The final model 

The evidence presented here indicates that on the whole there is core-periphery 
and temporal parameter heterogeneity in parameters.  On possible exception to 
this relates to the variable Wp, which according to Table E.3.3 is evidently time 
homogeneous in effect for core regions. In contrast Wp is time heterogeneous for 
periphery regions. However there is also some weak evidence for core-periphery 
homogeneity for Wp in Table E.3.2. The dominant feature of the Wp estimates 
from Table E.3.1 is however their insignificance for 1975-81 and significance 
subsequently.  Therefore as an initial simplifying step we opt to eliminate spill-
over effects between ‘neighbouring’ regions in the earliest period. This is assumed 
to reflect the barriers that existed between countries and regions in this early pe-
riod of the EU’s development, prior to the much more complete liberalization that 
exists now.   

                                                           
1  However, given the number of tests carried out, the probability of wrongly failing to reject a hy-

pothesis that the parameter values are equal is going to be larger than the nominal 0.05 one would 
associate with a single test.  
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Another feature of the Table E.3.1 estimates is the much diminished significance 
(as apparent from the t-ratios) of the level of technology gap (G) in the most re-
cent period. This is to be anticipated, as the initial level of technology in 1975 will 
undoubtedly have become increasingly irrelevant to productivity growth as time 
increases.   Therefore it seems appropriate to constrain the model by restricting the 
initial period Wp parameters and the final period G parameters to 0. The Wald test 
statistic as a result of imposing these four restrictions is equal to 7.9549, which has 
a p-value equal to 0.0932 in the 2

4χ  distribution, showing that there is no signifi-
cant loss of fit.  

However Table E.3.1, and the estimates of the model with these four restric-
tions, point to additional simplifying restrictions, namely setting to zero the L and 
U coefficients for periphery regions in 1981-89, and also, for 1989-95, setting core 
L to zero and  periphery U to zero. Table E.3.4 is the final model with all eight re-
strictions imposed, and again these can be sustained by observing that the Wald 
test statistic is equal to 15.2167, which just fails to be significant in 2

8χ , with a p-
value equal to 0.0551.  In Table E.3.4 all the variables are significant, although 
several  goodness-of-fit indicators,  the adjusted R-squared values, the sum of 
squared residuals and the F statistic (which is referred to 5

172F ), highlight the rela-
tively poor performance of this restricted model in the most recent period. This 
however is not a consequence of these additional restrictions, as is evident from 
comparison with Table E.3.1. 

Table E.3.4. Final model estimates 

     Core    Periphery   
Variable     Parameter t-ratio Goodness-of-fit  Parameter t-ratio Goodness-of-fit 

 1975-81         
 Constant  –1.72385E–02 –2.677 RSS= 3.5564E-02  –5.10838E–03 –1.004 RSS= 3.6387E-02 
 q  0.860237 11.319 Adj R-sq =  0.67892  0.777821 26.220 Adj R-sq =  0.84292 
 G  0.102871 8.433 F = 75.85  6.09888E–02 5.104 F = 190.96 
 L  –5.51187E–04 –4.618   –1.04896E–04 –2.641  
 U  6.83510E–03 3.794   5.72922E–03 3.466  
 Wp                   –          –                   –         –  

 1981-89         
 Constant  –9.84770E–03 –1.966 RSS= 1.3159E-02  –3.13665E–02 –3.506 RSS= 4.6068E-02 
 q  0.818766 19.679 Adj R-sq = 0.86337  0.459335 8.033 Adj R-sq = 0. .68902 
 G  3.50972E–02 4.235 F = 224.70  4.32023E–02 4.278 F = 79.43 
 L  –2.06585E–04 –2.545                   –         –  
 U  2.89906E–03 2.636                   –         –  
 Wp  0.477992 4.546   0.885518 5.237  

 1989-95         
 Constant  –4.93244E–04 –0.114 RSS= 4.8953E-02  7.66117E–03 0 .822 RSS= 5.3924E-02 
 q  0.513071 5.550 Adj R-sq = 0.27666  0.707763 10.174 Adj R-sq = 0.59851 
 G                   –         – F = 14.54                   –         – F = 53.77 
 L                   –         –   –1.05706E–04 –2.558  
 U  8.15701E–03 3.946                    –          –  
 Wp  0.556147 3.083   0.743493 3.192  

Table E.3.4 shows by virtue of the significant and positive parameters on q that 
increasing returns to scale is a realistic hypothesis that can be applied to both core 
and periphery, and for each time period.  The parameter estimate heterogeneity 
points to variation in the underlying determining parameters, since we know that 
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according to our underlying theory, the parameter for q is equal to (γ – 1) /γ ,  with 
γ = α [1 + (1 – β)(µ – 1)]. The shrinking of the parameter on q towards zero, as oc-
curs in the core for the most recent period, is commensurate with γ moving to-
wards one and could be due to increased congestion (α goes towards zero ) , less 
relevant intermediate services (β  moves towards one), or reduced producer service 
variety (µ goes towards one). It is possible also that we are seeing the net effect of 
all three parameters changing, although estimating their individual values is an ex-
ercise beyond the scope of this contribution.  

The effect of G is mainly significant and positive, indicating that there is an 
overall tendency for regions with initially lower technology levels to see faster 
manufacturing productivity growth. However, the G effect is constrained to zero 
in the most recent period with no significant loss of fit. It appears that by 1989-95, 
the stimulus to productivity growth of innovation diffusion differentially benefit-
ing the lower technology regions had disappeared.  

The distance from Luxembourg (L) coefficient is appropriately negative 
throughout (see Table E.3.1), but we find that we can constrain some of the coef-
ficients to zero. For the most recent 1989-95 period, since we have used L as a 
proxy for human capital, the inference is that by L no longer reflects human capi-
tal differentials in core regions.  For peripheral regions, it is apparent that L re-
gains its significance so that the remoter regions in the periphery continue to have 
significantly slower productivity growth, suggesting that the non-manufacturing 
legacy and consequently the comparative lack of appropriate human capital re-
mains a factor. The other proxy for human capital is population den-
sity/urbanization (U).  For core regions, this remains consistently significant over 
time, but for the periphery it is only significant for the earliest period. This sug-
gests that the concentration of human capital in cities is of continuing importance 
for core productivity growth, but in the periphery urban concentration is not a fac-
tor from 1981.   

E.3.7  Concluding remarks 

There are two main conclusions that are drawn from the above analysis, the first 
relating to policy implications and the second to the implications for the develop-
ment of new theory.  Regarding policy, the model estimated in this chapter pro-
vides further evidence of the importance of increasing returns to scale for regional 
economic growth, which implies divergent productivity levels. While there was a 
catching-up effect due to innovation diffusion as reflected in the positive coeffi-
cients on the variable G, the effect had become less significant by period 1989-95, 
leaving the EU regions more exposed to divergence effects due to increasing re-
turns to scale. Likewise, the heterogeneous effects of regionally differentiated hu-
man capital also point to divergent growth rates and levels. Most notably, for core 
regions, there is a significant positive impact of urban density on productivity 
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growth which is not replicated for regions in the periphery. This suggests a need 
for additional and different infrastructures and institutions promoting the growth 
of human capital appropriate to the industrial composition of peripheral regions.  
The significance of cross-regional spillovers suggests that the impact of policy in-
struments on the productivity growth of one region may have had effects on pro-
ductivity growth in other ‘nearby’ regions, with unintended beneficial conse-
quences of structural or other improvements. Equally, there may be unintended 
negative effects across regions due to the relative lack of policy intervention. For 
the most recent periods, spillover effects are stronger for peripheral regions com-
pared with core regions, a factor that should be taken into account in evaluating 
the likely impact of policy intervention.   

Parameter instability is largely excluded from current theory which on the 
whole tends to be written in terms of fixed, exogenous parameters. For instance, in 
the very simplest new economic geography theory of Fujita et al. (1999), the 
emergence of structure is illustrated by altering the parameter for trade costs while 
holding constant parameters µ and β the fixed and marginal labour requirements 
and the allocation of an immobile constant returns sector across regions. Hence we 
see the effect of economic integration conditional on an absence of other changes. 
These simplifications, while useful as illustrations, are however at odds with the 
empirical evidence. This shows clearly that when we focus on the estimated γ  
which embodies the principal parameters of interest coming directly from our ur-
ban economics theory, namely α, β and µ, which reflect in turn the impact of con-
gestion, the importance of intermediate services for manufacturing output and the 
degree of monopoly power and differentiation in the service sector. It is clear from 
estimated γ  that there exist significant variation in time and space in one or more 
of these underlying parameters. This has implications for the development of new 
theory, since it suggests that they should be endogenised, since they clearly are 
dependent on higher causes that have been omitted from the current model.  

To summarize, working from a reduced form derived from the urban econom-
ics and new economic geography tradition, we have shown the existence of spatio-
temporal parameter instability. Rather than being assumed away, some progress 
could be made by acknowledging the reality of these variations, exploring their 
causes and ultimately developing theory to account for them.  
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Appendix: Core and periphery values of G, L and U in each region 
 
 
Country NUTS-2region Core G L         U Periphery G L       U 
Germany Schleswig 0 0.00 0.00 0.0 1 0.25 0.56 164.3
Germany Hamburg 1 0.45 0.49 2296.7 0 0.00 0.00 0.0
Germany Braunschweig 1 0.28 0.38 206.8 0 0.00 0.00 0.0
Germany Hannover 1 0.27 0.35 231.3 0 0.00 0.00 0.0
Germany Luneberg 1 0.62 0.46 91.9 0 0.00 0.00 0.0
Germany Weser_Ems 1 0.38 0.36 139.7 0 0.00 0.00 0.0
Germany Bremen 1 0.18 0.42 1792.1 0 0.00 0.00 0.0
Germany Dusseldorf 1 0.33 0.18 1064.5 0 0.00 0.00 0.0
Germany Koln 1 0.40 0.12 488.5 0 0.00 0.00 0.0
Germany Munster 1 0.32 0.25 354.5 0 0.00 0.00 0.0
Germany Detmold 1 0.38 0.30 278.4 0 0.00 0.00 0.0
Germany Arnsberg 1 0.19 0.20 466.4 0 0.00 0.00 0.0
Germany Darmstadt 1 0.40 0.19 457.8 0 0.00 0.00 0.0
Germany Giessen 1 0.57 0.21 179.7 0 0.00 0.00 0.0
Germany Kassel 1 0.00 0.26 144.9 0 0.00 0.00 0.0
Germany Koblenz 1 0.36 0.10 170.0 0 0.00 0.00 0.0
Germany Trier 1 0.50 0.04 97.0 0 0.00 0.00 0.0
Germany Rheinhessen_Pfalz 1 0.17 0.13 268.6 0 0.00 0.00 0.0
Germany Stuttgart 1 0.34 0.27 329.8 0 0.00 0.00 0.0
Germany Karlsruhe 1 0.36 0.21 346.4 0 0.00 0.00 0.0
Germany Freiburg 1 0.39 0.25 199.4 0 0.00 0.00 0.0
Germany Tuebingen 1 0.53 0.31 166.2 0 0.00 0.00 0.0
Germany Oberbayern 1 0.49 0.46 203.1 0 0.00 0.00 0.0
Germany Niederbayern 1 0.56 0.49 96.1 0 0.00 0.00 0.0
Germany Oberpfalz 1 0.33 0.44 100.7 0 0.00 0.00 0.0
Germany Oberfranken 1 0.35 0.37 148.1 0 0.00 0.00 0.0
Germany Mittelfranken 1 0.24 0.34 211.3 0 0.00 0.00 0.0
Germany Unterfranken 1 0.62 0.27 140.8 0 0.00 0.00 0.0
Germany Schwaben 1 0.33 0.36 151.7 0 0.00 0.00 0.0
Germany Saarland 1 0.43 0.07 429.3 0 0.00 0.00 0.0
Germany Berlin 0 0.00 0.00 0.0 1 0.19 0.58 4216.7
France Ile_De_France 1 0.30 0.29 822.3 0 0.00 0.00 0.0
France Champagne_Ardenne 1 0.39 0.15 52.2 0 0.00 0.00 0.0
France Picardie 1 0.43 0.24 86.7 0 0.00 0.00 0.0
France Haute_Normandie 1 0.26 0.38 129.7 0 0.00 0.00 0.0
France Centre 1 0.46 0.41 54.9 0 0.00 0.00 0.0
France Basse_Normandie 1 0.47 0.49 74.3 0 0.00 0.00 0.0
France Bourgogne 1 0.46 0.32 49.9 0 0.00 0.00 0.0
France Nord_Pas_De_Calais 1 0.40 0.24 315.2 0 0.00 0.00 0.0
France Lorraine 1 0.41 0.12 98.7 0 0.00 0.00 0.0
France Alsace 1 0.38 0.20 183.6 0 0.00 0.00 0.0
France Franche_Comte 1 0.44 0.30 65.5 0 0.00 0.00 0.0
France Pays_De_La_Loire 0 0.00 0.00 0.0 1 0.42 0.58 86.3
France Bretagne 0 0.00 0.00 0.0 1 0.42 0.68 95.4
France Poitou_Charentes 0 0.00 0.00 0.0 1 0.43 0.61 59.2
France Aquitaine 0 0.00 0.00 0.0 1 0.25 0.78 61.7
France Midi_Pyrenees 0 0.00 0.00 0.0 1 0.45 0.76 49.9
France Limousin 0 0.00 0.00 0.0 1 0.54 0.57 43.7
France Rhone_Alpes 0 0.00 0.00 0.0 1 0.39 0.51 109.8
France Auvergne 0 0.00 0.00 0.0 1 0.47 0.51 51.2
France Languedoc_Roussillo 0 0.00 0.00 0.0 1 0.35 0.72 69.0
France Provence_Alpes_Cote 0 0.00 0.00 0.0 1 0.25 0.64 117.1
France Corse 0 0.00 0.00 0.0 1 0.40 0.88 25.2
Italy Piemonte 0 0.00 0.00 0.0 1 0.48 0.52 176.4
Italy Valle_Daosta 1 0.40 0.47 34.0 0 0.00 0.00 0.0
Italy Liguria 0 0.00 0.00 0.0 1 0.37 0.64 341.8
Italy Lombardia 0 0.00 0.00 0.0 1 0.45 0.54 365.6
Italy Trintio_Alto_Adige 0 0.00 0.00 0.0 1 0.23 0.55 63.1
Italy Veneto 0 0.00 0.00 0.0 1 0.59 0.62 230.3
Italy Friuli_Venezia_Giul 0 0.00 0.00 0.0 1 0.53 0.66 156.9
Italy Emilia_Romagna 0 0.00 0.00 0.0 1 0.44 0.70 176.7
Italy Toscana 0 0.00 0.00 0.0 1 0.56 0.81 153.6
Italy Umbria 0 0.00 0.00 0.0 1 0.59 0.91 93.3
Italy Marche 0 0.00 0.00 0.0 1 0.70 0.89 142.7
Italy Lazio 0 0.00 0.00 0.0 1 0.33 1.01 280.8
Italy Campagna 0 0.00 0.00 0.0 1 0.54 1.21 384.2
Italy Abruzzi 0 0.00 0.00 0.0 1 0.64 1.03 110.1
Italy Molise 0 0.00 0.00 0.0 1 0.61 1.11 73.0
Italy Puglia 0 0.00 0.00 0.0 1 0.53 1.29 191.0
Italy Basilicata 0 0.00 0.00 0.0 1 0.59 1.29 60.9
Italy Calabria 0 0.00 0.00 0.0 1 0.54 1.45 134.0
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Italy Sicilia 0 0.00 0.00 0.0 1 0.57 1.51 186.1
Italy Sardegna 0 0.00 0.00 0.0 1 0.46 1.11 63.3
Netherlands Groningen 1 0.38 0.38 180.5 0 0.00 0.00 0.0
Netherlands Friesland 1 0.56 0.37 103.7 0 0.00 0.00 0.0
Netherlands Drenthe 1 0.38 0.35 149.6 0 0.00 0.00 0.0
Netherlands Overijssel 1 0.54 0.30 273.3 0 0.00 0.00 0.0
Netherlands Gelderland 1 0.50 0.26 315.1 0 0.00 0.00 0.0
Netherlands Flevoland 1 0.38 0.31 34.0 0 0.00 0.00 0.0
Netherlands Utrecht 1 0.49 0.26 612.0 0 0.00 0.00 0.0
Netherlands Noord_Holland 1 0.24 0.32 625.0 0 0.00 0.00 0.0
Netherlands Zuid_Holland 1 0.16 0.27 900.6 0 0.00 0.00 0.0
Netherlands Zeeland 1 0.24 0.25 107.6 0 0.00 0.00 0.0
Netherlands Noord_Brabant 1 0.46 0.20 381.9 0 0.00 0.00 0.0
Netherlands Limburg 1 0.49 0.16 472.6 0 0.00 0.00 0.0
Belgium Brabant 1 0.58 0.16 361.6 0 0.00 0.00 0.0
Belgium Antwerpen 1 0.43 0.19 542.4 0 0.00 0.00 0.0
Belgium Limburg 1 0.55 0.14 280.3 0 0.00 0.00 0.0
Belgium Oost_Vlaanderen 1 0.58 0.21 444.0 0 0.00 0.00 0.0
Belgium West_Vlaanderen 1 0.62 0.26 341.4 0 0.00 0.00 0.0
Belgium Hainaut 1 0.61 0.17 349.4 0 0.00 0.00 0.0
Belgium Liege 1 0.57 0.08 264.1 0 0.00 0.00 0.0
Belgium Luxembourg 1 0.61 0.05 49.3 0 0.00 0.00 0.0
Belgium Namur 1 0.63 0.10 106.1 0 0.00 0.00 0.0
Belgium Bruxelles_Brussel 1 0.45 0.17 6552.8 0 0.00 0.00 0.0
Luxembourg Luxembourg 1 0.42 0.00 138.1 0 0.00 0.00 0.0
United Kingdom Cleveland_Durham 0 0.00 0.00 0.0 1 0.46 0.75 397.2
United Kingdom Cumbria 0 0.00 0.00 0.0 1 0.46 0.82 70.0
United Kingdom Northumberland_Tyne 0 0.00 0.00 0.0 1 0.47 0.82 265.1
United Kingdom Humberside 0 0.00 0.00 0.0 1 0.50 0.64 240.3
United Kingdom North_Yorkshire 0 0.00 0.00 0.0 1 0.50 0.70 79.6
United Kingdom South_Yorkshire 0 0.00 0.00 0.0 1 0.50 0.66 863.5
United Kingdom West_Yorkshire 0 0.00 0.00 0.0 1 0.50 0.69 1018.1
United Kingdom Derbyshire_Nottigha 0 0.00 0.00 0.0 1 0.50 0.64 395.4
United Kingdom Leicestershire_Nort 0 0.00 0.00 0.0 1 0.50 0.58 272.6
United Kingdom Lincolnshire 0 0.00 0.00 0.0 1 0.50 0.58 88.8
United Kingdom East_Anglia 1 0.51 0.48 142.6 0 0.00 0.00 0.0
United Kingdom Bshire_Hertfordshir 0 0.00 0.00 0.0 1 0.44 0.51 530.5
United Kingdom Berks_Bucks_Oxfords 0 0.00 0.00 0.0 1 0.44 0.55 309.7
United Kingdom Surrey_East_Westsus 1 0.44 0.46 430.9 0 0.00 0.00 0.0
United Kingdom Essex 1 0.44 0.44 404.4 0 0.00 0.00 0.0
United Kingdom Greater_London 1 0.53 0.48 4302.1 0 0.00 0.00 0.0
United Kingdom Hampshire_Isle_Of_W 0 0.00 0.00 0.0 1 0.44 0.55 382.2
United Kingdom Kent 1 0.44 0.41 399.4 0 0.00 0.00 0.0
United Kingdom Avon_Gloucestershir 0 0.00 0.00 0.0 1 0.49 0.62 259.0
United Kingdom Cornwall_Devon 0 0.00 0.00 0.0 1 0.49 0.75 129.4
United Kingdom Dorset_Somerset 0 0.00 0.00 0.0 1 0.49 0.64 162.5
United Kingdom Hereford_Worcs_Wraw 0 0.00 0.00 0.0 1 0.54 0.64 182.2
United Kingdom Shropshire_Stafford 0 0.00 0.00 0.0 1 0.54 0.68 219.6
United Kingdom West_Middlands_Coun 0 0.00 0.00 0.0 1 0.54 0.63 3054.5
United Kingdom Cheshire 0 0.00 0.00 0.0 1 0.48 0.71 393.5
United Kingdom Greater_Manchester 0 0.00 0.00 0.0 1 0.48 0.72 2095.6
United Kingdom Lancashire 0 0.00 0.00 0.0 1 0.48 0.75 449.9
United Kingdom Merseyside 0 0.00 0.00 0.0 1 0.48 0.75 2440.2
United Kingdom Clwyd_Dyfed_Gwynedd 0 0.00 0.00 0.0 1 0.50 0.77 60.8
United Kingdom Gwent_Mid_S_W_Glamo 0 0.00 0.00 0.0 1 0.50 0.71 483.3
United Kingdom Borders_Central_Fif 0 0.00 0.00 0.0 1 0.52 0.94 102.1
United Kingdom Dumfries_Galloway_S 0 0.00 0.00 0.0 1 0.52 0.96 129.4
United Kingdom Highlands_Islands 0 0.00 0.00 0.0 1 0.52 1.14 8.5
United Kingdom Grampian 0 0.00 0.00 0.0 1 0.52 1.01 54.0
United Kingdom Northern_Ireland 0 0.00 0.00 0.0 1 0.51 1.03 107.9
Ireland Ireland 0 0.00 0.00 0.0 1 0.48 1.07 45.3
Denmark Hovedstadsregionen 0 0.00 0.00 0.0 1 0.47 0.77 617.7
Denmark Ost_For_Storebaelt_ 0 0.00 0.00 0.0 1 0.52 0.71 81.8
Denmark Vest_For_Storebaelt 0 0.00 0.00 0.0 1 0.51 0.75 81.7
Greece Anatoliki_Makedonia 0 0.00 0.00 0.0 1 0.96 1.77 39.6
Greece Kentriki_Makedonia_ 0 0.00 0.00 0.0 1 0.81 1.67 76.0
Greece Dytiki_Makedonia_We 0 0.00 0.00 0.0 1 0.75 1.59 28.7
Greece Thessalia_Thessaly 0 0.00 0.00 0.0 1 0.84 1.72 45.0
Greece Ipeiros_Epirus 0 0.00 0.00 0.0 1 0.85 1.61 33.3
Greece Ionia_Nisia 0 0.00 0.00 0.0 1 0.30 1.57 75.9
Greece Dytiki_Ellena_Weste 0 0.00 0.00 0.0 1 0.76 1.82 52.3
Greece Sterea_Ellena_Centr 0 0.00 0.00 0.0 1 0.80 1.83 32.0
Greece Peloponnisos 0 0.00 0.00 0.0 1 0.67 1.91 35.4
Greece Attiki 0 0.00 0.00 0.0 1 0.76 1.91 809.9
Greece Voreio_Aigaio 0 0.00 0.00 0.0 1 0.88 1.97 50.1
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Greece Notio_Aigaio 0 0.00 0.00 0.0 1 0.85 2.32 40.1
Greece Kritti 0 0.00 0.00 0.0 1 0.68 2.22 55.1
Spain Galicia 0 0.00 0.00 0.0 1 0.70 1.34 91.3
Spain Asturias 0 0.00 0.00 0.0 1 0.61 1.17 102.9
Spain Cantabria 0 0.00 0.00 0.0 1 0.58 1.07 90.0
Spain Pais_Vasco 0 0.00 0.00 0.0 1 0.53 1.01 289.9
Spain Navarra 0 0.00 0.00 0.0 1 0.58 1.00 45.2
Spain Rioja 0 0.00 0.00 0.0 1 0.66 1.07 46.1
Spain Aragon 0 0.00 0.00 0.0 1 0.71 1.08 23.6
Spain Madrid 0 0.00 0.00 0.0 1 0.62 1.30 545.6
Spain Castilla_Leon 0 0.00 0.00 0.0 1 0.62 1.23 26.5
Spain Castilla_La_Mancha 0 0.00 0.00 0.0 1 0.58 1.35 18.3
Spain Extremadurra 0 0.00 0.00 0.0 1 0.82 1.53 23.7
Spain Cataluna 0 0.00 0.00 0.0 1 0.63 0.97 178.6
Spain Communidad_Valencia 0 0.00 0.00 0.0 1 0.68 1.29 144.5
Spain Baleares 0 0.00 0.00 0.0 1 0.66 1.17 117.9
Spain Andalucia 0 0.00 0.00 0.0 1 0.53 1.63 66.5
Spain Murcia 0 0.00 0.00 0.0 1 0.46 1.45 74.4
Portugal Norte 0 0.00 0.00 0.0 1 0.84 1.41 148.4
Portugal Centro 0 0.00 0.00 0.0 1 0.85 1.53 71.5
Portugal Lisboa_E_Vale_De_Te 0 0.00 0.00 0.0 1 0.77 1.67 253.6
Portugal Alentejo 0 0.00 0.00 0.0 1 0.76 1.68 21.0
Portugal Algarve 0 0.00 0.00 0.0 1 0.76 1.81 59.7
Austria Wien 0 0.00 0.00 0.0 1 0.43 0.77 3867.5
Austria Niederosterreich 0 0.00 0.00 0.0 1 0.34 0.72 74.5
Austria Burgenland 0 0.00 0.00 0.0 1 0.61 0.81 68.6
Austria Steiermark 0 0.00 0.00 0.0 1 0.48 0.70 73.2
Austria Karnten 0 0.00 0.00 0.0 1 0.48 0.67 56.1
Austria Oberosterreich 0 0.00 0.00 0.0 1 0.39 0.60 104.8
Austria Salzburg 0 0.00 0.00 0.0 1 0.41 0.57 59.3
Austria Tirol 1 0.39 0.50 44.8 0 0.00 0.00 0.0
Austria Vorarlberg 1 0.44 0.40 113.6 0 0.00 0.00 0.0
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Applications in  
Environmental Sciences 



F.1  A Fuzzy k-Means Classification and a 
Bayesian Approach for Spatial Prediction  
of Landslide Hazard 

Pece V. Gorsevski, Paul E. Gessler and Piotr Jankowski 

F.1.1  Introduction 

The increasing availability of geospatial data and the rapid advances in the Geo-
graphic Information Systems (GIS) technology for statistical and mathematical 
modeling and simulation have led to a variety of applications and a growing spa-
tial literature. Spatial statistical methods and techniques have been widely used in 
a number of discipline-specific applications, some of which are described in this 
handbook and result from those rapid advances in GIS tools, techniques, and lit-
erature.  

In particular, this chapter presents an application of spatial analyses which 
link spatial correlations of environmental attributes and landslide datasets of 
known landslide locations initiated from roads (presence of human interactions) 
and known landslide location outside of roads (absence of human interactions) for 
predicting landslide hazard. The chapter pays special attention to the automated 
spatial extraction analyses of fuzzy k-means classification, the computation of an 
optimal number of classes and their overlap, the implementation of Mahalanobis 
distances to extrapolate the continuous classification to a broad region, and the de-
rivation of Bayesian predictive models using relationships of landslide locations 
and continuous landform classes. The spatial approach is demonstrated through a 
regional case study in the U.S. Pacific Northwest where substantial landslide im-

2005, 2006a, 2006b, 2006c; Gorsevski and Jankowski 2008).  An article that 
closely  follows  this  modeling  approach  by Gorsevski et al.  (2005)  is  based on  
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tended and applied using a number of spatial approaches (Gorsevski et al. 2004, 

The present chapter is largely taken from a paper published in the Journal of 
pacts to the environment occurred in the winter of 1995/96.  

Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide 

Geographical Systems 5(3), 223-251, but additions to this work have been also ex-

hazard,  j ournal of Geographical Systems 5(3):223–251, copyright © 2003 Springer Berlin Heidelberg. 
Published in book form © by Springer-Verlag Berlin Heidelberg 2010
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integration of the fuzzy k-means classification and the Dempster-Shafer (D-S) the-
ory of evidence.  The D-S theory is an extension of the Bayesian theory and it is 
more flexible in the sense that it waives the need for complete knowledge of prior 
or conditional probabilities before modeling can take place. Also the D-S theory 
introduces the representation of ignorance, which represents the lack of evidence. 
For instance, absence of a landslide in the database may suggest that the landslide 
was not identified through the aerial photo interpretation for various reasons. In 
addition, in Bayesian theory evidence is used to support individual hypothesis 
whereas in D-S theory a single piece of evidence can support multiple hypotheses. 
Another distinction is that the D-S approach outputs uncertainties through consid-
eration of lower and upper probability intervals induced by multi-valued mapping, 
rather than explicit probability values as with the approach that follows.  

Landslides are natural geologic processes that cause different types of damage 
and affect people, organizations, industries, and the environment (Glade 1998). 
Globally, landslides cause billions of dollars in damage and thousands of deaths 
and injuries each year. Developing countries suffer the most, where 0.5 percent of 
the gross national product has been lost due to landslides, and 95 percent of land-
slide disasters have been recorded in developing countries (Chung et al. 1995). In 
the U.S. alone an estimated annual average cost of $1.5 billion dollars due to land-
slides has been reported (Glade 1998). 

Human activities, such as deforestation and urban expansion, accelerate the 
process of landslides (Chung et al. 1995). Landslides initiated from roads and for-
est harvesting are considered to be a significant sediment source (Dyrness 1967). 
Landslides contribute to decreased water quality, loss of fish spawning habitat and 
organic matter, and debris jams that may break during peak flows, thereby scour-
ing channels and destroying riparian vegetation. Concern about landsliding espe-
cially from forest roads (road related landslides) calls for improved forest man-
agement practices in all forestlands where humans are active as well as forestlands 
where roads are absent. Road related (RR) landslides are defined as landslides that 
occur or initiate within the road right-of-way, while non-road related (NRR) land-
slides are landslides that occur outside the road right-of-way. Road right-of-way 
includes the clearing width and the roadway with its elements (cut slope, ditch, 
shoulder, travel way, and fill slope). McClelland et al. (1997) define a road related 
landslide as a landslide originating between the top of a road cut and 100 feet be-
low the base of the fill. A method for predicting RR or NRR landslide hazard may 
be a valuable decision support tool for future planning and management of forest-
lands. A robust method for predicting RR and NRR landslides may provide infor-
mation important for road-siting and forest management practices in areas prone 
to landslide occurrence.   

In recent years the use of GIS for landslide hazard modeling has increased be-
cause of the  development of commercial  and noncommercial systems, such as 
ArcGIS (ESRI), IDRISI, and GRASS and the quick access to data obtained 
through the Global Positioning System (GPS) and remote sensing tools. GIS tech-
nology has made it possible to derive surface morphometry from a digital eleva-
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tion model (DEM) (Moore et al. 1993; Hengl and Reuter 2008), which may be 
used in landslide hazard modeling. Primary and secondary attributes are derived 
from a DEM, which reduces the high cost of collecting detailed field data. A GIS 
allows rapid combination and assessment of terrain attributes. Landslide hazard 
areas may then be identified based on spatial correlation between the terrain and 
landslide occurrences. Such predictive correlations have been applied to various 
disciplines including: hydrology, soil-landscape modeling, wildlife studies, clima-
tology, and geohazard assessment (Carrara 1983; Grayson et al. 1992a, 1992b; 
Moore et al. 1993; Gessler et al. 1995, 2000; Mladenoff et al. 1995; Mladenoff 
and Sickley 1998; McKenzie et al. 2000; Ryan et al. 2000, Chamran et al. 2002; 
Gorsevski et al. 2003, 2004, 2005, 2006a, 2006b; Gorsevski and Jankowski 2008; 
Hengl and Reuter 2008).  

Numerous slope stability studies using GIS technology acknowledge that to-
pography, soil thickness, hydrologic processes, and vegetation surcharge influence 
landslide initiation (Montgomery and Dietrich 1994; Wu and Sidle 1995; Gor-
sevski et al. 2006c). Some studies have also used landform variables as predictors 
for modeling landslide hazard (Carrara et al. 1995; McClelland et al. 1997; Robi-
son et al. 1999). Other studies have shown that landslide hazard is a function of 
steep hillslope gradients originating in areas of topographic convergence (Reneau 
and Dietrich 1987; Ellen et al. 1988; Montgomery and Dietrich 1994). However, 
delineating useful morphological units (landforms) and representing the uncertain-
ties inherent in classifying these continuously varying landforms is lacking in 
most studies. This study presents a new approach to predicting landslide hazard 
that combines modeling of landforms with modeling landslide hazard probabili-
ties. The approach is based on developing continuous landform classifications 
(i.e., identifiable elements) on a watershed scale using fuzzy k-means methods and 
Bayes’ theorem to generate landslide hazard probability maps associated with road 
related and non-road related landslide hazard. The fuzzy k-means approach will 
ensure that derived landform classifications are reproducible and objectively ap-
plied (Burrough et al. 2000), while extrapolation to a broader-scale area using a 
distancing technique is possible. Therefore, this contribution proposes to improve 
upon current approaches by explicit incorporation of uncertainty through the fuzzy 
k-means approach and building models capable of predicting RR and NRR land-
slide hazard that may enable forestland management to avoid critical areas or pro-
vide information that suggests modified practices in areas prone to landslide oc-
currence.  

F.1.2  Overview of current prediction methods 

Landslide hazard models have been developed in various ways and include: (i) 
landslide inventory (Wieczorek 1984; Wright et al. 1974), (ii) statistical modeling  
(Carrara 1983; Carrara et al. 1991, 1992; Chung et al. 1995; Mark and Ellen 1995; 
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Chung and Fabbri 1999; Dhakal et al. 2000; Gorsevski et al. 2003, 2004, 2005, 
2006b), (iii) heuristic methods (McClelland et al. 1997; Gorsevski et al. 2006a), 
(iv) process-based modeling (Okimura and Ichikawa 1985; Montgomery and Die-
trich 1994; Wu and Sidle 1995; Gorsevski et al. 2006c), (v) probabilistic or sto-
chastic modeling (Hammond et al. 1992), and (vi) artificial intelligence 
(Gorsevski and Jankowski 2008). 

An example of a heuristic method is the current Forest Service method 
(McClelland et al. 1997) specifically developed for the Clearwater National Forest 
(CNF) in northcentral Idaho. The method (FSmet) uses a heuristic rule that defines 
high hazard areas as those locations with slopes greater than 60 percent with par-
ent materials of schist or granitics at elevations below 1,400 m. This heuristic has 
been developed based on data collected specifically within the CNF. The output of 
FSmet can be a binary map delineating hazard and no hazard areas.  

Another method used for assessing landslide hazard is the SHALSTAB model 
developed by Dietrich and Montgomery (1998). SHALSTAB is a physically-
based model based on a combination of the infinite slope equation of the Mohr-
Coulomb failure law and a hydrological component based on steady-state shallow 
subsurface flow (O'Loughlin 1986). SHALSTAB was implemented as an Arc-
View extension to generate landslide susceptibility output using a DEM, soil bulk 
density, and friction angle as inputs. SHALSTAB’s one-step option (Dietrich and 
Montgomery 1998) was used to calculate the critical value of the ratio of steady-
state effective precipitation (rain minus evapotranspiration; q to transmissivity, 
(the ground’s subsurface ability to convey water downslope; T needed to generate 
a landslide. The q/T ratio has dimensions of (L/T)/(L2/T) or L–1.  

A large q/T ratio implies that the soil approaches saturation, and a high sus-
ceptibility of slope failure. Because q/T is always less than one, log(q/T) is re-
ported. SHALSTAB classifies landslide susceptibility as: ‘unconditionally stable’, 
‘potentially unstable’, and ‘unconditionally unstable’. Unconditionally stable ele-
ments are predicted not to fail even when saturated, while unconditionally unsta-
ble are predicted to fail even when dry. Potentially unstable elements are associ-
ated with values of log(q/T) ranging from –1.9 to –3.4 incremented by –0.3 where 
divisions within the range of values are user-imposed. Areas with large absolute 
values of log(q/T) represent the least stable areas, whereas areas with small abso-
lute values of log(q/T) represent the most stable areas. We applied arbitrary cut-off 
values of greater than –2.2 to represent ‘unconditionally stable’ areas, greater than 
–2.8 to represent the midpoint of ‘potentially unstable’ areas, and greater than –3.1 
to represent ‘unconditionally unstable’ areas. The landslide database from 1995-96 
used by McClelland et al. (1997) was also used for comparison. However, outputs 
generated from FSmet and SHALSTAB are associated with overall landslide haz-
ard and not associated with RR or NRR landslide hazard. Also, while outputs are 
difficult to compare, neither of the methods incorporates uncertainty associated 
with the parameters used for the modeling.  

Uncertainties are usually introduced by soil-related parameters that have dif-
ferent properties and vary over space in different ways. Burrough et al. (2000) and 
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others (Fisher and Pathirana 1990; Butler 1982; Webster and Oliver 1990; 
McSweeney et al. 1994) argue that soil spatial variation captured in a soil map is 
often generalized because of many uncertainties involved in soil mapping. Odeh et 
al. (1992) suggested that soil variation is more continuous than discrete and there-
fore an approach that models the soil as a continuum is more appropriate.   

Modeling uncertainty may be handled through probability theory or fuzzy set 
theory (Zadeh 1965, 1978). Probability theory uses probabilistic models to quan-
tify the uncertainty associated with the prediction of the phenomenon, and meas-
ures incomplete knowledge through objective modeling (Chen and Hwang 1992). 
Fuzzy set theory, on the other hand, models uncertainty based on expert knowl-
edge, and measures incomplete knowledge through subjective modeling. There-
fore, methods of fuzzy classification may be used to account for uncertainty and 
replace crisp classification methods by providing class overlap that is more realis-
tic for modeling continuous landscape patterns. Fuzzy set theory extends the crisp, 
unambiguous theory and deals with continuous classification of entities. Irvin et 
al. (1997) suggest that fuzzy classification of landforms may be a preferred way to 
encapsulate key variation of complex land attributes for describing and under-
standing landscape processes. Fuzzy classes may be helpful in defining manage-
ment areas for dealing with problems such as soil drainage, erosion, or landsliding 
(Burrough et al. 2000).  

Fuzzy methods, such as the fuzzy k-means, which is analogous to traditional 
cluster analysis but allows class overlap, has been implemented in soil-landscape 
studies (McBratney and deGruijter 1992; Odeh et al. 1992; Irvin et al. 1997; Ven-
tura and Irvin 2000; Burrough et al. 2000; MacMillan et al. 2000; Hengl and Reu-
ter 2008; Evans et al. 2008). These studies explore the relationship between vari-
ous earth surface processes, topography, and soil development and test hypotheses 
about the spatial distribution of soil attributes. Irvin et al. (1997) demonstrated that 
soil spatial variability could be modeled using six topographic attributes (eleva-
tion, slope, profile curvature, tangent curvature, compound topographic index, and 
solar radiation) that characterize landform shape. However, Irvin et al. (1997) did 
not take into account the size of the area to be classified and the computational is-
sues associated with the derivation of the secondary attributes (i.e., compound to-
pographic index, and solar radiation). Burrough et al. (2000) suggested an ap-
proach to overcome some of the limitations associated with computational issues 
from the previous approach by using spatial sampling methods, statistical model-
ing of the derived stream topology, and fuzzy k-means classification using a dis-
tance metric.  

Other methods, such as Bayes’ theorem, provide a potential means of convert-
ing knowledge of predictive correlations from a fuzzy classification of landforms 
in combination with landslide location data, to landslide hazard probabilities. 
Bayes’ theorem has been applied for geologic hazard prediction, geologic soil-
landscape modeling, and more recently in environmental science or wildlife stud-
ies (Spiegelhalter 1986; Chung and Fabbri 1999; Skidmore et al. 1996; Aspinall 
1992; Aspinall and Veitch 1993). The Bayesian approach is a mathematical 
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method used for decision-making under conditions of uncertainty (Aspinall 1992). 
This method could be used to link prior (known) probabilities of landslide hazard 
with the fuzzy k-means classes, and consequently assign conditional probabilities. 
These probabilities at first may or may not be accurate. However, after corroborat-
ing the probabilities with additional information from landslide hazard monitoring 
or more extensive datasets, the accuracy may be improved to acceptable levels 
(Malczewski 1999).  

F.1.3  Modeling theory 

In the proposed modeling theory, the fuzzy k-means approach is used to organize 
the complex multivariate data derived from a DEM into continuous landform 
classes. The approach is applied to a watershed scale landform classification 
(training set) that is extrapolated to a broader-scale area using a Mahalanobis 
metric. The Bayesian theorem follows to quantify the relationships between 
landslides and the extrapolated classes. The following sections will detail the 
individual components for the integrated fuzzy k-means classification and a 
Bayesian approach. 

The fuzzy set theory 

Fuzzy logic (Zadeh 1965) is a superset of conventional (Boolean) logic that has 
been extended to handle the concept of partial truth-values between ‘completely 
true’ and ‘completely false’.  In conventional logic the degree to which an indi-
vidual z is a member or is not a member of a given set A is expressed by the mem-
bership function MFB. The membership function MFB can take the value zero or 
one shown in Eqs. (F.1.1) and (F.1.2). 

 
MFB(z)=1        if b1 ≤ z ≤ b2  (F.1.1) 

MFB(z)=0        if z < b1 or z > b2  (F.1.2) 

 
where b1 and b2  define the exact boundaries of set A. For instance, if the bounda-
ries b1 and b2 for ‘steep’ slope were defined between 45 percent and 70 percent, 
then the conventional set theory would assign value one for each individual be-
longing to the set and zero otherwise. On the other hand, the idea behind fuzzy 
logic is to describe the vagueness of entities in the real world, where belonging to 
a set is really a matter of degree (Malczewski 1999). For instance, linguistic terms 
and qualitative data such as ‘gentle’, ‘moderate’, ‘steep’, and ‘very steep’ land can 
be translated into fuzzy sets.  
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A fuzzy set is a class of elements or objects without well-defined boundaries be-
tween objects that belong to the class and those that do not. Fuzzy logic allows ob-
jects to belong partially to multiple sets and it is multivalued logic that allows in-
termediate values to be formulated mathematically. The fuzzy set is specified by a 
membership function. The function represents any elements on a continuous scale 
from one (full membership) to zero (full-non-membership). Mathematically a 
fuzzy set A is defined as follows: If Z denotes a space of objects, then the fuzzy set 
A in Z is the set of ordered pairs 
 

A = {z, F
AMF (z)}       z ∈ Z (F.1.3) 

 
where the membership function  F

AMF (z) is known as the ‘degree of membership 
of z in A’.  The higher the membership value of F

AMF (z), the more it belongs to 
the set. Fuzzy sets for developing spatial decision support systems can be used to 
represent geographical entities that imprecisely define boundaries as fuzzy objects 
or fuzzy regions. Fuzzy regions can be conceptualized as a set of pixels between 
the pixels of full membership values. For example, many researchers (Carrara et 
al. 1995; McClelland et al. 1997; Robison et al. 1999) have used a correlation be-
tween landform attributes and landslide locations to predict landslide hazard. Al-
though, linking landform attributes and landslide location is a valid technique, es-
tablishing a clear boundary between different types of landforms is a difficult task. 
Landforms are more continuous than discrete which calls for a continuous ap-
proach to landform classification. Thus, fuzzy classification can be expected to 
provide such an approach by assigning landforms to continuous classes for deter-
mining the strength of the relationship between landform attributes and landslide 
locations.  

There are two basic methods for building membership functions: the fuzzy 
semantic import (SI) model and fuzzy k-means clustering (Burrough and McDon-
nell 1998; MacMillan et al. 2000). The use of the SI model for classification pur-
poses depends on the existence of a well-defined and functional classification 
based on expert knowledge. On the other hand, fuzzy k-means clustering is an un-
supervised classification method and is not dependent on prior knowledge. Fuzzy 
k-means cluster analysis was used herein and the theory is discussed below. 

Fuzzy k-means approach 

The fuzzy k-means clustering approach, also known as c-means (Bezdek 1981; 
Fisher and Pathirana 1990; McBratney and deGruijter 1992; Odeh et al. 1992; 
Burrough and McDonnell 1998; Burrough et al. 2000; 2001; Evans et al. 2008) is 
analogous to traditional cluster analysis. Cluster analysis or clustering is a method 
that groups patterns of data that in some sense belong together and have similar 
characteristics.  The clustering technique uses a repetitive procedure by selecting a 
set of random cluster points and building clusters around each seed. This is ac-
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complished by assigning every point in the data set to its closest seed, using dis-
tance measures such as: Euclidean, Mahalanobis or Diagonal distance. The itera-
tion stops when a stable solution is reached meaning that the objects in each clus-
ter are similar to one another while those in different clusters are not similar to one 
another.  

The idea of fuzzy clustering was introduced first by Ruspini (1969) as an al-
ternative to the traditional cluster analysis by applying membership values to 
points between clusters  (i.e., difficult to classify) as an inverse function of dis-
tance from the cluster centers.  This led to further refinement and development of 
additional algorithms of fuzzy clustering (Bezdek 1981; McBratney and deGrui-
jter 1992).  The fuzzy k-means clustering is the most commonly used technique 
and has been applied to various disciplines such as climatic modeling (McBratney 
and Moore 1985), geologic modeling (Bezdek 1981), suburban environment mod-
eling (Fisher and Pathirana 1990), and soil-landscape modeling (McBratney and 
deGruijter 1992; Odeh et al. 1992; Irvin et al. 1997; Burrough et al. 2000; 2001; 
MacMillan et al. 2000; Ventura and Irvin 2000; Iwahashi and Pike 2007; Hengl 
and Reuter 2008; Evans et al. 2008). McBratney and deGruijter (1992) refer to the 
fuzzy k-means clustering term as a ‘continuous classification’ where each data 
point is not required to be an exclusive member of one and only one class.  The 
membership value is assigned through the class centroid concept for each data 
point in each class. The final membership values with fuzzy k-means range be-
tween zero and one for each data point, while the sum of values for a particular 
data point across all classes equals to one. The fuzzy k-means clustering with ex-
tragrades is another technique used for continuous classification, which provides 
better representations of outliers (i.e., data that have low membership in most or 
all of the classes) (McBratney and deGruijter 1992). 

Fuzzy k-means algorithms. For a set of n individuals classified into c classes 
with conventional (Boolean) classification the membership function equals M = µij  
= 1, where individual i belongs to class j, and M = µij 

 = 0, when individual i does 
not belong to class j. Three conditions ensure that conventional sets are exclusive 
and jointly exhaustive 

 

1
1

c

ij
j

μ
=

=∑  1 ≤ i ≤ n (F.1.4) 

1

0
n

ij
i

μ
=

>∑  1 ≤ j ≤ c (F.1.5) 

{0,1}ijμ ∈  1 ≤ i ≤ n; 1 ≤ j ≤ c. (F.1.6) 

 
Equation (F.1.4) indicates that the sum of membership of an individual across all 
classes is one. Equation (F.1.5) ensures that at least one individual belongs to each 
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class, so the classes are not empty. Finally, Eq. (F.1.6) suggests that an individual 
belongs to a class or does not belong at all. This equation institutes the difference 
between hard and fuzzy classes. Fuzzy set theory relaxes Eq. (F.1.6) so that class 
memberships are allowed to be partial and can take on any value between and in-
cluding zero and one (see Eq. (F.1.7)). 

 

[0,1]ijμ ∈  1 ≤ i ≤ n; 1 ≤ j ≤ c. (F.1.7) 

 
Several algorithms are used for computing fuzzy k-means (Bezdek 1981; Bur-
rough and McDonnell 1998; McBratney and deGruijter 1992). Fuzzy c-means 
(ordinary k-means), as used here, is the best-known classification (Bezdek et al. 
1984).  The optimal fuzzy classification is achieved by minimization of the objec-
tive function to satisfy the conditions in Eqs. (F.1.4), (F.1.5) and (F.1.6).  The gen-
eralized objective function is given in Eq. (F.1.8). 
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where μ is the membership of the ith object to the jth class; C = (Cjv) is a c-by-p 
matrix of class centroids with Cjv denoting the centroid of class j for variable v; p 
is the number of attributes; 2

ijd is the square of the distance between the individual 
i and the class center j;  and φ determines the amount of fuzziness or overlap and 
is called the fuzzy exponent.  For example, when φ equals one no overlap is al-
lowed and there is no fuzziness (a ‘hard class’ is generated), for large φ  there is 
complete overlap and the clusters are identical. With φ  greater than one, minimi-
zation of ( , )FJ M c is achieved by Langrangian differentiation of Eq. (F.1.8) using 
Picard’s iteration (McBratney and deGruijter 1992) with Eqs. (F.1.9) and (F.1.10)  
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where C is the cluster center of the cth cluster for the jth attribute, and  X is the 
vector representing the individual data value i for the jth attribute. Equation 
(F.1.8) is capable of assigning intermediate memberships and solving the problem 
of intergrades, which are data points between two classes. The solution of the Eqs. 
(F.1.9) and (F.1.10) is obtained by an iterative procedure. 

Size of database to be classified. One approach to extrapolating from a small-
scale (i.e., watershed scale) landform classification of identifiable elements using 
fuzzy k-means to a broader-scale is by defining training areas upon which the 
classification is derived (Burrough et al. 2000). Such training areas should be rep-
resentative of the broader area for which the classification will be implemented 
(i.e., similar domains). A probability density function (PDF) for the smaller area 
that closely matches the shape of overall regional dataset PDF’s can be used to de-
termine appropriate training areas. The PDF’s describe the univariate data for in-
dividual environmental attributes by determining a reasonable distributional model 
for the data. The training areas are used to determine the optimal number of 
classes required for classification of the area, to decide the optimal values of the 
performance parameters, and to calculate class centroids for interpretation of simi-
larities and differences between classes. After the class centroids, attribute vari-
ances, and attribute variance-covariances have been calculated, Burrough et al. 
(2000) suggests that a membership value for each cell in the area can be computed 
based on the distance measure from the class centroids. The distances between at-
tributes are calculated by the following equations 
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where Eq. (F.1.11) calculates the Euclidean, Eq. (F.1.12) the Diagonal, and 
Eq. (F.1.13) the Mahalanobis distance respectively. In the equations 2

ijd  is the 
square of the distance between an individual i and a class center j; icx is an attrib-
ute for individual i and the class c; Ccj denotes the centroid of class c for attribute 
j; sj is the attribute variance. The membership value for each class and each indi-
vidual cell is then calculated using Eq. (F.1.9). 

Choice of distance-dependent measures. The distance function is used to 
measure the similarity or dissimilarity between two individual observations and 
then later the similarity or dissimilarity between two clusters.  The simplest meas-
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ure of distance that gives equal weight to all measured variables is Euclidean dis-
tance and it is insensitive to statistically dependent variables (Bezdek 1981; Odeh 
et al. 1992). This measure of distance is useful for uncorrelated variables on the 
same scale when attributes are independent and the clusters have the general shape 
of spherical clouds. Euclidean distance should not be used where different attrib-
utes have widely varying average values and standard deviations, since large 
numbers in one attribute will prevail over smaller numbers in another (McBratney 
and Moore 1985; Minasny and McBratney 2000).  The diagonal distance is also 
insensitive to statistically dependent variables but compensates for distortions in 
the assumed spherical shape caused by disparities in variances among the meas-
ured variables (Odeh et al. 1992). Measuring the distances between a pair of 
points often requires standardization or transformation before distances are com-
puted.  Diagonal distance measurement is useful for uncorrelated variables that are 
on different scales because it transforms the dataset to one in which all attributes 
have equal variances (Bezdek 1981; McBratney and Moore 1985).  The third pos-
sibility is to compute Mahalanobis-type distances, as used here. This type of dis-
tance measurement also compensates for distortions like the diagonal measure-
ment and requires initial data transformation, and accounts for statistically 
dependent variables (Odeh et al. 1992). Mahalanobis distance is used for corre-
lated variables on the same or different scales (Bezdek 1981; McBratney and 
Moore 1985). Mahalanobis distance transforms the dataset to one in which all at-
tributes have zero mean and unit variances while correlations between variables 
are taken into account. 

Performance measurement. The optimal number of classes or the degree of 
fuzziness should be chosen based upon the required degree of detail (Burrough et 
al. 2000).  User’s knowledge of the data is often used in choosing the optimal 
number of classes or the degree of fuzziness. Another approach in choosing the 
optimal number of classes for fuzzy k-means is done by repeating the classifica-
tion for different numbers of classes and applying different degrees of fuzziness 
(McBratney and Moore 1985; Odeh et al. 1992).  For each generated classifica-
tion, analyses need to be performed and the results should be validated.  Two va-
lidity functions, the fuzzy performance index (FPI), and the normalized classifica-
tion entropy (MPE) (Modified Partition Entropy) are used to evaluate the effects 
of varying the number of classes. The FPI as per Minasny and McBratney (2000) 
is defined in Eqs. (F.1.14) and (F.1.15). 
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where F is the partition coefficient 

 



664      Pece V. Gorsevski et al. 

∑∑
= =

=
n

i

c

j
ijnF

1 1

21 )(μ   (F.1.15) 

 
The MPE as per Odeh et al. (1992) is defined in Eqs. (F.1.16) and (F.1.17): 
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The fuzzy performance index function estimates the degree of fuzziness generated 
by a specified number of classes, while the normalized classification entropy esti-
mates the degree of disorganization created by a specified number of classes (Mi-
nasny and McBratney 2000). After FPI and MPE are calculated the optimum 
number of continuous and structured classes can be established on the basis of mi-
nimizing these two measures (McBratney and Moore 1985). 

In the fuzzy k-means clustering algorithm the fuzzy exponent φ  controls the 
degree of fuzziness. As the fuzzy exponent φ  approaches one the degree of fuzzi-
ness diminishes and the clustering becomes harder. The value of two for φ  often 
has been used in previous studies and a quasi-physical justification is provided by 
Bezdek (1981) for using this value. For instance, if φ  is too low the classes are 
discrete and the membership value approaches zero or one, but if φ  is too high the 
classes will not discriminate and classification may fail to converge. McBratney 
and Moore (1985) suggested that the rate of change is not constant by changing φ  
although, the objective function value decreases monotonically by increasing φ  
and increasing the number of classes. Since the goal of the objective function val-
ue is to find an optimal balance between structure and continuity, they also argue 
by choosing a value of φ  that maximizes the objective function (δJE /δ φ ) gener-
ates the ‘hardest’ fuzzy clustering solution. McBratney and Moore (1985) devised 
the measure of fuzziness for determining the objective function value by obtaining 
– [(δJE/δ φ )c0.5]. Their method plots a series of φ  after the objective function is 
determined versus a given class where the best value of φ  for that class is at the 
maximum of the curve (Odeh et al. 1992). The function δJE/δ φ  is defined by 
Bezdek (1981) in Eq. (F.1.18). 
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Therefore choosing an optimal combination of classes and fuzzy exponent is es-
tablished on the basis of minimizing FPI and MPE as described above and choos-
ing the curve with the least maximum of – [(δJE/δ φ )c0.5] (Odeh et al. 1992). 

Class overlap, confusion index and defuzzification. The confusion index (CI) 
is a measure of the degree of class overlap in attribute space (Burrough and 
McDonnell 1998; Hengl et al. 2004; Shi et al. 2005). The concept of a ‘confusion 
index’ is a measure of how well each individual observation has been classified. 
The CI is used to translate combined maps of fuzzy memberships into easy to un-
derstand crisp zones. The CI is calculated by Eq. (F.1.19) where MFmax denotes 
the dominant membership value, and MFmax2 is the subdominant membership 
value for each observation: 

 
CI = 1 – (MFmax – MFmax2). (F.1.19) 

 
If the calculated CI approaches zero, then the observation is more likely to belong 
to the dominant class, while if the CI approaches one, the difference between the 
dominant and subdominant classes are negligible which creates confusion in clas-
sification of that particular observation. After the membership values have been 
calculated, defuzzification (Burrough et al. 2000) is applied to get a crisp numeric 
output value. Each observation is assigned to a ‘hard class’ when membership is 
high (i.e, µ ≥ 0.7), to an ‘intragrade’ when membership is intermediate, and to an 
‘extragrade’ when membership is low. For example, high membership means that 
observation is more likely to belong to one class, intermediate membership means 
that observation might belong to two or more classes, and low membership means 
that observation belongs equally to all classes. Thus, the continuous landform 
fuzzy k-means classification may be codified into classes (but not restricted) for 
examining the relationship between landslide locations and fuzzy classes. The re-
lationship strength therefore may be used to establish a priori probabilities for 
each of the classes to be used in conjunction with the Bayes’ theorem. 

Bayes’ theorem 

The Bayesian approach or Bayes' theorem (Malczewski 1999; Skidmore et al. 
1996; Aspinall and Veitch 1993; Aspinall 1992) is a method used for decision-
making under uncertainty. The method is a framework for combining subjective 
probability (of being true or false) with conditional probability (of being true or 
false). Subjective probability is an expression of the degree of belief in an event 
occurring based on a person’s experience, prejudices, optimism, etc. (Malczewski 
1999). Conditional probability is the knowledge about the likelihood of the hy-
pothesis to be true given a piece of evidence.  For example, one cannot be certain 
whether landslides always occur in areas of topographic convergence. The knowl-
edge might be expressed as the user being 90 percent certain (i.e., probability 
equals 0.9) that landslides will occur in areas of topographic convergence.  
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Implementing the Bayesian approach requires the following information: (i) prior 
knowledge or a priori probabilities that a particular hypothesis is true, and (ii) the 
probability that current evidence is true given that the hypothesis is true (Skidmore 
et al. 1996; Malczewski 1999). Thus, calculated conditional probabilities from the 
relative frequency of association between the knowledge of presence and absence 
of landslide locations and categorized membership values of fuzzy k-means 
classes (i.e., 0.0 – 0.1, 0.1– 0.2, 0.2 – 0.3, 0.3 – 0.4, 0.4 – 0.5, 0.5 – 0.6, 0.6 – 0.7, 
0.7 – 0.8, 0.8 – 0.9, 0.9 – 1.0) are combined in Bayes’ theorem to generate a prob-
ability map of landslide hazard. The equation for the Bayesian calculation is 
shown in Eq. (F.1.20): 
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The pp is the Bayesian probability for presence, pp is a priori probability for pres-
ence, pa is a priori probability for absence/random, Π n

i=1 cpi is the product of con-
ditional probabilities for presence for attributes i = 1, …, n of predictor datasets, 
Π n

i=1 cai is the product of conditional probabilities for absence/random for attrib-
utes i = 1, …, n of predictor datasets. Statistical assumptions that must be met for 
the Bayes’ theorem (Aspinall 1992) include: subjective probabilities adequately 
represent uncertainty over a particular event (a priori probabilities for presence 
and absence); conditional probabilities are adequately expressed as relative fre-
quencies of occurrence; conditional probabilities are orderly expressions of rela-
tionships between datasets (this assumption is tested through chi-square analysis 
of discriminatory significance); Bayes’ theorem provides an optimal (rational and 
normative) method for modifying probabilities; and predictor datasets are condi-
tionally independent. The simplicity of this approach is that after the classes with 
similar characteristics are grouped together by fuzzy k-means, the probabilities 
can always be revised with Bayes’ theorem when additional information is ob-
tained. 

F.1.4  Application of the modeling approach 

The modeling approach to estimating landslide hazard probability in Idaho’s CNF 
was tested and compared against the other approaches previously described 
(FSmet and SHALSTAB) for the study area. The approach is discussed in the fol-
lowing. 
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Study area 

The study area is within the CNF, located on the western slopes of the Rocky 
Mountains in north central Idaho (115°46’W, 46°07’N, 114°19’W, 47°00’N), 
USA. The CNF is located west of the Montana state border and is bounded on 
three sides by four other National Forests; the Lolo National Forest in Montana; 
the Bitterroot National Forest in Montana and Idaho; the Nez Perce National For-
est in Idaho; and the Panhandle National Forests in Idaho. The CNF map is shown 
in Fig. F.1.1. 
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Fig. F.1.1. Distribution of landslides over the Clearwater National Forest drainage during 
the winter 1995/96 storm events (training area is the shaded area) 

The training area of 111.8 km2 used for classification includes the Papoose, Badg-
er and Squaw Creek watersheds (Fig. F.1.1) located northwest of Lowell, Idaho in 
the Lochsa Basin of the CNF. The training area was chosen because of the high 
landslide density initiated by landslide events in November 1995 and February 
1996 and the similarity of the topographic attribute distributions with the overall 
CNF. The highly dissected mountainous topography of the training area is typical 
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for Idaho's Clearwater River Basin. Elevation in the training area watershed 
ranges from 966 m to 2,154 m and slopes vary between zero and 45 degrees. The 
climate is characterized by dry and warm summers, and cool wet winters. 

Precipitation averages about 1,320 mm annually, which changes significantly 
across the elevational gradient. Most of the annual average precipitation falls as 
snow during winter and spring, while peak stream discharge occurs in late spring 
and early summer. The highly variable steep soils are well drained and are primar-
ily derived from parent materials such as granitics, metamorphic rocks, quartzites, 
and basalts  or surface erosion  and depositions. Vegetation includes Grand fir 
(Abies grandis), Douglas fir (Pseudotsuga menziesii), Subalpine fir (Abies lasio-
carpa), Western red cedar (Thuja plicata), Western white pine (Pinus Monticola), 
and various other shrubs and grasses that have short growing seasons, particularly 
at the higher elevations.  

Historically, the CNF in Idaho has experienced periodic floods and landslide 
events. Major floods occurred in 1919, 1933, 1948, 1964, 1968, and 1974. All of 
these floods were documented through streamflow records (McClelland et al. 
1997).  Although the approximate frequency of major landslide events is known 
for the last century, accurate mapping of individual landslides through time does 
not exist. 

Methods 

The data used for this study were derived or obtained from airphoto interpretation, 
field inventory, and DEMs. The landslides were assessed through aerial reconnais-
sance flights acquired in July 1996 in conjunction with field inventory following 
the landslide events that occurred in the CNF in November 1995 and February 
1996. The landslide dataset therefore, is limited to a specific set of circumstances 
(storm events) over a limited area in space and time. A total of 865 landslides 
were recorded, of which 55 percent were RR and 45 percent were NRR landslides. 
The presence/absence of landslide data was represented on (30 m) grid coverages 
with a value of one for presence and zero for absence. The initiation area of each 
landslide (i.e. the area where the main scarp of the landslide occurred) was used to 
represent presence of the landslides. The RR landslides, which are associated with 
forest roads, were separated from the NRR landslides. Furthermore, the RR and 
the NRR grid coverages were separated so the data from one area (subwatershed) 
were used to develop the quantitative models, and the data from the other area 
were used to test the quantitative models.  

A total of six environmental attributes [elevation, slope, profile curvature, tan-
gent curvature, compound topographic index (CTI), and solar radiation] were de-
rived from 30 m DEMs using TAPES-G (Gallant and Wilson 1996) and HEMI 
(Fu and Rich 2000) software. The continuous fuzzy k-means landform classifica-
tion was performed using these six environmental attributes as the input to FuzME 
a PC Windows-based program (Minasny and McBratney 2000). In the program, 
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the fuzzy k-means algorithm with Mahalanobis distance was applied to the train-
ing area to determine the optimal number of classes required to classify the area, 
to find the optimal values of the performance parameters, and to calculate class 
centroids for interpretation of similarities and differences between classes. After 
finding the optimal number of classes, plus the overlaps between the classes and 
the class centroids, a custom built program using the Arc/Info GRID module was 
used to extrapolate the fuzzy k-means elements from the training area to the entire 
study area. Along with the derived fuzzy k-means classes, the maximum ‘Max-
class’ (most dominant membership value) and ‘Minclass’ (least dominant) classes 
were calculated. The Bayesian modeling followed using an ArcView (ESRI) ex-
tension (Aspinall 2000) by correlating derived fuzzy k-means classes and the land-
slide occurrence datasets. This step required fuzzy k-means classes to be catego-
rized so landslide occurrences can be linked to the classes. 

Results from fuzzy k-means classification 

The fuzzy k-means were computed for two to nine classes with different fuzzy ex-
ponents (φ ). Using the performance measurement criteria of FPI and MPE, the 
optimal number of classes was computed for the lowest φ  (1.15) and for the high-
est φ  (1.50). The fuzzy performance measures are shown in Figs. F.1.2(a) and 
F.1.2(b) for the initial implementation with a fuzzy exponent φ = 1.15 and φ  = 
1.50 respectively. Figure F.1.2 suggests that the optimum number of classes for 
both fuzzy exponents is six using the minimization criteria of FPI and MPE meas-
ures.  
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Fig. F.1.2. Fuzziness performance index (F) and normalized classification entropy (H) ver-
sus number of classes: (a) fuzziness exponent φ  =  1.15, and (b) fuzziness exponent φ  =  1.50 
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After determining the optimal number of classes, and assuming that no deviation 
will occur in the number of classes between the lowest and the highest fuzzy ex-
ponents, the optimal φ  [1.15, 1.50] was computed for c = 6 at an increment of φ  
= 0.05. In Fig. F.1.3 derivation of the optimal fuzzy exponent is shown. The best 
value of φ  for c = 6 is at the maximum of the curve (φ = 1.40). 
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Fig. F.1.3. Plot of – [(δJE  /δ φ )c0.5] versus φ  for c = 6 

The class centroids given in Table F.1.1 can be used to interpret similarities and 
dissimilarities between classes. The centroid is the average point in the multidi-
mensional space and represents, in a sense, the center of gravity for the respective 
cluster. For example, class b has the highest wetness index, and the lowest (nega-
tive) profile and tangent curvature values suggesting that this class represents con-
vergent areas with high soil moisture. The high solar radiation of class a and the 
high profile and tangent curvature indicates convex areas. Thus, from the cluster 
centers in Table F.1.1 the analyst can interpret landscape pattern differences cap-
tured by the fuzzy classes. The fuzzy k-means approach has distinguished poten-
tially useful classes defining multivariate patterns and clusters within the area of 
interest based on the input variables.   

Table F.1.1. Cluster centers for six classes 

Input data a b c d e f 
Elevation 1445.56 1412.93 1784.37 1362.64 1398.89 1606.85 
Slope 32.94 44.31 49.17 66.77 58.60 50.12 
Wetness Index 9.32 11.61 9.37 8.96 8.93 9.24 
Solar Radiation 1108.65 943.71 1260.90 510.01 1101.07 691.26 
Profile Curvature 0.10 -0.45 0.04 0.02 0.03 0.01 
Tangent Curvature 0.31 -1.35 0.05 0.16 0.15 0.04 

Notes:  a represents mid elevation, gentle convex slopes with high solar radiation, b is mid elevation, 
concave drainages, c is high elevation, high solar radiation (southerly slopes) locations, d is low eleva-
tion, steep low solar insolation locations (northerly slopes), e is low elevation, steep high solar insola-
tion locations (southerly slopes), and f is high elevation, low solar insolation (northerly slopes) 
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Figure F.1.4 shows the spatial patterns of these classes to compliment the cluster 
centers.  For example, class a represents mid elevation, gentle convex slopes with 
high solar radiation, class b is mid elevation, concave drainages, class c is high 
elevation, high solar radiation (southerly slopes) locations, class d is low eleva-
tion, steep low solar insolation locations (northerly slopes), class e is low eleva-
tion, steep high solar insolation locations (southerly slopes), and class f is high 
elevation, low solar insolation (northerly slopes).   

In Fig. F.1.5(a) the confusion index  (CI) map is shown.  The CI map illus-
trates areas where spatial boundaries between classes exist. High values of CI rep-
resent areas with fuzzy boundaries where a grid cell belongs to two or more 
classes, while low values represent areas with sharp boundaries where a grid cell 
is more likely to belong to one class. The map of maximum class (Fig. F.1.5(b)) 
shows the map classification based on the dominant class membership.  
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Fig. F.1.4. Drapes of fuzzy k-means classification of training area with six classes 
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These fuzzy classes may now be assessed for landslide hazard prediction. The 
modeling approach is based on calculating conditional probabilities from the rela-
tive frequency of statistical association between attributes of a dataset to be mod-
eled (i.e., presence and absence of landslides at a given spatial location) and at-
tributes of predictor datasets (i.e., fuzzy k-means classes). The predictor datasets 
represent classes of continuous landforms with membership values between zero 
and one. As previously described these classes are a function of several topog-
raphic attributes (Table F.1.1) extrapolated for the entire study area using the class 
centroids and Mahalanobis distance and subsequently categorized into sub-classes 
for implementing the Bayes’ theorem. 
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Fig. F.1.5. Drapes of the confusion index (CI) and the most dominate class 

Results from model testing 

The presented methodology was used to accomplish the following three objec-
tives: (i) to evaluate if the predictor fuzzy k-means classes used for RR and NRR 
landslide hazard models are the same; (ii) to evaluate if predictive Bayesian mod-
els of landslide hazard for RR and NRR landslides are different; and (iii) to evalu-
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ate if spatial prediction of landslide hazard using the integrated Fuzzy/Bayesian 
approach is better than spatial prediction using existing models (FSmet, 
SHALSTAB). 

Comparison of predictor datasets. In order to evaluate the first objective the 
Bayes’ theorem was used to provide a framework for combining predictor data-
sets. This modeling approach is based on calculating conditional probabilities 
from relative frequencies of datasets to be modeled (presence or absence of NRR 
or RR landslides) and categorized predictor datasets (fuzzy k-means classes). The 
significance of the conditional probabilities for discriminating between distribu-
tion classes for each predictor dataset is tested using chi-square (see Table F.1.2). 
The table shows the degrees of freedom, chi-square values, and the level of sig-
nificance (* less than 0.05; ** less than 0.01; *** less than 0.005) for discriminating 
between fuzzy k-means classes and landslides for the NRR and RR landslides. The 
assumptions presented above guided the selection of appropriate predictor datasets 
for the NRR and RR landslides.  

Table F.1.2. Conditional probabilities of fuzzy k-means predictor datasets for development 
of the Bayesian models for the CNF 

       NRR landslides         RR landslides 
Predictors   df Chi-square   p Chi-square   p 
Minclass 5 64.748 *** 23.144 *** 

Maxclass 5 168.114 *** 144.589 *** 

CI 9 13.249 NS 8.478 NS 
Ca 9 11.859 NS 27.661 *** 

Cb 9 97.364 *** 48.139 *** 

Cc 9 39.286 *** 52.578 *** 

Cd 9 37.05 *** 28.129 *** 

Ce 9 156.594 *** 118.918 *** 

Cf 9 66.196 *** 64.176 *** 

Notes:  NS denotes not significant, * significant at the 0.05, ** at the 0.01 and *** at the 0.005 level 
 

Figure F.1.6 illustrates the spatial implementation of the Bayes’ theorem for NRR 
landslides derived from five-predictor datasets. The five-predictor datasets that 
were statistically significant (using chi-square) without violating other statistical 
assumptions included the maximum and minimum class (based on most and least 
dominant class membership); mid elevation, concave drainages; low elevation, 
steep low solar insolation locations (northerly slopes); and low elevation, steep 
high solar insolation locations (southerly slopes).  

Figure F.1.7 illustrates the spatial implementation of the Bayes’ theorem for 
RR landslides derived from four-predictor datasets. The four-predictor datasets in-
clude the maximum class; mid elevation, gentle convex slopes with high solar ra-
diation; low elevation, steep low solar insolation locations (northerly slopes); and 
low elevation, steep high solar insolation locations (southerly slopes). The differ-
ence between the two outputs (Figs. F.1.6 and F.1.7) is shown in Fig. F.1.8. The 
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figure is an estimate of the uncertainty associated with the derivation of the Bayes-
ian model using RR and NRR landslide predictor subsets. Figures F.1.9 and F.1.10 
show the implementation of the Bayes’ theorem for a smaller area within the CNF 
for the NRR and RR landslides draped over a DEM with 50 m surface elevation 
contours indicating relief.  

 

 

Fig. F.1.6. Bayesian model output. Probabilities of the occurrence of non-road related land-
slides in the CNF (The units are represented as probability on a scale of zero to one, but 
have been rescaled to zero to 100) 

 

The prediction surface differences between the RR and NRR landslides are shown 
in Fig. F.1.11. The legend in the figure suggests that high hazard for NRR land-
slides is associated with negative values, while high hazard for RR landslides is 
associated with positive values. Values close to zero represent areas of agreement 
between both landslide hazards.  The ‘blocky’ appearance of predicted landslide 
hazard in the figures is likely associated when fuzzy k-means classes were simpli-
fied for the Bayesian modeling by using 10 sub-classes (i.e., 0-0.1, 0.1-0.2, 0.2-
0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1) and from the statisti-
cal significance associated with each sub-class of significant attributes used for the 
modeling. 
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Fig. F.1.7. Bayesian model output. Probabilities of the occurrence of road related landslides 
in the CNF (The units are represented as probability on a scale of zero to one, but have been 
rescaled to zero to 100) 

 

Fig. F.1.8. Difference of probabilities of the occurrence of non-road related versus  
road related landslides in the CNF 
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Fig. F.1.9. Drape of predicted landslide hazard for non-road related landslides using  
Bayesian modeling 

 

Fig. F.1.10. Drape of predicted landslide hazard for road related landslides using Bayesian 
modeling 

Figure F.1.11 illustrates the difference in the spatial prediction between the RR 
and NRR landslides. NRR landslides appear more likely associated with steeper 
concave drainages while the RR landslides are associated with both steep and gen-
tle slopes (more random across the landscape). RR landslides exclude the concave 
drainages and include gentle slopes and convex areas. The average solar radiation 
from the class centers (Table F.1.1) for the predictor datasets appear to be lower 
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for the NRR landslides than for the RR landslides. This suggests that cooler and 
moister locations are likely associated with NRR landslides. These areas also ex-
hibit a higher average wetness index based on the class centers. The class center 
averages of the profile and tangent curvatures also have negative values for the 
NRR landslides, which suggest areas of converging flow. Conversely, the class 
center averages of the profile and tangent curvatures have positive values for the 
RR landslides, which suggests areas of diverging flow. The average slope from the 
class centers is lower for the RR landslides, while the elevation is approximately 
the same. Thus, predictor fuzzy k-means classes used in the development of the 
RR and NRR models are different. 

 
 
Fig. F.1.11. Drape of predicted landslide hazard difference for road related and non-road 
landslides using Bayesian modeling 

Evaluation of hazard maps. To evaluate the second objective, independent test 
data for the RR and NRR landslides from another sub-basin within the CNF was 
used to test the goodness-of-fit between the models and the independent test data. 
The evaluation of the accuracy of the hazard maps yielded significant χ2 values for 
both models.  The RR model yielded χ2 =376.52 and NRR model yielded χ2 

=507.01 which in both cases was greater than the critical value (χ2 =140.16 with 
100 degrees of freedom, and with 95 percent confidence interval) while other as-
sumptions were met.  Table F.1.3 shows cross-tabulation of the independent test 
data for the RR and NRR landslides against the results from the Bayesian model. 
The results from Table F.1.3 suggest that the NRR model provides a better overall 
fit with better discrimination between high and low hazard areas than the RR 
model. Thus the Bayesian prediction for NRR landslides seems to have a higher 
level of certainty than the prediction for RR landslides. This may be because the 
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model prediction for NRR landslides is better suited to identify natural processes 
associated with landsliding. For instance, the predictor datasets from the first ob-
jective suggest that the NRR landslides are occurring mostly on steep slopes, 
while the RR landslides can occur on steep slopes as well as gentle slopes. Also, 
the predictor datasets appear to suggest that roads increase the likelihood of land-
slides occurring in many places where they likely wouldn’t occur in a natural or 
un-roaded situation. Hence, NRR landslides may be restricted to a more narrow 
set of environmental conditions than RR landslides. Therefore, the evaluation of 
this objective suggests that predictive Bayesian models of landslide hazard for RR 
and NRR landslides are different. 

Table F.1.3. Proportion of presence/absence associated with probabilities for non-road and 
road related landslides 

             Non-road related                          Road related 
Probability  
(x 100) 

Presence  
(%) 

Absence  
(%) 

Presence  
(%) 

Absence  
(%) 

0 – 20 11.05 60.83 8.56 45.58 
20 – 40 5.26 6.05 8.11 11.43 
40 – 60 4.21 4.47 20.72 19.64 
60 – 80 17.37 10.26 26.13 10.97 
80 – 100 62.11 18.39 36.49 12.38 

 
 
Comparison of models. Finally, the third objective is evaluated through the com-
parison of new and existing models applied to the CNF (Tables F.1.4 and F.1.5). 
The comparison of each modeling technique is based on arbitrary cut-off values 
that measure the proportions of correctly identified landslides and the correspond-
ing proportions of areas at risk. The ratio values in the tables measure the accu-
racy, which is obtained by dividing the correctly identified landslides by the area 
classified to be unstable. Higher ratio values suggest better prediction of landslide 
hazard. The ratio values in both tables show that the derived predictions from the 
new (fuzzy k-means/Bayes’ theorem) models for the RR and NRR landslides are 
better than the existing models. For example, the p value associated with the fuzzy 
k-means/Bayes’ theorem model corresponds to probability of landslide hazard 
greater than 50 (p > 50) on scale 0 to 100. Tables F.1.4 and F.1.5 show that the 
fuzzy k-means/Bayes’ theorem model does not correctly identify as many known 
landslide locations as the SHALSTAB modeling techniques, but this method also 
does not classify as large an area as unstable. Conversely the SHALSTAB model 
has the lowest ratio values for both NRR (1.31) and the RR (1.22) landslides. This 
model, in order to correctly identify more than 80 percent of the landslides, classi-
fies a large area (69.26 percent) as unstable. Therefore, the ratio value suggests 
that spatial predictions from the proposed modeling methodology are better than 
spatial predictions from existing methods. 
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Table F.1.4. Evaluation of new and existing modeling techniques in the CNF derived by 
arbitrary cut-off values for the NRR landslides 

Area classified to  
be unstable 

Correctly identified 
 landslides 

Modeling techniques 
 
 % (1) km2 % (2) km2 

Ratio 
 

(2)/(1) 

Fuzzy k-means/Bayes’ theorem (p > 50) 30.96 1996.03 63.70 0.18 2.06 
Fuzzy k-means/Bayes’ theorem (p > 70) 25.89 1669.16 57.28 0.21 2.21 
Fuzzy k-means/Bayes’ theorem (p > 90) 8.05 518.99 20.49 0.06 2.54 
SHALSTAB (cut-off > –2.2) 69.26 4465.28 90.88 0.33 1.31 
SHALSTAB (cut-off > –2.8) 62.74 4044.92 87.42 0.25 1.39 
SHALSTAB (cut-off > –3.1) 32.39 2088.22 62.89 0.23 1.94 
Current forest service method 5.54 1996.03 10.06 0.18 1.82 

Table F.1.5. Evaluation of new and existing modeling techniques in the CNF derived by 
arbitrary cut-off values for the RR landslides 

Area classified to  
be unstable 

Correctly identified 
 landslides 

Modeling techniques 
 
 % (1) km2 % (2) km2 

Ratio 
 

(2)/(1) 

Fuzzy k-means/Bayes’ theorem (p > 50) 34.32 2212.65 73.83 0.21 2.15 
Fuzzy k-means/Bayes’ theorem (p > 70) 19.57 1261.70 46.91 0.17 2.40 
Fuzzy k-means/Bayes’ theorem (p > 90) 4.41 284.32 12.10 0.03 2.74 
SHALSTAB (cut-off > –2.2) 69.26 4465.28 84.20 0.31 1.22 
SHALSTAB (cut-off > –2.8) 62.74 4044.92 78.02 0.22 1.24 
SHALSTAB (cut-off > –3.1) 32.39 2088.22 45.19 0.16 1.40 
Current forest service method 5.54 2212.65 9.63 0.21 1.74 

F.1.5  Concluding remarks  

The presented work demonstrates that robust landslide hazard predictions can be 
achieved through an integration of GIS, fuzzy k-means, and Bayesian modeling 
techniques. The potential of this spatial approach for landslide hazard is high. In 
the modeling approach the optimal number of classes is derived by iterative classi-
fication for a range of classes or from expert knowledge (desired degree of detail). 
The continuous fuzzy k-means classification provides a significant amount of in-
formation about the character and variability of data, and seems to be a useful in-
dicator of landscape processes  relevant for predicting landslide hazard. For the 
study area the continuous classification identified various areas, which were de-
scribed by combinations of a few or more attributes and their correlations to land-
form regions. The fuzzy k-means small-scale landform classification (training set) 
was effectively extrapolated to a broader-scale area for spatial prediction of land-
slide hazard. Thus, a broad range of explanatory variables useful for landslide 
hazard prediction were integrated through this continuous fuzzy k-means classifi-
cation.  
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The evaluation of objective one demonstrated that predictor fuzzy k-means classes 
used for RR and NRR landslide hazard models were not the same. The fuzzy k-
means classes showed different predictive power for useful landslide hazard rela-
tionships as well as different statistical significance for the RR and NRR models. 
This suggests that different landscape processes are associated with NRR and RR 
landslides. The model prediction of NRR landslides is more comprehensive in in-
terpreting landslide processes while the model prediction of RR incorporates ele-
ments of randomness in describing processes associated with landslide hazard. 
The explanatory variables suggest that the NRR landslides are occurring mostly 
on steep slopes and concave drainages, while the RR landslides can occur on steep 
slopes as well as gentle slopes and convex areas. Also, NRR landslides are associ-
ated with wet concave areas, whereas RR landslides are associated with dryer and 
convex areas. Thus, for management planning strategies and land-use activities 
such as road construction, decision-makers should consider landscape processes 
associated with RR landslides in order to avoid vulnerable areas prone to landslide 
hazard.  

The second objective confirmed that predictive Bayesian models of landslide 
hazard for RR and NRR landslides are different. The test data further demonstrate 
that the goodness-of-fit for the NRR landslides is better than for RR landslides, 
and that prediction with higher levels of certainty is possible for NRR landslides. 
This justifies the need for development of two independent RR and NRR models 
that may be used for addressing different questions for future planning and man-
agement of natural resources in predicting landslide hazard.   

Objective three demonstrated that comparison of spatial prediction using the 
integrated Fuzzy/Bayesian approach is better than spatial prediction using existing 
models (Fsmet, SHALSTAB). Therefore, this suggests that the integrated 
Fuzzy/Bayesian approach is appealing for management applications and decision-
making when RR and NRR landslides are considered.  

Each individual model may be analyzed in greater detail than demonstrated 
here to improve the understanding between processes driven by RR and NRR 
landslides. However, the intention was to demonstrate a quantitative methodology 
for landslide hazard prediction that is explicit, consistent and repeatable. The 
Fuzzy/Bayesian methodology provides a basis for understanding landslide proc-
esses initiated from RR and NRR landsides and may be used to provide forest land 
managers with information on landslide hazard that can be integrated with other 
spatial techniques or to focus limited resources toward the prevention of future 
landslides. 
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F.2  Incorporating Spatial Autocorrelation in 
Species Distribution Models  

Jennifer A. Miller and Janet Franklin 

F.2.1  Introduction 

Species distribution models, based on ecological niche theory and gradient analy-
sis, require digital maps of environmental factors that influence species distribu-
tions, such as topography and climate, as well as spatial information on the species 
attribute of interest (for example, presence/absence, type, abundance), typically 
sampled directly or compiled from existing datasets such as museum records. Re-
flecting the fact that their use spans several disciplines, these types of models have 
been referred to previously as ‘predictive vegetation mapping’ (Franklin 1995), 
‘predictive habitat distribution modeling’ (Guisan and Zimmermann 2000), and 
‘niche modeling’ (Stockwell 2007). The terminology seems to be converging on 
‘species distribution modeling’, which is used here. It should be noted that it is 
technically the environmental habitat suitability that is produced (mapped) from 
these models, which renders them appropriate for studying the distribution of 
communities/assemblages (Ferrier et al. 2002) as well as species, in addition to a 
number of related biogeographical variables, such as species richness (Rangel et 
al. 2006), invasive species (Richardson and Thuiller 2007), and disease transmis-
sion (Peterson 2006).   

There is an increasingly wide variety of statistical methods from which to 
choose, ranging from more traditional generalized regression to artificial neural 
networks and genetic algorithms (for review, see Franklin 1995; Guisan and 
Zimmermann 2000; Elith et al. 2006). The choice of method to use is based upon, 
among other things, data characteristics (known vs. unknown parameters, distribu-
tion, measurement level), model use (prediction vs. inference), and intended final 
product (categorical map, abundance map).  
 
 

Reprinted in slightly modified form from Miller J, Franklin J (2006) Explicitly incorporating 
spatial dependence in predictive vegetation models in the form of explanatory variables: a Mojave Desert 
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These models are probabilistic and generally static, spatially and temporally, as-
suming that the species is in equilibrium with its environment. Many of the com-
monly used statistical methods such as generalized regression further assume that 
the observations of the species attribute of interest are random, an assumption 
which casual observation proves unrealistic. In fact, there are very few things dis-
tributed randomly in nature or elsewhere, leading to what Waldo Tobler (1970) 
termed the ‘First law of geography’, to describe the regularity that near things are 
more related than distant things (also see Sui 2004). A more specific ecological 
manifestation of this acknowledges that elements of an ecosystem close to one an-
other are more likely to be influenced by the same generating process and will 
therefore be similar (Legendre and Fortin 1989). 

This property of spatial autocorrelation in species data is borne out by the fact 
that two plot locations nearby are more likely to have similar characteristics than 
two more distant plots. Some of this can be explained by spatially structured envi-
ronmental predictor variables, such as precipitation, temperature and elevation. 
The remaining spatial autocorrelation can result from either unmeasured or unob-
servable variables, or biotic processes, such as competition, predation or dispersal, 
that cause spatial patterning.  

When spatially autocorrelated data are used with traditional (non-spatial) sta-
tistical methods, the result is poorly specified models in general and inflated sig-
nificance estimates for predictor variables (resulting in increased type I errors) in 
particular (Legendre 1993). Several studies have indicated the importance of in-
cluding spatial structure in models as a way of clarifying the influence of envi-
ronmental predictor variables (Wu and Huffer 1997; Hubbell et al. 2001; Keitt et 
al. 2002). The potential predictive ability of spatial autocorrelation in species dis-
tribution models has only recently been explored (see Miller et al. 2007, for re-
view). 

Spatial autocorrelation has been identified as an important area of future re-
search in species distribution models (Franklin 1995; Guisan and Zimmermann 
2000).  Many of these studies that acknowledge it attempt to eliminate it by ma-
nipulating the sampling strategy to avoid observations within a certain distance of 
each other (Legendre and Fortin 1989; Davis and Goetz 1990; Borcard et al. 1992; 
Smith 1994). Borcard et al. (1992) and Legendre and Legendre (1998) used partial 
regression to separate the explanatory ability (of vegetation distribution) of envi-
ronment from spatial factors (see also Lobo et al. 2002; Lobo et al. 2004; Graae et 
al. 2004; Nogués-Bravo and Martinez-Rica 2004 for recent examples). In a recent 
review of species distribution models that have incorporated spatial autocorrela-
tion, Miller et al. (2007) conclude that limited availability of sample data at ap-
propriate and varying spatial resolutions has been a limiting factor in the ability of 
models to describe it well enough to include it.  

This study expands upon previous research that focused on incorporating spa-
tial structure explicitly in species distribution models. In Miller (2005), the model 
residuals were used as a proxy for spatially structured local variation and were in-
terpolated and added to the model predictions. Miller and Franklin (2002) used 
kriging to calculate autocovariates, additional predictor variables based on ob-
served locations of the response variable to represent spatial autocorrelation in 
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models for four vegetation alliances. We extend this work here by using stochastic 
simulation in addition to kriging to calculate autocovariates for eleven vegetation 
alliances. Two types of statistical models are used, generalized linear models 
(GLM) and classification trees (CT), to predict presence/absence of eleven vegeta-
tion alliances of varying distributions, in a section of the Mojave Desert, Califor-
nia, USA. Model accuracy was compared using receiver-operating characteristic 
(ROC) plots, a threshold- and prevalence-independent metric that gauges how 
well a binary outcome has been classified.  

F.2.2  Data and methods 

Data. The study area for this research is a 50,369 km2 portion of the Mojave De-
sert Ecoregion within California, referred to as the Eastern California Subsection 
(see  Fig. F.2.1). The predictor variables used represent both broad-scale climate 
and fine-scale topographic variables, as well as two categorical geomorphic land-
form and surface composition variables (see Table F.2.1). 

Eleven vegetation alliances (see Table F.2.2) were selected for modeling, with 
a goal of achieving a representative variety of distribution types in the Mojave De-
sert (for example, rare, common; weak and strong environmental relationships). 
The dataset consisted of 3,819 observations and was partitioned into 75:25 
train:test portions following a heuristic suggested by Fielding and Bell (1997) for 
presence/absence data with more than ten predictor variables. The data are de-
scribed in more detail in Miller and Franklin (2006).  
 

 

 

 

 

 

 

 

 

Fig. F.2.1. Mojave Desert study area. The square highlights the section used for predictions 
in Figs. F.2.3 and F.2.4 
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Table F.2.1. Environmental variables used in this study. Climate variables are one km reso-
lution; all others are 30m resolution 

Variable Description Range of values 

Sumprecip Average summer precipitation 11 to 146 mm 

Winprecip Average winter precipitation 45 to 579 mm 

Jantemp Minimum January temperature –11.3 to 4.8° C 

Jultemp Maximum July temperature 16.6 to 44.4° C 

Elevation From USGS 7.5’ DEM –85 to 3390 m 

Slope Derived from DEM 0 to 78 

Swness Cosine (aspect - 225°) (Franklin et al. 2000) –1 to 1 

Lpos4 Landscape position; Average difference between cell and 4 
neighbors (positive in valleys, neutral in mid-slope position, 
negative on ridges) (Fels 1994) 

–1732 to 2311 

Solrad Potential solar radiation (Dubayah 1994) 0 to 383 W/m2 

TMI Topographic moisture index; Number of cells draining into a 
cell divided by the tangent of slope (Beven and Kirkby 1979) 

0 to 22.6 

Landform Geomorphic landform (Dokka 1999) 29 nominal 
classes 

Landcomp Surface composition (Dokka 1999) six aggregated 
nominal classes 

Table F.2.2. Vegetation alliances modeled (Thomas et al. 2004), and the proportion of the 
full (test and train, n = 3,819) dataset in which they are present. Species abbreviations com-
prise the first two letters of genus and specific epithet of indicator species. Number of ob-
servations of present (P) are given for test and train data (which consisted of 960 and 2,859 
observations respectively) 

Label, 
(proportion) 

Alliance name P 
test 

P 
train 

ATCA 
(0.006) 

Atriplex canascens 
Shrubland Alliance 

7 16 

ATCO 
(0.028) 

Atriplex confertifolia  
Shrubland Alliance 

34 73 

CORA 
(0.034) 

Coleogyne ramosissima  
Shrubland Alliance 

21 110 

EPNE 
(0.006) 

Ephedra nevadensis  
Shrubland Alliance 

5 17 

GALL 
(0.011) 

Pleuraphis rigida  
Herbaceous Alliance 

9 34 

LATR 
(0.158) 

Larrea tridentata  
Shrubland Alliance 

145 460 

LATR-AMDU 
(0.427) 

Larrea tridentata - Ambrosia dumosa  
Shrubland Alliance 

417 1214 

MESP 
(0.007) 

Menodora spinescens  
Dwarf-shrubland Alliance 

10 17 

PIMO 
(0.013) 

Pinus monophylla  
Woodland Alliance 

12 38 

YUBR 
(0.092) 

Yucca brevifolia  
Wooded Shrubland Alliance 

87 265 

YUSC 
(0.047) 

Yucca schidigera  
Shrubland Alliance 

49 132 
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Spatial autocorrelation variables. Two geostatistical interpolation methods 
(kriging and simulation) were used to calculate spatial autocorrelation variables 
(autocovariates) based on the distribution of presence/absence in the training data, 
and these terms were included with other environmental variables in GLM and CT 
models. Kriging methods result in one set of predicted values that are optimized 
based on the variogram and the spatial configuration of the data, but the result is 
overly smooth. Rather than one optimal prediction, stochastic simulation generates 
a series of equally probable predictions, allowing the ‘roughness’ of the data to be 
maintained (Burrough and McDonnell 1998). Although multiple realizations are 
often used to describe the range of variation in values at unsampled locations (see 
Rossi et al. 1993), here a single simulation realization is used to represent one pos-
sible scenario of the spatial distribution of a vegetation alliance.  

An autocovariate has been explicitly incorporated along with environmental 
variables in logistic models, formally called autologistic models, following work 
by Besag (1972) and subsequent modifications by Augustin et al. (1996).  How-
ever, including an autocovariate term requires complete information on the distri-
bution of the response variable, which is rarely available. Gibbs sampler and 
Markov Chain methods (Augustin et al. 1996, 1998) and Markov Chain Monte 
Carlo methods (Gumpertz et al. 1997; Wu and Huffer 1997) have been used to 
‘fill in the blanks’ of the sample data, but these are computationally intensive and 
in some cases unstable or intractable (Wu and Huffer 1997). Here we use geosta-
tistical interpolation methods, specifically indicator kriging and conditional simu-
lation, as a less computationally intense way to generate complete surfaces based 
on spatial structure of and values of the original observations.  

Indicator kriging is the non-linear form of kriging used with binary response 
data and its product is a surface with the probability that the condition coded ‘1’ 
(for example, ‘presence’) will occur (Burrough and MacDonnell 1998). Similarly, 
indicator simulation is used with binary sample data (Burrough and MacDonnell 
1998). The result is a layer with values of one and zero based on the variogram 
and the proportion of one and zero in the sample data.  

An indicator variogram was fit to the training data for each alliance. All 
variograms were fit using the common heuristic ‘by eye’ approach (Gotway and 
Hartford 1996), and are therefore highly subjective. Three of the most commonly 
used variogram models were tested: spherical, exponential, and Gaussian. Only 
spherical, which describes a clear range and sill, and exponential, which describes 
a more gradual approach to the range (Burrough and MacDonnell 1998) were 
used. For comparison purposes, a variogram was fit to all alliances, even when 
positive spatial autocorrelation was not apparent. This way, the effects of incorpo-
rating it in models when it is not empirically detected could be explored. Indicator 
kriging of the variograms and sample data was used to calculate a layer of prob-
ability values for each alliance. Similarly, indicator simulation was used to calcu-
late a layer with values of zero and one that mirrored the sample data proportions. 
Based on the resolution of the sample data and the environmental variables, an ap-
proximation of the ‘average’ spatial structures among the alliances studied here, 
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and potential processing time, 500 m was selected as the resolution of the autoco-
variate layers. 

This resulted in eleven maps (one for each alliance) with values that repre-
sented the probability that a specific alliance would be present in each 500 m grid 
cell based on indicator kriging (referred to as ‘K’); eleven maps with values of one 
and zero indicating whether an alliance is predicted to be present or absent based 
on indicator simulation (‘1sim’); and eleven layers with values that represented 
the mean of ten simulations (‘Msim’). Generally, the mean of 100 simulations 
should approximate the kriged result (Burrough and MacDonnell 1998) – the 
mean of ten simulations should retain some characteristic roughness of the data, 
with the flexibility of having non-binary values.  

To represent the neighborhood around each cell, the values of each of the in-
terpolated variables for the eight surrounding grid cells of each observation were 
summed using ArcInfo GIS and added to the modeling datasets as the autocovari-
ate (Auto) term (for K, Msim, or 1sim):  

 

Auto term = 
8

1

( )i
i

P pres
=
∑  

 
where P(pres)i represents the kriged or simulated prediction for each cell (i) and 
can range from zero to one, therefore the autocovariate term representing the 
neighborhood sum, K/Msim, can range from zero, indicating no observations of 
presence nearby, to eight, indicating a cluster of observations of presence (Besag 
1974; Augustin et al. 1996).  

Models. The models that form the basis of our comparison were developed us-
ing generalized linear models (GLMs) and classification trees (CTs). GLMs are 
one of the most commonly used methods (see Guisan et al. 2002). Model specifi-
cation with GLMs is fairly subjective, and as a result they are less data-driven and 
exploratory as non-parametric models such as CTs. 

We used logistic regression because the response data were binary. The GLMs 
were developed based on a combination of stepwise and subjective, iterative, vari-
able addition and subtraction methods with a goal of minimizing the AIC statistic 
(Akaike 1973; Hastie et al. 2001). Pairwise interaction terms based on biophysical 
principles (for example, elevation/aspect) or observed in the CT structure (de-
scribed below) were also tested for significance. Generalized additive models 
were used in an exploratory way to identify higher order relationships (polyno-
mial, piecewise linear) between the environment variables and response variable 
(see Brown 1994; Franklin 1998; Miller and Franklin 2002 for similar methods) 
that were then specified in the GLM. Once a subset of variables was selected for 
the non-spatial model, the autocovariate term was added (always as a linear term) 
and any subsequently non-significant variables were removed. 

CT models are non-parametric and use a rule-based structure developed by 
partitioning data into subsets that are increasingly homogeneous with respect to 
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the response variable (Breiman et al. 1984). Partitioning continues until either the 
resulting branches are homogeneous or a minimum number of observations re-
mains in the subset. Associated with each terminal node is the number of points in 
the training data that were observed in locations that met the environmental crite-
ria, as well as the number that are correctly classified. This proportion can be in-
terpreted as the ‘suitability’ (Pontius and Schneider 2001) for a class to occur, 
analogous to the probability that results from GLMs. 

Each CT model was given all predictor variables (twelve environmental vari-
ables for non-spatial models, one additional spatial variable for each of the three 
spatial models), then was pruned (based on cross-validation, see Breiman at al. 
1984) to sizes that ranged from six to thirty-one terminal nodes for the non-spatial 
CT models, and three to twenty-seven nodes for the spatial CT models. 

Model assessment. Classification accuracy was the focus of model assessment 
in this work, and receiver-operating characteristic (ROC) plots were used as the 
accuracy metric as they are threshold- and prevalence-independent (Fielding and 
Bell 1997). A ROC plot is obtained by plotting all sensitivity values (true positive 
fraction) on the y-axis against their equivalent (one – specificity) (false positive 
fraction) values on the x-axis. The area under the curve (AUC) of the resulting 
plot provides a measure of overall accuracy at all available thresholds. Swets 
(1988) provides a rough guide for classifying the accuracy as: 0.50–0.60 = fail; 
0.60–0.70 = poor; 0.70–0.80 = fair; 0.80–0.90 = good; 0.90–1.00 = excellent. 
Based on plots of sensitivity and specificity for a range of probability values, a 
threshold was selected to produce the binary present/absent maps.  

To summarize, a total of eight models for each of the eleven alliances were 
developed: (i) a non-spatial CT model based on the environmental variables; (ii) 
the same (non-spatial) CT model to which the kriged autocovariate term was 
added (these models will be referred to as ‘CT_K’); (iii) the same CT model to 
which the mean simulation autocovariate was added (referred to as ‘CT_Msim’); 
(iv) the same CT model to which the simulation autocovariate was added 
(‘CT_1sim’); (v) a (non-spatial) GLM based on the environmental variables; (vi) 
the same (non-spatial) GLM to which the kriged autocovariate was added 
(‘GLM_K’ models); (vii) the same GLM to which the mean simulation autoco-
variate was added (‘GLM_Msim’); and (viii) the same GLM to which the simula-
tion autocovariate was added (‘GLM_1sim’). The classification accuracy of the 
models was compared using ROC plots based on predictions on the test data. 

F.2.3  Results 

The variograms that were calculated from the binary training data visually indi-
cated that spatial autocorrelation in the training data ranged from negligible 
(ATCA, EPNE, MESP) to moderate (ATCO, GALL) to quite recognizable 
(CORA, LATR, LATRAMDU, YUBR, YUSC, and PIMO). There is an obvious 
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association between sample proportion and evident spatial structure – the noisiest 
variograms belonged to the rarest alliances. This is not surprising, as the 
variograms are dependent upon data quality and data quantity. The exception, 
PIMO occurs in only 0.013 of the sample, but its distribution is notably spatially 
clustered. The lag distance intervals for the alliance variograms varied from 1.8 
km (ATCA) to 14 km (YUBR). 

As spatial autocorrelation in data is an important component in statistical 
analysis of spatial data (Cressie 1993), the spatial structure of predictor variables 
used in the models was also examined. Variograms were fit to the ten continuous 
predictor variables (landform and landcomp excepted) using the values contained 
in the training data (n = 2,859), so that the sampling scale would be consistent 
with the alliance data. The spatial structure in predictor variables can explain some 
of the spatial pattern in the response variables (Aspinall and Pearson 1996). As 
expected, the climate variables and elevation had a great deal of positive spatial 
autocorrelation. The climate variables were derived using universal kriging (see 
Franklin et al. 2001 for methods), and it is understandable that their values are 
autocorrelated. Elevation also displays positive autocorrelation – the range occurs 
at a distance of approximately thirty km, which corresponds to the difference in 
basins and ranges in this study area. Slope and swness also show a moderate 
amount of autocorrelation, which could be related to the basin and range physi-
ography. The three other complex topographic variables, TMI, solrad, and lpos4 
show no discernible spatial structure, as their correlations are on a much finer 
scale than was captured in the sample of locations for the vegetation alliance data. 
The lag distance intervals for the ten environmental variograms ranged from 3.3 
km (swness) to 7.5 km (elevation). 

Although there are scale effects (broad-scale variables tend to be selected be-
fore fine-scale variables), and some degree of arbitrariness (when two variables 
result in equally good splits, one is chosen arbitrarily), a variable is selected in a 
tree because it results in the two most homogeneous subgroups, therefore, the or-
der in which it is used is an approximate indication of its relative importance.  

When included, the autocovariates were always used in the first split, and of-
ten again in subsequent splits. When spatial CT models were pruned, few of the 
environmental variables remained. For example, the non-spatial YUBR CT model 
used eight environmental variables, but when the kriged autocovariate was in-
cluded, only elevation was retained, and when the mean simulation autocovariate 
was included, only elevation and landform were used. The YUBR CT model with 
the single simulation autocovariate was more complex, using nine environmental 
variables, but the simulation autocovariate was used often in early splits. The clas-
sification accuracies were similar among these CT spatial models, and all were 
better than the accuracy for the non-spatial model.  

As expected, the non-spatial models required more environmental variables 
than the spatial models. Elevation and landform were used most often in the CT_K 
models; landform, TMI, swness and elevation were used most often in the 
CT_Msim models; landform and elevation were used most often with the 
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CT_1sim models. The CT_1sim model is generally closer in complexity and vari-
ables used to the non-spatial model. The non-spatial CT models used climate, ele-
vation, slope and landcomp more often than the spatial models. With the exception 
of landcomp, these variables all showed a substantial amount of spatial autocorre-
lation (a categorical variable, landcomp was not tested). The spatial structure in 
these environmental variables may be confounding the actual effects of the envi-
ronmental gradients they represent (see Lennon 2000). The spatial models used 
lpos4, solrad and TMI (the three environmental variables that showed no evidence 
of spatial autocorrelation at the scale of the training data), as much or more than 
the non-spatial models. 

Using the CT models for YUBR as an example, the tree using the single simu-
lation autocovariate was more similar to the non-spatial tree with respect to the 
variables used. The first split divides the data into a majority side (2,332 observa-
tions) that are not near other observations and a smaller portion (527 observations) 
that are. The sumprecip split (at 36.5 mm) results in two very homogeneous ter-
minal nodes – all 1791 observations were correctly classified absent at lower pre-
cipitation, and 537 of 541 observations were correctly classified as absent at 
higher precipitation. That terminal node included four present observations, even 
though they occurred where the autocovariate term was zero.  

The single simulation autocovariate is less forgiving in terms of resolution dif-
ferences (overlaying sample data points with predictor variable grids) and data 
anomalies. These four observations occurred at least five km away from other ob-
servations of presence, and while the smoothing effects of the kriged or mean 
simulation variables resulted in autocovariates with values greater than zero, this 
was not the case with the single simulation term model. This resulted in fairly ro-
bust results with the test data as well: 776 observations (of 960) were associated 
with values of zero for the autocovariate term, 600 of 602 observations were clas-
sified correctly as absent below the 37.5 mm precipitation threshold and 165 of 
174 observations were correctly classified as absent with higher precipitation. The 
autocovariate is likely acting as a proxy for a combination of environmental vari-
ables that are suitable for YUBR occurrence.  

Use of the autocovariates always decreased the AIC statistic in the GLMs. In 
most cases (except MESP, PIMO and YUBR), each autocovariate explained more 
variance than all of the other predictor variables combined. The simulation auto-
covariate explained the least of the three terms, and the kriged term usually ex-
plained the most. While the climate variables were often used in the non-spatial 
CTs, they were usually replaced by the autocovariate in the spatial models. In con-
trast, the only variables removed from the spatial GLMs were typically interaction 
terms, allowing more retention of the original environmental variables, although 
their effects were considerably overshadowed by the spatial terms.  

Landform, TMI, swness, lpos4, and solrad were all used with greater fre-
quency in CT models than in GLMs – these variables were often important in the 
spatial CT models, as the autocovariates replaced the broad-scale climate variables 
and the previously important elevation and slope variables. Elevation, slope, 
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jantemp, and sumprecip were used more often in the GLMs. Elevation was ex-
pected to be important, as were the climate variables, but the frequency with 
which slope was used was surprising. As a topographic variable, it may describe a 
combination of features that are both moisture- and landform-related, both very 
important to desert vegetation. 

Model accuracy was assessed using test data. For CTs, all three spatial terms 
resulted in significantly higher accuracy compared to the non-spatial model for 
two alliances (LATR and YUBR). Five other alliances had improved accuracy 
relative to the non-spatial models with at least one of the spatial models (ATCA, 
ATCO, CORA, LATRAMDU, and PIMO). The four remaining alliances (EPNE, 
GALL, MESP, and YUSC) all had either higher or similar non-spatial model ac-
curacy compared to the spatial models. Among the autocovariate terms, CT_K and 
CT_Msim models usually had higher accuracies than the CT_1sim models (with 
the exception of CORA and YUSC).  

For GLMs, all three spatial models had higher accuracy than the non-spatial 
model for four alliances (ATCO, CORA, LATR, and YUBR). Eight of the eleven 
non-spatial models were improved by inclusion of at least one of the autocovari-
ates. None of the GLM spatial models improved upon the non-spatial model accu-
racy for GALL, MESP, and PIMO.  

Two alliances had higher accuracy with the non-spatial model than with any 
of the spatial models for both GLMs and CT models (GALL, and MESP). Addi-
tionally, the non-spatial GLM of PIMO had higher accuracy than any of the spatial 
GLM models and the non-spatial CT models of EPNE and YUSC were better than 
any of their respective spatial CT models. Of these, MESP and EPNE had 
variograms that did not indicate any obvious spatial structure. The variogram for 
GALL indicated a gradual increase towards a sill, but the spatial structure was not 
very distinct, and it is a relatively rare alliance. PIMO and YUSC both had 
variograms that showed positive spatial autocorrelation. PIMO distribution is 
highly correlated with elevation and climate, and even though there is strong spa-
tial autocorrelation among the observations, it is most likely a result of the envi-
ronmental variables, which result in more robust models. While its habitat prefer-
ences are not as specific as PIMO, YUSC had very high accuracy with the non-
spatial CT model (AUC = 0.917). The CT_1sim model for YUSC had the highest 
accuracy of the three spatial models, and the variables it used most closely ap-
proximated those used in the non-spatial model.   

GLM_K models resulted in higher model accuracies slightly more often than 
the other spatial GLMs, but all had very similar effects. When the mean of all 
model AUC are compared, the non-spatial GLM and GLM_1sim share the highest 
value (0.84), while CT_1sim has the lowest value (0.74) (see Fig. F.2.2).  

It was surprising that GLM_1sim (EPNE) and CT_1sim (CORA) were very 
high compared to the other spatial models, but most likely a factor of the differ-
ence in what the single simulation term represents (binary presence/absence based 
on one simulation, rather than the smoother mean simulation term). This illustrates 
the relatively inconsistent results when the single simulation term was used. 
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Fig. F.2.2. Mean AUC values (with standard deviation) from all alliances for each model 

Model predictions. Mapped predictions were generated for all models. The im-
plementation of the GLMs for predictions is straightforward – each predictor vari-
able is multiplied by its model coefficient, then summed to provide the linear pre-
dictor (LP) for the alliance. In order to obtain probability values between zero and 
one, a logistic transformation of the LP is used. For the CT models, the decision 
rules are combined with the environmental variable layers to produce maps of 
suitability of presence. ROC plots are threshold-independent and therefore less 
subjective than threshold-dependent measures of model accuracy, but in order to 
produce a map of presence/absence, a threshold must be selected. Sensitivity, 
specificity, and total accuracy were plotted for a range of probabilities, and a 
threshold was selected that was near the intersection of the three lines (see Miller 
2005 for example). Maps of YUBR presence based on these thresholds are shown 
in Figs. F.2.3 and F.2.4, along with test presence/absence data. While these maps 
are only in a subsection of the study area (see Fig. F.2.1) and for only one alliance 
(YUBR), they illustrate the potential for improving predictive ability by including 
spatial autocorrelation. 

While the GLM has no false negative (present in test data but predicted ab-
sent) errors in this section, quite a few false positive (absent in test data but pre-
dicted present) errors are produced (Fig. F.2.3a). All of the spatial models reduce 
the false positive errors at no cost to the false negative errors [see Figs. F.2.3b) to 
F.2.3d)]. The CT models of the same area have few false positive errors, but more 
false negative errors [see Fig. F.2.4a)]. The addition of the autocovariate term re-
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duces the false negative errors, although there is an increase in the false positive 
errors [Figs. F.2.4b) to F.2.4d)].  

The main difference among the predictions from the spatial models is visual. 
The kriged results appear unrealistically smooth [see Figs. F.2.3b) and F.2.4b)], 
the single simulation autocovariate results in very patchy predictions [Figs. 
F.2.3d) and F.2.4d)], and as expected, the mean simulated autocovariate results in 
predictions that are somewhat intermediate between the single simulation and 
kriged results [Figs. F.2.3c) and F.2.4c)]. 
 
 
 

 

Fig. F.2.3. Generalized linear model predictions of Yucca brevifolia (YUBR) presence in 
the section shown in Fig. F.2.1: a) non-spatial model (0.15); b) model with kriged autoco-
variate 0.2); c) model with mean simulation autocovariate (0.2); d) model with single simu-
lation autocovariate (0.12). Probability thresholds used to dichotomize continuous map pre-
dictions are shown in parentheses 
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Fig. F.2.4. Classification tree model predictions of Yucca brevifolia (YUBR) presence in 
the section shown in Fig. F.2.1: a) non-spatial model (0.19); b) model with kriged autoco-
variate (0.2);  c) model with mean simulation autocovariate (0.2); d) model with single 
simulation autocovariate  (0.2). Probability thresholds used to dichotomize continuous map 
predictions are shown in parentheses 

F.2.4  Concluding remarks 

The aim of this study was to explore methods of incorporating spatial autocorrela-
tion in species distribution models in order to increase classification accuracy. The 
emphasis was on prediction rather than inference, and it was expected that the 
variables representing autocorrelation here could actually be representing biotic 
effects, abiotic effects or a combination of both.  

The methods used here represent an extension of methods that have been used 
previously in similar studies (see Miller et al. 2007). Autoregressive models are 
relatively new to species distribution modeling, and allow other predictor vari-
ables to be included, but involve computationally intensive methods to calculate 
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the autocovariate term and require all data forms and functions to be specified a 
priori. Geostatistical interpolation methods incorporate spatial structure explicitly, 
but are not appropriate for including many additional predictor variables and 
model form is also not flexible. CT models have resulted in higher classification 
accuracy than GLMs in some modeling studies (Franklin 1998; Vayssières et al. 
2000; Thuiller et al. 2003) but they have not been used to incorporate spatial auto-
correlation explicitly. The issues of interest here were whether classification accu-
racy of the test data increased when spatial structure was included (and for which 
alliance types), which model (GLM or CT) had better results, and which interpola-
tion method calculated the most suitable autocovariate term. 

Some GLMs showed improved accuracy with an autocovariate term, some 
had decreased accuracy and the same inconsistent effect was observed with CT 
models. Similarly, there was little congruity with respect to the effects of each of 
the autocovariate terms. However, the three alliances whose models were im-
proved more consistently by incorporating spatial autocorrelation were LATR, 
LATRAMDU, and YUBR, also the three most prevalent alliances. More informa-
tion on alliance presence generally increases both model performance and the abil-
ity of the variogram to adequately describe the spatial structure in the training 
data. 

Two of the rarest alliances (GALL and MESP) had consistently lower accu-
racy with the spatial models. The two rarest alliances had either poor models in 
general (ATCA), or had decreased accuracy with most of the spatial models 
(EPNE). ATCA, EPNE, and MESP had variograms that indicated very little spa-
tial structure. As these were also rare, it is difficult to determine whether these al-
liances are actually less spatially clustered, or whether the data are insufficient to 
model it. CORA, LATR, LATRAMDU, PIMO and YUSC all had variograms that 
indicated clear spatial structure and were all fairly prevalent alliances, or had very 
specific environmental requirements within the study area, resulting in spatial 
clustering (PIMO).   

Lack of sufficient data affects the variogram calculation, resulting in an unin-
formative or even confounding autocovariate term. Additionally, spatial structure 
is apparent in different degrees among the alliances studied here. Although the 
variogram for YUSC showed positive spatial autocorelation, the non-spatial mod-
els had particularly high accuracy, indicating any spatial clustering was likely rep-
resented by the environmental variables. 

Sample proportion and distribution were factors in determining the effect spa-
tial autocorrelation had on the models. LATRAMDU and PIMO have different 
types of distributions—LATRAMDU is one of the most ubiquitous alliances in 
the Mojave Desert (present in 1,631 of 3,819 observations). PIMO is found only in 
high elevations with higher precipitation (present in only fifty observations). Each 
of these alliances had curious results when spatial structure was incorporated in 
the GLMs. The classification accuracy of LATRAMDU_GLM increased, while 
PIMO_GLM decreased. It is difficult to make generalizations from these alliances, 
but the autocovariate seems to have a greater effect on model accuracy when the 
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alliance is more common, acting more as a weighting of the sample data, rather 
than as compensation for missing environmental variables. 

Incorporating spatial autocorrelation can be an efficient way to increase classi-
fication accuracy by ‘getting more’ out of the sample data as well as other models 
that involve data with spatial structure. In addition, including spatial autocorrela-
tion explicitly in the models can clarify the influence of other predictor variables 
whose spatial structure may produce spurious correlations (Lichstein et al. 2002). 
However, when calculated by interpolation and simulation methods and added as 
explanatory variables in the models, the autocovariate term tends to overpower the 
environmental variables, resulting in less generalizable models. As the autocovari-
ate terms were derived from the training data, their importance in the models re-
sulted in less robust predictive models – rather than being based on environmental 
relationships that might be consistent throughout the study area, they are based 
primarily on sample presence in neighboring sites in the training data.  

As opposed to GLMs, for which equation coefficients represent global aver-
ages for the entire dataset, the hierarchical partitioning nature of CT models could 
provide a more appropriate structure for incorporating local variation as repre-
sented by the autocovariate terms. Unfortunately when the autocovariates were se-
lected as the first split, as they consistently were here, this is less feasible.  

A focus of future work will be to explore different methods for calculating 
spatial structure. Although we used only a single simulation realization (and the 
mean of ten simulations) for each model here, any of the other single simulation 
layers could have produced different model results. An analysis of the range of 
model results based on incorporating 50 or 100 different simulation layers could 
provide important insight into differences with respect to sample data prevalence 
and strength of habitat associations. 

Although mixed, the results here still show that spatial autocorrelation can be 
an important and efficient way to increase model accuracy based on available 
data. However the sampling strategy of the data used is more important than ever. 
Gradsect sampling approaches are often used in species distribution modeling to 
maximize floristic variation in the sample, but this approach may not effectively 
characterize spatial structure in the sample.  In order for adequate models to be 
developed, and for spatial structure to be appropriately quantified, sampling 
should take place at several different spatial scales. Spatial autocorrelation in rare 
distributions can be modeled (assuming it exists) if the samples are taken at a 
more appropriate (and variable) scale. 
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F.3  A Web-based Environmental Decision 
Support System for Environmental Planning 
and Watershed Management 

Ramanathan Sugumaran, James C. Meyer and Jim Davis 

F.3.1  Introduction 

Many of the largest problems faced by local governments such as cities and coun-
ties involve issues associated with urbanization. The increased rate of urbanization 
has led to haphazard growth, increased infrastructure costs, deterioration of living 
conditions and worsening of the environment. This phenomenon places a heavy 
burden on local planners and managers, who struggle to balance competing de-
mands for residential, commercial, and industrial development with imperatives to 
minimize environmental degradation. In order to effectively manage this devel-
opment process on a sustainable basis, local government planners increasingly 
rely on the use of information technologies, spatial modeling techniques (Dragice-
vic et al. 2000) and Spatial Decision Support Systems (SDSS) (Fedra 1995; 
Sugumaran et al. 2000; Sugumaran and Sugumaran, 2007; Sugumaran, and Bak-
ker, 2007; Zhang et al. 2008). These technologies and techniques include combi-
nations of remote sensing, GIS, spatial modeling, Multi-Criteria Evaluation 
(MCE), computational neural networks, and Internet technology. 

Recently, Internet technology has been widely used for application develop-
ment because of advantages such as platform independency, reductions in distri-

of information by the worldwide user community (Abel et al. 1998; Doyle et al. 

for implementation of planning tools. For example, several researchers demon-

 

1998; Peng and Nebert 1997; Peng and Tsou 2003; Shriram et al. 2007). This has 

bution costs and maintenance problems, ease of use, ubiquitous access and sharing 

strated the use of the Internet and GIS for improved decision-making (Peterson 
1997;  Doyle et al.  1998;  Peng 1999;  Dragicevic et al. 2000;  Pandey et al. 2000;  

Reprinted in slightly modified form from Sugumaran R, Meyer JC and Davis J (2004) A Web-based       703  
environmental Decision Support System for Environmental Planning and Watershed Management,  
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Sugumaran et al. 2000; Peng and Tsou 2003; Sugumaran and Sugumaran 2007), 
and environmental modeling (Carver 1996; Al-Sabhan 2000; Zhang and Wang 
2001). Although there has been significant progress in the use of the Web as a 
medium for environmental data sharing and data visualization (Dragicevic et al. 
2000; Houle et al. 2000; Sugumaran et al. 2003), not as many studies have focused 
on developing a Web-based environmental planning tool using Spatial Decision 
Support System (SDSS) for local level planning. There is now increased interest 
in pursuing the development of SDSS on the Web to support better decision-
making and policy formulation. Examples include: HYDRA – a Spatial Decision 
Support System for water quality management in urban rivers (Taylor 2002), de-
velopment of a decision support system for a fish and wildlife assessment in the 
Columbia river (Parsley et al. 2000), Agricultural Farm Analysis (Vernon 1999), 
emergency planning (Carver and Myers 1996; Carver 1999; Carver et al. 2001) 
environmental decision-making (Kingston et al. 2000), Web-based urban predic-
tion modeling and visualization tool (Compas and Sugumaran 2004) and snow 
removal (Shriram et al. 2007). The research center CARES at the University of 
Missouri – Columbia has developed a number of WWW-based SDSS applications 
addressing such topics as habitat suitability for bird species, hydrologic response 
to land use decisions, site selection for livestock feeding operations, management 
of woody draws in agricultural fields, and more (Center for Agricultural, Resource 
and Environmental Systems 2002). 

This chapter presents a Web-based Environmental Decision Support System 
(WEDSS) prototype to prioritize local watersheds on the basis of environmental 
sensitivity using multiple criteria. The Internet was chosen as a development plat-
form in this study mainly because of openness and interactivity, which allows 
public access to and participation in the analysis (Dragicevic et al. 2000; Suguma-
ran et al. 2000). 

F.3.2  Study area 

Columbia (Missouri) is a quality city that has been rated as one of the best places 
in the USA in which to live, work, raise a family and retire. As a result, Columbia 
is one of the fastest growing Metropolitan Statistical Areas in Missouri with a 
population increase of over 20.5 percent between 1990 and 2000 (Missouri Census 
Data Center 2001) (see Fig. F.3.1). In response to this development pressure, local 
planners, managers, and stakeholders desire assistance in developing smart growth 
policies that allow for growth while preserving water quality, reducing storm wa-
ter runoff problems and protecting local natural areas. To do this, it is necessary to 
evaluate a wide range of information and to analyze alternative development 
strategies. The present study attempts to address issues facing local planners as 
they confront storm water management issues by developing a Web-based Envi-
ronmental Decision Support System (WEDSS) to identify and prioritize local wa-
tersheds using multiple environmental criteria. Figure F.3.1 shows the location of 
all 23 local watersheds involved in the study. These watersheds encompass the 
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most rapidly developing areas of Boone County surrounding the city of Columbia. 
New development is occurring around the fringes of the current city limits of Co-
lumbia and to a lesser extent around the smaller city of Ashland to the south. 
Broad, gently sloping, upland ridges with a significant amount of row crop pro-
duction and livestock pasture characterize the eastern part of the study area. Most 
of the rest of the study area is comprised of narrower ridges with moderate to 
steep slopes; heavily wooded rolling hills and river bluffs dominate this terrain. 
There are significant areas of karst topography west and south of Columbia, fea-
turing many caves, sinkholes, losing streams, and springs. Because of these fea-
tures, the effects of storm water runoff on ground water quality are of concern. A 
number of state and local parks, conservation areas, and a national forest occupy 
the sparsely populated southern part of the study area. The adverse impacts posed 
to these public lands and to the streams that flow through them by potential devel-
opment are issues of local concern. Most of the streams that currently exhibit su-
perior biological health are located in this area. 

 

Fig. F.3.1. The study area 

F.3.3  Design and implementation of WEDSS 

The WEDSS design is based on the client/server model in which clients send re-
quests to services running on a server and receive appropriate information in re-
sponse (see Fig. F.3.2). Client-server architecture was used because it facilitates 
maintenance of the application and its data layers. In addition, the functionality of 
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the application can be upgraded or replaced at any time without affecting the 
user’s computer system. The client/server used in this study has a three-tiered con-
figuration consisting of: Tier 1 a WWW client, Microsoft Internet Explorer (IE) or 
Netscape Navigator; Tier 2 a WWW server, Microsoft Internet Information Server 
(IIS); and Tier 3 a WWW-based GIS server, ArcView Internet Map Server (Arc-
IMS). Figure F.3.2 shows the flow of information in the client-server transaction. 
The user initiates a request by manipulating tools and buttons in the Web browser 
(see arrow indicated by 1). The IIS Web server passes the request to the appropri-
ate instance of ArcIMS (see arrow indicated by 2). Avenue Scripts within the 
Model Management System make calls to the DBMS to perform the analysis (see 
arrow indicated by 3 and 4). ArcIMS creates map images and data tables of the re-
sults and passes them to the IIS Web server (see arrow indicated by 5). IIS formats 
the output into HTML pages and serves the content to the calling client’s Web 
browser (see arrow indicated by 6). The Web browser on the client machine dis-
plays the results and supports further user interaction, which spawns additional re-
quests (see arrow indicated by 7). The Display and Report generator described be-
low is implemented as a set of frames integral to the Web browser’s display. 
There are several techniques are available for the development of the Web-based 
data visualization and decision support, such as Common Gateway Interface 
(CGI), Browser Plug-Ins, and ActiveX controls. 

Fig. 2. Overall client server transaction.
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Fig. F.3.2. Overall client server transaction 
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This application utilizes Java applet-based ArcIMS developed by ESRI. A Java-
based programming environment is desirable because it is object-oriented and 
supports the development of portable, interpreted, system-independent, and dis-
tributed applications served on the WWW. The Java functionality used here is in-
tegral to the Web browser’s Java Virtual Machine and does not require the user to 
install any additional components. This is particularly helpful to users in large or-
ganizations and government institutions, who often do not possess user access 
permissions to install software or Web browser plug-ins on their own worksta-
tions. 

A Spatial Decision Support System (SDSS) requires five key components in-
cluding (a) a Data Base Management System (DBMS); (b) a Model Management 
System (MMS), implementing the analysis algorithms; (c) a display generator; (d) 
a report generator and (e) a user interface (Armstrong and Densham 1990). Figure 
F.3.2 demonstrates the components involved in the conceptual design of the 
WEDSS. The DBMS and MMS components reside on the server side and the 
other three components are located on the client side. The next section explains 
the key components of WEDSS. 

Server side processes 

The server side environment is where most of the actual functionality was imple-
mented. This includes IIS with the ESRIMap Web server extension (esrimap.dll) 
and ArcView GIS with the ArcIMS extension (see Fig. F.3.2). ArcIMS is an ex-
tension to ArcView GIS that provides WWW communication facilities. IIS trans-
fers data between the client side Web browser and ArcIMS via the ESRIMap Web 
server extension and vice versa. Connections between IIS and ArcIMS are 
achieved utilizing sockets (see Fig. F.3.2). Sockets are a common method used to 
pass messages between processes on the same or different hosts using the TCP/IP 
protocol.  

Data base management system (DBMS). The DBMS component manages spa-
tial and non-spatial data to support the MMS. The development of the DBMS in-
volved two stages, the first was to establish the relevant watershed level environ-
mental criteria by collecting input from members of the storm water steering 
committee, a local advisory committee comprised of a half dozen staff members 
from local government agencies charged with addressing storm water manage-
ment issues. These criteria were chosen to address public health, surface water 
quality and groundwater quality concerns. The committee selected thirteen envi-
ronmental criteria to use in twenty-three local watersheds comprising an area of 
about 177,000 acres (Table F.3.1). These criteria were selected based on the com-
mittee’s assessment that they quantified aspects of the watersheds that were im-
portant from a water quality perspective taking into account both physical proc-
esses and human health exposure. Individual committee members and their 
agencies approached water quality from a variety of perspectives and had differing 
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priorities. The broad areas of concern that emerged from their discussions in-
cluded human health exposure to contaminants and bacteria suspended in surface 
water, particularly as related to recreational uses of the streams; the potential for 
increased soil erosion and sedimentation under development; the potential for sur-
face water to contact and contaminate groundwater; and the potential impacts of 
degraded water quality on wildlife. Coming into compliance with USEPA Phase II 
Storm Water Regulations was a concern. The next step was to develop GIS data 
layers to address each criterion. Relevant GIS layers were developed from a vari-
ety of sources including remotely sensed imagery, digital soils surveys, the Na-
tional Elevation Dataset, field sampling, and other sources. Table F.3.2 shows the 
base data layers collected, sources, and scales. There is not a one to one corre-
spondence between the source datasets in Table F.3.2 and the criteria in Table 
F.3.1, since some criteria required interim data layers to be generated from several 
of the base data layers listed. 

In performing this analysis, the goal was to compare the watersheds by con-
sidering each of the criteria individually and then generating an index number that 
would summarize the relative rankings. To make meaningful watershed compari-
sons, it was necessary to focus on base datasets that were collected in a consistent 
fashion across the study area. The explicit trade-off made in data collection was to 
trade contemporaneous data acquisition and spatial resolution/scale for consis-
tency in data collection methodology. One example of this trade off was in the 
stream network layer. The National Hydrography Dataset (NHD) at a scale of 
1:100,000 was readily available for the study area. This is a smaller scale than 
most of the other vector GIS layers used in the analysis. 1:24,000 scale stream 
networks are being developed for the State of Missouri, but were not available at 
the time of this analysis and generating them was outside the scope and budget of 
this project. It is well known that smaller scale hydrology line work will exhibit 
less sinuosity and shorter stream lengths when comparing the same features de-
picted in a dataset collected at a larger scale. However, in this analysis, the most 
important factor was the relative difference in stream mileage between the water-
sheds, not their absolute magnitudes. The 1:100,000 scale NHD was the largest 
scale dataset available that had been collected in a uniform way for the entire 
study area. The authors deem this consistency from watershed to watershed to be 
vital and chose to use this dataset rather than other possible sources that varied in 
scale and collection methodology from location to location within the study area. 
For some of the criteria it is recognized that the best data currently available has a 
sampling bias. For example the endangered species observations from the Mis-
souri Department of Conservation’s Natural Heritage Dataset are likely biased 
based on where agency personnel have done fieldwork and does not represent a 
concerted countywide sampling effort. The committee deemed the presence of a 
confirmed endangered species sighting in a watershed to be of great enough sig-
nificance that it determined to include the best available data in the analysis, rec-
ognizing the possible sampling bias. 
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Table F.3.1. Criteria used in the analysis and their weights 

Criteria Weight (in %) 

1 Portion of watershed area with slope greater than 15% 6.25 

2 Portion of watershed area with slope between 7% and 15% 1.75 

3 Relative erosion potential as measured by the mean K-factor from the soils  
survey 

3.00 

4 Portion of stream miles designated for Whole Body Contact or Boating  
and Canoeing  

9.25 

5 Portion of watershed area draining to losing streams 8.50 

6 Portion of stream miles running thru or within 50 meters of recreational land 6.25 

7 Relative abundance of Endangered Species 14.50 

8 Portion of watershed area within a FEMA designated 100-year floodplain 1.75 

9 Portion of 50 meter buffer around streams that is wooded 6.25 

10 Portion of watershed area that is wooded 7.50 

11 Relative stream biological health 18.25 

12 Portion of watershed area that is designated as karst in the soils survey  9.00 

13 Portion of watershed area that is designated as Palustrine wetland in the  
National Wetlands Inventory 

7.75 

 
 
 

Table F.3.2. Base data layers collected and their sources 

Base Data Layer / Source Resolution / Scale 

1 USGS 30 Meter Digital Elevation Model (DEM) 30m raster 

2 National Hydrography Dataset (NHD) 1:100,000 

3 10 CSR 20-7 Missouri Code of State Regulations Stream segments  
defined by mileage 

4 Missouri Department of Natural Resources (MDNR) Parks Dataset 1:24,000 

5 City of Columbia Recreational Land Dataset 1:24,000 

6 Boone County parcel dataset – selected parcels of recreational land 1:4,800 

7 Missouri Department of Conservation, Natural Heritage Program, 
Missouri Natural Heritage dataset 

1:24,000 

8 Federal Emergency Management Agency (FEMA) Q3 Flood Dataset 1:24,000 

9 U.S. Fish & Wildlife Service (USFWS) National Wetlands Inventory 1:24,000 

10 Natural Resources Conservation Service (NRCS) Digital Soils  
Survey 

1:24,000 

11 CARES 1999 30 meter remotely sensed land cover dataset from 
Landsat ETM 

30m raster 

12 Macro invertebrate field sampling performed by the University of 
Missouri Department of Fisheries and Wildlife 

Field observations near 
watershed outlet 
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After collecting these base datasets, several interim data sets were developed using 
ArcView GIS and ArcInfo GIS for the final analysis. For example, the watershed 
boundaries used as the units of analysis were created from the 30m USGS Digital 
Elevation Model (DEM). There are roughly 1,500 small sub-watersheds were cre-
ated by the software using the DEM and different parameters such as flow direc-
tion, flow accumulation and stream segmentations. These were combined to form 
the 23 watersheds used in the analysis. The basis for the designated stream uses 
was Missouri Statute 10 CSR 20-7, which is a tabular list of designations based on 
stream mileage from fixed points. In order to create a spatial dataset for the analy-
sis, individual stream segment features in the NHD were selected and attributed 
using a manual GIS editing process. 

Model management system (MMS). After having several meetings with the 
steering committee, a simple Multi-Criteria Evaluation (MCE) analysis using 
weighting method particularly weighted linear combination was adopted for the 
prototype. Weighted linear combination is the most direct means of obtaining 
weighting information from the decision-maker and least amount of operations to 
transform information supplied by the decision-maker (Hajkowicz et al. 2002). 
The reader is referred to Carver (1991), Keller and Strapp (1993), Heywood et al. 
(1994), Eastman et al. (1995), Jankowski (1995), Carsjens et al. (1996), Hajko-
wicz et al. (2002) for a detailed description about different Multi-Criteria Evalua-
tion (MCE) methods and their strengths and weaknesses. The primary advantage 
of weighted linear combination is that it forces decision-makers to make trade-offs 
in a decision problem (Hajkowicz et al. 2002). In addition, this method allows for 
a simple, straightforward user interface that is easy to explain and can be under-
stood and operated by members of the general public over the Web without face-
to-face instruction. This was an important user-specified requirement. In contrast 
to pair-wise comparison or rating, it also allows users to make explicit trade-off 
decisions and to exclude some criteria entirely by assigning them zero weight. The 
downside to this method is that it requires careful consideration of the relative im-
portance of each criterion and does not provide feedback about the consistency of 
choices as the pair-wise method does. In order to collect weights for each crite-
rion, the steering committee assigned weights to each according to their impor-
tance relative to one another. The weights assigned by individual committee 
members were averaged and the resulting weights served as the basis for discus-
sion during a meeting where a consensus set of weight values was adopted. A de-
tailed description of the sensitivity calculations is given next. The overall MCE 
models implementation and process using client server approach is explained in 
detail at the result section. 

ESI calculations: Standardization of criterion values. The rating number for 
each criterion for each watershed is constructed to be a decimal number in the in-
terval [0,1] inclusive mainly because of easy interpretation of the user input val-
ues. The criteria were defined in such a way that larger rating values correspond to 
higher environmental sensitivity. Each rating value is intended to be an interval 
scale number that reflects the relative magnitude of a watershed for that criterion. 
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Not only the rank order but also the magnitude of the differences between values 
is significant. 

For most of the criteria, this number is generated as described below from the 
relevant proportion. For two of the criteria, ‘Relative abundance of Endangered 
Species’ and ‘Relative stream biological health,’ the rating numbers are handled 
differently since they are not based on proportions of the watershed, but are essen-
tially measures of the number of times an organism was observed. The rating for 
‘Relative abundance of endangered species’ is binary having a value of one if an 
endangered species was observed anywhere in the watershed or a value of zero if 
none were observed. It was intended that this rating be interval scale; however, the 
data had no more than one occurrence in any watershed with the majority of wa-
tersheds having zero occurrences so a binary distribution resulted. The rating for 
‘Relative stream biological health’ is based on the number of species of environ-
mentally sensitive macro-invertebrates (i.e. Ephemeroptera, Plecoptera, and 
Trichoptera) that were observed for each watershed. The number observed ranged 
from one to thirteen. This raw number was divided by thirteen to normalize these 
values, resulting in fractions ranging from 0.0769 to 1.0000. 

For the remaining eleven criteria, a decimal number indicating the proportion 
of the watershed meeting the definition of the criterion was calculated. For exam-
ple, proportion of recreational stream length was calculated by dividing the total 
length of recreational streams by the total length of all streams in a given water-
shed. For each proportion value, the corresponding Standardized score was calcu-
lated as follows, where median is the median value of the set, excluding zero val-
ues: 

 

2 11 [1 ( ) ]Standardized score proportion value median −= − +  (F.3.1)

 
This formula was chosen to fix the median of the rating values at 0.5. This was 
necessary because some of the distributions of values were highly skewed. Simply 
using the proportions directly as ratings would have acted to defeat the weighting 
scheme applied in the next step. Once rating numbers were calculated using the 
methods outlined above, they were used to generate an overall Environmental 
Sensitivity Index by computing a weighted sum. For each watershed, the ratings 
for all thirteen criteria were summed using the weights selected by the steering 
committee as shown in Table F.3.1. 

 

ESIwatershed = 
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1
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i

rating weight
=

−∑  (F.3.2) 
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Client side processes 

The client side user interface was developed using a Java, JavaScript, HTML, and 
Active Server Pages (ASP). JavaScript was used to format URLs for communica-
tion with IIS and ESRIMAP.DLL on the server side using user input from the 
HTML pages (see Fig. F.3.2). The client front-end allows users to interact with the 
application. The application uses a simple Graphical User Interface (GUI) to dy-
namically create ‘user-friendly’ HTML pages. Microsoft’s Active Server Pages 
(ASP) technology was used because it is simple to implement, and allows the 
creation of dynamic pages to collect user input and session information required 
by the server-side processes. 

The map display and report generator was developed by customizing the Map-
Café Java applet that is a standard part of ArcIMS. MapCafé constructs and sends 
requests corresponding to user button and tool manipulations to the server-side 
applications. Java was used to develop the visualization and decision support tools 
that were placed on the MapCafé toolbar. This modification significantly extended 
the capability of the MapCafé application. The ArcView application running on 
the Web server responds to the URL encoded requests received from the client by 
processing them and sending updated map images, text, and tabular data back to 
the requesting user’s MapCafé applet, which renders the results graphically to the 
user (see Fig. F.3.2).  

F.3.4  The WEDSS in action 

The  WEDSS  homepage  is  available  to  the  general  public at   http://maproom. 
missouri.edu/analysis/esi/index.asp. The homepage explains the goals and de-
scribes the project. Clicking the ‘start program’ located at the top of the homepage 
starts WEDSS. Upon entering the interactive page, the user can display the data 
layers and also perform analysis (see Fig. F.3.3a). WEDSS uses standard im-
age/GIS data browsing tools such as zoom in, zoom out, pan, feature info etc. built 
into MapCafé to allow users to interact with the map display. For example, the ex-
tent buttons allow the user to move between different views of the map display, 
drawn at different scales and centered at different points. These buttons function 
analogous to a Web browser’s forward, back, and home buttons. The pan, zoom in 
and zoom out buttons allow the user to ‘move around’ in the map display and to 
change the map scale. The feature info button allows access to information about 
features on the map display (Fig. F.3.3a). When used to query a watershed in the 
‘User ESI’ GIS layer, the tool brings up a table showing the model results and 
other attribute information for the selected watershed. The measure distance tool 
allows the user to measure of the lengths of linear map features or the distance be-
tween locations on the map. The help button (right side frame) provides a descrip-
tion of each buttons.  
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Fig. F.3.3a. Web-based user interface for multi-criteria analysis 

 

 

Fig. F.3.3b. User input window for the model 
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In addition to the aforementioned built-in functions, we have developed several 
customized tools such as transparent layers, label, print and ‘start ESI model’ to 
provide WEDSS specific functions. The transparent tool is extremely useful for 
visualizing overlapping GIS layers. The level of transparency of any GIS layer can 
be set so that features or imagery below the layer are made partially visible 
through the layer. This option gives the user a very good idea of extent of the GIS 
layer in terms of landmarks from a base layer, such as an aerial photo, and also 
visually highlights the overlap of map features in different layers. A label tool al-
lows the user to turn labels on and off for each GIS layer. This allows roads to be 
labeled with their names, watersheds to be labeled with their ESI values and so 
forth for easier map navigation and increased comprehension. The print map tool 
allows the user to specify a title for their map, and print the current map display, 
including visible GIS layers, images, labels, etc. The map is formatted for an 8.5’ 
by 11’ page at the scale the user was viewing and includes cartographic elements 
such as a legend, scale bar, north arrow and user specified title. 

The ‘start ESI model’ button allows the user to perform the analysis with their 
set of criteria weights. When ‘start ESI model’ button is pressed, a new window 
opens to provide the user with the list of criteria and to accept weight values input 
by the user (see Fig. F.3.3b). The overall process of this ESI models for both client 
side and server side are described in Fig. F.3.4. The default values displayed ini-
tially are the weights set by the storm water steering committee (see Table F.3.1).  
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Fig. F.3.4. Overall ESI model process 

Interested parties may access the underlying data and conduct their own analyses 
using their own assessments of the relative importance of the environmental crite-
ria. If a user wants to discard one or more of the criteria completely, (s)he may set 
the weight value to zero for that criterion. The input form performs validation to 
verify that the sum of the weight values is 100 before submitting this input to the 
model. All these user interface forms are written in JavaScript, ASP and HTML 
(see Fig. F.3.4). When the user is satisfied with criteria and its weight, (s)he can 
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calculate the ESI by clicking the ‘Calculate’ button which is located at the bottom 
left of the user interface (see Fig. F.3.3a). The user information is then sent to the 
server, where ArcView Avenue scripting language processes the user information 
and sends the result back to client-side (see Fig. F.3.4). Figure F.3.5 is a screen 
shot of portion of the ESI calculation which was written in ArcView avenue script. 
After the successful completion of the model calculation, the result will be dis-
played in the client side (Fig. F.3.3a). Loading and execution time of this model is 
based on the user’s Internet bandwidth. In order to run ESI model successfully, 
users must be running Internet Explorer or Netscape version version 4.x or higher, 
browser must have Cookies enabled, Java scripts must be enabled and browser 
must allow for Pop-up windows.  There is also a tutorial with detailed instructions 
for browser-side setup to the users and it is available now in the ESI website.   
 

 

Fig. F.3.5. A screen shot of portion of the ESI calculation which was written in ArcView 
avenue script 

F.3.5  Concluding remarks 

The Web based system developed for this project provides the user with a simple 
decision support tool to identify and prioritize local watershed environmental sen-
sitivity using a simple point source MCE method. This system can be used by 
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planners and mangers within local government, the general public, real estate de-
velopers, environmental  analysts,  and  other interested parties. The present proto-
type of the WEDSS is limited to thirteen environmental criteria. In the future, 
based on feedback received from users, we hope to enhance the WEDSS by col-
lecting improved data sets and addressing additional environmental criteria identi-
fied by users. Since WEDSS was developed, discussions and decisions about zon-
ing and permitted uses for some tracts of land have revolved around 
environmental sensitivity in general and the criteria used by WEDSS in particular. 
While this particular implementation is focused on the Boone County, Missouri 
study area, many of the GIS layers used were taken ‘off the shelf’ from standard-
ized United States federal datasets. This fact allows the model to be quickly 
adapted to other locations within the United States where the same GIS datasets 
provide coverage. In addition, the model’s framework and coding is abstracted to 
permit the inclusion of additional criteria and the substitution of more locally rele-
vant criteria for the ones of local significance used in this particular study area. 
For example, the karst criteria used in this example would not be highly appropri-
ate for areas with differing geomorphology. Other more locally relevant criteria 
could be substituted without modifying the underlying model framework. Future 
work will also involve migrating WEDSS from ArcIMS to ESRI’s new Internet 
Map Server technology, ArcIMS. The advantages of upgrading to ArcIMS include 
greater scalability and stability for WWW applications. 
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G.1  Spatio-Temporal Patterns of Viral 
Meningitis in Michigan, 1993 - 2001 

Sharon K. Greene, Mark A. Schmidt, Mary Grace Stobierski and 
Mark L. Wilson 

G.1.1  Introduction 

Viral meningitis, also known as aseptic or nonpurulent meningitis, is an infection 
of the meninges that may result in severe systemic disease and neurological dam-
age, particularly in the very young (Rotbart 2000; ProMED-mail 2003). Viral 
meningitis results in an estimated 26 to 42 thousand hospitalizations in the U.S. 
each year (CDC 2003). The incidence of this and other diseases can be success-
fully understood and controlled by examining cases in terms of person, place, and 
time and exploring spatio-temporal patterns. Areas with high incidence may be 
targeted for heightened surveillance, education, and prevention efforts. In this con-
tribution, we applied spatial analytical techniques to investigate viral meningitis 
incidence in Michigan and clarify disease patterns. Specifically, viral meningitis 
cases from 1993 to 2001 were analyzed using standard epidemiological methods, 
mapped with a GISystem, and then further analyzed using spatial and temporal 
cluster statistics. 

Enteroviruses are the most common cause of viral meningitis in the U.S., ac-
counting for 85–95 percent of all cases with an identified cause (Rotbart 2000). A 
total of 64 enterovirus serotypes are recognized, including 61 non-polio enterovi-
ruses (CDC 2002). Of these, echoviruses (types 2, 5, 6, 7, 9, 10, 11, 14, 18, and 
30) cause about half of cases, and coxsackieviruses (group B, types 1–6) are re-

coxsackievirus group A, arboviruses, measles virus, herpes simplex virus, varicel-
la virus, lymphocytic choriomeningitis virus, adenovirus, and others (Chin 2000). 
Outbreaks can be caused by any one of these viruses or a combination thereof, and 
laboratory typing is seldom routine, so the causes behind periods of elevated inci-
dence are often  left unexplained.  Infection is  common although clinical illness is 
 

sponsible for another third of cases (Chin 2000). Sporadic disease may be due to 

Reprinted in slightly modified form from Greene SK, Schmidt MA, Stobierski MG                             721
and Wilson ML (2005) Spatio-temporal patterns of viral meningitis in Michigan, 1993 - 2001, 

Published in book form © by Springer-Verlag Berlin Heidelberg 2010
Journal of Geographical Systems 7(1):85-99, copyright © 2005 Springer Berlin Heidelberg. 



722      Sharon K. Greene et al.  

rare, as fewer than one in 500 enterovirus infections actually results in viral men-
ingitis (CDC 2000a).  

Enteroviruses causing viral meningitis are transmitted via various routes, in-
cluding fecal-oral, water, food, air, inoculation, and blood. Fecal-oral transmission 
is the classic means of enterovirus spread, and is common wherever hygiene and 
sanitation are inadequate, as is sometimes the case among children in day-care 
centers. Air-borne transmission may predominate in other settings (Morens and 
Pallansch 1995). Common symptoms include malaise, fever, headache, stiff neck, 
abdominal pain, nausea, and vomiting. Patients may also develop sore throat, 
chest pain, photophobia, or a maculopapular rash (Huether and McCance 2000). 
Cerebrospinal fluid of patients with viral meningitis is characterized by the ab-
sence of bacteria that cause these symptoms, and typically the presence of signs 
such as pleocytosis, increased protein, and normal sugar. Active illness usually 
lasts less than ten days, and recovery is often complete within a few weeks, al-
though irritability and fatigue may persist (Chin 2000). Treatment is symptomatic 
(CDC 2003). Five to ten percent of patients experience complications including 
febrile disorders, movement disorders, lethargy, complex seizures, or coma (Mod-
lin 2004).  

Viral meningitis cases are highly seasonal, although the mechanisms underly-
ing this observation are unknown. In temperate climates, enteroviral disease inci-
dence generally increases during late summer and early autumn (Chin 2000). This 
is potentially because fecal-oral transmission of enteroviruses is aided by warm 
weather and sparse clothing, especially among children (Rotbart 2000). The pre-
dominant serotypes of enteroviruses circulating in a community during a given 
year cycle with varying periodicity. Outbreaks coincide with the availability of 
new susceptible hosts (e.g., children not previously exposed to a particular virus). 
Serotypes responsible for elevated incidence frequently cause disease in the 
young. A serotype that was absent from a community for several years and rein-
troduced will affect older children and adults who have never been exposed (Rot-
bart 2000). Thus, analyses of the temporal pattern of incidence should shed light 
on risk factors for symptomatic disease.  

Young age and immunodeficiency are considered risk factors for viral menin-
gitis. For unknown reasons, higher infection rates appear to occur among males, as 
well as among those who are of lower socioeconomic status and live in crowded 
areas, due to the increased potential for fecal contamination (Modlin 2004; 
Morens and Pallansch 1995).  

Viral meningitis ceased to be a nationally notifiable disease in 1995 (CDC 
2001), thereby limiting investigations into its national distribution. United States 
case data through 1994 (CDC 1995) indicate that viral meningitis is present 
throughout the country, but the incidence in Michigan historically far exceeded 
that of most of the nation (Fig. G.1.1). The Michigan Department of Community 
Health (MDCH) continues to collect data on viral meningitis cases. 

Various investigations have applied spatial analytic techniques to other dis-
eases at the county-level in efforts to improve understanding of transmission dy-
namics in a state. For example, methods such as the Ederer-Myers-Mantel and 
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Moran’s I procedures have been applied to human brucellosis in California, identi-
fying Hispanics as the subpopulation most at risk for infection (Fosgate et al. 
2002). In addition, the spatial autocorrelation of Lyme disease has been investi-
gated in New York state at the county scale, helping to determine a characteristic 
spatial scale for infection patterns, to quantify the extent and intensity of cluster-
ing about disease foci, and to suggest a scale for control efforts (Glavanakov et al. 
2001). Such approaches, if applied to ongoing data collection, could help lay the 
foundation for a Space-Time Information System (STIS) that jointly considers the 
spatial and temporal patterns of infectious disease, aids in the determination of 
etiology and risk factors, guides outbreak investigations, and, ultimately, may re-
duce disease incidence. Accordingly, we undertook a retrospective spatio-
temporal analysis of viral meningitis in Michigan to better understand historical 
disease patterns.  

 
Fig. G.1.1. Cumulative incidence per 100,000 of viral meningitis by state, continental 
United States, 1989-1994 (CDC 1995) 

G.1.2  Materials and methods  

Study site and population. Roughly ten million people lived in Michigan in the 
year 2000. The state’s 56,804 square miles are divided by the Great Lakes into 
two main landmasses: the sparsely populated Upper Peninsula (UP) has a humid 
climate with long severe winters and short mild summers, while Lower Michigan 
has more moderate weather, with higher summer temperatures, less severe winter 
temperatures, and less snowfall. Generally, the Great Lakes serve to moderate cold 
temperatures (UniversalMAP 2000). Michigan’s population is most dense in the 
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southeast; 9.6 percent of the state’s residents live in Detroit (U.S. Census). For this 
study, age-specific population counts for each Michigan county were drawn from 
the 1990 U.S. Census, and total counts for each county were obtained from the 
2000 U.S. Census. Annual viral meningitis incidence in children less than ten 
years old (n = 3,031 cases) was compared using 1990 versus intercensal county-
specific population denominators, and the incidences were highly correlated (r2 = 
0.99, p < 0.0001). Based on these data, it was determined that age-adjusting 
incidence rates to the 1990 Census population was sufficient.   

Surveillance data. The MDCH routinely collects data on all diagnoses of re-
portable diseases or conditions, as defined by the Michigan Public Health Code 
(Michigan Compiled Laws 1978). The MDCH provided information on 8,803 vi-
ral meningitis cases reported though the state’s passive disease surveillance sys-
tem from 1993 to 2001. A confirmed viral meningitis case was defined as ‘a clini-
cally compatible case diagnosed by a physician as aseptic meningitis, with no 
laboratory evidence of bacterial or fungal meningitis’ (CDC 1997, p.44). This is 
essentially a diagnosis of exclusion. The only city in Michigan that reported cases 
independently from its county was Detroit, which is within Wayne County. Eleven 
of 83 counties did not report any cases over the study period, seven of which are 
in the UP and four in Lower Michigan. Reporting was nearly complete for most 
case characteristics, including date of report (100 percent), county of residence 
(100 percent), age (99.9 percent), and sex (99.2 percent), but less so for race (69.4 
percent). 

Prior to the time frame of this study, total annual counts of viral meningitis in 
Michigan with no individual-level case information were available from MDCH 
(1984–1992). To enable a comparison of incidence with nearby states, annual counts 
were obtained for Illinois from 1990– 2000 (Illinois Department of Public Health 
website: http://www.idph.state.il.us/health/infect/communicabledisease.htm) and for 
Indiana from 1990– 2001 (personal communication via electronic mail, Julia But-
win, March 2002).  

Virus type identification was obtained through the MDCH Bureau of Labora-
tories for isolates of some viral meningitis cases during June–December 2001. 
Samples or specimens from 114 such patients were obtained from cerebrospinal 
fluid (most commonly), bronchial fluid, throat, stool, or vagina. Antibodies 
against enteroviral proteins were used as presumptive evidence of the presence of 
enteroviruses in the isolates. Typing was performed using monoclonal fluorescent 
antibody testing and pooled antisera. Isolates not typeable by these methods were 
sent to the Centers for Disease Control and Prevention (CDC) for PCR sequenc-
ing. An enterovirus subtype was identified from 43 (37.7 percent) of these samples.  

Statistical analyses. Cumulative incidences and relative risks were calculated 
using SAS for Windows v8 (SAS Institute, Cary, NC). Disease incidence was 
mapped using ArcView GIS v3.2a (Environmental Systems Research Institute, 
Inc., Redlands, CA). Time series analysis techniques were applied to the data us-
ing R v1.7.1 (R Foundation for Statistical Computing, Vienna, Austria). Kull-
dorff’s Scan test (Kulldorff 1997) was applied to monthly, county-level incidence 
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using ClusterSeer (TerraSeer Inc., Ann Arbor, MI) to search for spatio-temporal 
clusters. All non-reporting counties were excluded from the spatio-temporal 
analysis, as were the counties in the UP because Kulldorff’s Scan test could not 
appropriately adjust for the space across the water of the Great Lakes within 
which no one was resident. A total of 8,743 cases remained for inclusion in the 
spatio-temporal analysis. 

G.1.3  Results 

Demographics of cases.  A total of 8,803 viral meningitis cases were reported 
during the nine years of study. Overall, 4,402 (50.4 percent) cases were female 
and 4,329 (49.6 percent) were male, proportions that were representative of the 
population of Michigan in 2000 (U.S. Census). Cases ranged in age from less than 
one to 93 years (mean = 21.8 years, SD = 31.3 years). The median age of cases 
(18.0 years) was less than that of the Michigan population in 2000 (35.5 years, 
U.S. Census). Indeed, 1,345 cases (15.2 percent) involved infants less than one 
year old, representing a cumulative nine-year incidence of 1,040.6 per 100,000. 
Cumulative incidence for the rest of the population was 81.4 per 100,000 (relative 
risk [RR] for less than one year old is equal to 12.9; 95 percent confidence interval 
[CI] 12.2–13.7).  

Blacks represented 14.2 percent of Michigan’s population in 2000 (U.S. Cen-
sus), yet they were disproportionately represented among viral meningitis cases, 
comprising 2,044 (33.5 percent) of cases. The cumulative incidence of viral men-
ingitis among Whites was 51.1 per 100,000, but for Blacks it was 158.2 per 
100,000 (RR for Blacks is equal to 3.1; 95 percent CI 2.9–3.3). 

Temporal trends. Cases were seasonally distributed, with more than two-thirds 
reported during July through October. The cumulative statewide incidence of viral 
meningitis during these four months, summed over the nine study years and calcu-
lated using county-specific 2000 Census population denominators, was 60.2 cases 
per 100,000, compared with 28.4 cases per 100,000 from November through June 
(RR of July–October is equal to 2.1; 95 percent CI is equal to 2.0 - 2.2). Despite 
strong annual seasonality, considerable inter-annual variability in epidemic magni-
tude was apparent (Fig. G.1.2(a)). 

Periodic extremes in reported cases of viral meningitis occurred roughly every 
three years for this time series. The largest epidemics were in 1995, 1998, and 
(most strikingly) 2001. The autocorrelation function (ACF) revealed a strong 
autocorrelation of 0.43 at three years and 0.16 at its multiple of six years (Fig. 
G.1.2(b)). However, peak epidemic years in Michigan prior to the beginning of 
this study in 1993 were 1987 and 1990, suggesting that a regular three-year cycle 
may vary somewhat (data not shown). The ACF pattern did not change apprecia-
bly when applied to high-risk subsets of the case population such as children less 
than ten years-olds and Blacks (results not shown). 
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Fig. G.1.2. (a) Weekly number of viral meningitis cases in Michigan, 1993-2001;  
(b) the autocorrelation function (ACF) from a zero to a seven-year lag 

Spatial trends. Age-adjusted cumulative incidence tended to be highest in south-
ern Michigan, particularly in the southeast, near and around Detroit (154.9 cases 
per 100,000; Fig. G.1.3). Other areas of notably high age-adjusted cumulative in-
cidence relative to the surrounding area include the counties of Muskegon (211.8 
cases per 100,000) and Newaygo (121.8 cases per 100,000) in the western central 
part of Lower Michigan, Kalamazoo in the southwest (185.8 cases per 100,000), 
and Marquette in the UP (57.3 cases per 100,000). 
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County-specific cumulative incidence (Fig. G.1.3) was similar to the spatial pat-
tern of county-level population density (i.e., number of residents / sq. mi.; results 
not shown). The Pearson correlation coefficient for cumulative incidence and 
population density was positive and significant (r = 0.45, p = 0.0003). This sug-
gests that counties with greater human density tended to have more transmission.  

To determine whether there was a spatial pattern in inter-annual variability of 
incidence, the coefficient of variation (CV denotes standard deviation/mean) for 
nine years of annual incidence in each county was mapped (Fig. G.1.4), with the 
understanding that counties with low incidence may yield unstable CV estimates. 
Interestingly, Figs. G.1.3 and G.1.4 show essentially opposite patterns, such that 
the areas of highest incidence (generally Lower Michigan) were less variable, 
whereas the areas of lower incidence (northern Lower Michigan and the UP) 
showed greater year-to-year variability. 

 

 
Fig. G.1.3. Cumulative incidence per 100,000 of viral meningitis in Michigan by county, 
1993-2001, age-adjusted to the 1990 population. Counties mentioned in text are labeled 
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Fig. G.1.4. Coefficient of variation (CV) of annual incidence of viral meningitis cases in 
Michigan by county, 1993-2001. The CV for each county was calculated by dividing the 
standard deviation of that county’s annual incidence by its mean annual incidence 

Spatio-temporal trends. Kulldorff’s Scan test identified the three most likely spa-
tio-temporal clusters in the 65 reporting sites of Lower Michigan (Fig. G.1.5). The 
first most likely cluster was a 42-county region centered on Kent County during 
four months in late summer/early fall 2001. The second most likely cluster was lo-
cated around St. Clair County during the same period in 1998, and the third most 
likely was centered on Monroe County in that period in 2001. Each space-time 
cluster was significant at p = 0.01. This test was also run separately for Blacks and 
for children aged less than ten years old. For Blacks, there were only two signifi-
cant spatio-temporal clusters (p = 0.01 for both): a 37-county region centered on 
Clinton County during July–September 2001, and solely St. Clair County from 
June–September 1998.  

The most likely cluster for less than ten year-olds was the same as that found 
for all cases (42-county region centered on Kent County), but with a slight tempo-
ral shift to July–September 2001 (p = 0.01). The second and third most likely 
clusters encompassed five counties plus Detroit centered on Macomb County dur-
ing July–September 1998 (p = 0.01) and solely Sanilac County during July–
September 1998 (p = 0.03).  
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Within Cluster #1 (Fig. G.1.5), children less than ten years old comprised 533 (42 
percent) of 1,268 cases. Of all 8,743 cases included in the spatio-temporal analy-
sis, 3,014 (34 percent) cases were in this age group. Thus, children less than ten 
years old were at significantly greater risk for viral meningitis in the first most 
likely spatio-temporal cluster than they were over the entire region and study pe-
riod (chi-square for specified proportions is equal to 36.5, df = 1, p < 0.0001). 
This information could be beneficial in determining the reasons behind the in-
creased number of cases in this cluster.  

Annual incidences of viral meningitis in Michigan and in Illinois were 
strongly correlated from 1990–2000 (r = 0.88, p = 0.0004). Both states experi-
enced maximum incidence over this period in 1998 (yet incidence in Michigan 
was nearly two times greater than that in Illinois). The correlation between annual 
incidences of Michigan and the southern border state of Indiana was non-
significant (r = 0.49, p = 0.11).  

 

 
Fig. G.1.5. Spatio-temporal clusters of viral meningitis cases by county in Lower Michi-
gan, 1993-2001. The three most-likely overall clusters as determined by Kulldorff’s Scan 
test include [#1] a 42-county region during July to October 2001, [#2] a five-county region 
and Detroit from July to October 1998, and [#3] a two-county cluster from August to Octo-
ber 2001 

Laboratory results. Of the 43 subtyped enteroviral isolates obtained from viral 
meningitis patients in June-December 2001, 28 (65.1 percent) were from children 
less than ten years old. There were differences between this age group and cases at 
least ten years old in the proportions of viral subtypes isolated (Table G.1.1). Al-
though not representative of all viral meningitis infections, these data suggest that 
younger cases were more likely to be infected with coxsackie B-3 or echovirus 13, 
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while only older cases harbored echovirus 30. This apparent pattern might be ex-
plained by true differences in enterovirus activity, age-specific clinical syndromes 
of specific enteroviruses, or differences in ease of isolation (Strikas et al. 1986). 

Table G.1.1. Relative presence of identified causative viruses associated with viral menin-
gitis cases in Michigan, June to December 2001  

 Number of isolates (%) 
Virus Cases < 10 years Cases ≥ 10 years 
Coxsackie B-2  3     (10.7%)   1       (6.7%) 
Coxsackie B-3   8     (28.6%)   1       (6.7%) 
Coxsackie B-4    0       (0.0%)   1       (6.7%) 
Echovirus 4    3     (10.7%)   1       (6.7%) 
Echovirus 6    1       (3.6%)   1       (6.7%) 
Echovirus 9    0       (0.0%)   1       (6.7%) 
Echovirus 11    4     (14.3%) 1       (6.7%) 
Echovirus 13    9     (32.1%)   3     (20.0%) 
Echovirus 30   0       (0.0%)   5     (33.3%) 
Total 28   (100.0%) 15   (100.0%) 

G.1.4  Concluding remarks 

To our knowledge, this represents the first study that examines spatio-temporal 
patterns of viral meningitis cases at a resolution as fine as county-level. Our re-
sults confirm the existence of certain high-risk groups and disease clustering in 
both space and time within Michigan.  

Several findings from previous studies of viral meningitis are supported, in-
cluding risk factors related to seasonality, age, race, and crowding. Temporally, 
our results are consistent with the seasonal pattern of viral meningitis typically re-
ported from temperate climates, that is, a peak in the summer and autumn (Rotbart 
2000; CDC 2000a, 2001). In a study of enteroviral isolates from across the U.S. 
collected through the Enterovirus Surveillance Program during 1970–1979, 82 
percent of all enteroviral isolates were submitted from June to October, and the 
average number of isolates for each of these months was 6.6 times higher than the 
monthly average for the other seven months (Moore 1982). Generally, viruses car-
ried in the digestive tract tend to peak during July and August (ProMED-mail 
2003).  

Young children are the primary reservoir of human enteroviruses (Moore 
1982), with infants under one year of age accounting for 45 percent of all reported 
U.S. enteroviral isolates from 1997–1999 (CDC 2000b). Thus, youth is a predis-
posing factor for viral meningitis, with several studies showing age-specific inci-
dence to be greater among young infants and school-aged children five to ten 
years old (Rotbart 2000). The annual incidence of viral meningitis in children un-
der one year-old in a large Finnish cohort was 219/100,000 children (Rotbart 
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2000). In our study, children less than five years old constituted 21 percent of all 
cases, and 23 percent of all cases were children aged five to 14 years.  

Viral meningitis incidence among Nonwhites in the United States has previ-
ously been shown to be higher than that for Whites, a finding attributed to socio-
economic inequality and other confounding variables (Morens and Pallansch 
1995). We too found elevated relative risk for viral meningitis among Blacks in 
Michigan. In other studies, infection rates have been reported to be higher in areas 
of crowding and among people of lower SES (Rotbart 2000), consistent with our 
finding of a significant correlation between cumulative incidence and population 
density. There was high viral meningitis incidence in Detroit, an area with higher 
population density, a large proportion of Blacks, and many residents of low SES. 
Being Black and of low SES are strongly autocorrelated in the Detroit area (Zenk 
2005), and any separate effects they may have on incidence cannot be teased apart 
using our study design. These comparisons suggest that our case reports were con-
sistent with those from other locations.  

Our study departs from previous reports that found proportionately more en-
terovirus cases among males than females. Others have noted a male-to-female 
sex ratio ranging from 1.3:1 (Rotbart 1995) to 2.5:1 (Morens and Pallansch 1995). 
In a viral meningitis outbreak in Romania, males were more often found to be ill 
(p = 0.04) (CDC 2000a). However, in Michigan, males and females were diag-
nosed with viral meningitis in equal proportions.  

Our finding that there may be a roughly triennial cycle of elevated incidence 
has some support in the literature. Interannual trends have been reported in polio-
virus cases every three years in southern India (Morens and Pallansch 1995). 
Highly transmissible agents may rapidly circulate in a population, quickly build-
ing high levels of population immunity. The observed pattern may also reflect the 
different periodicities of predominant enteroviral serotypes (CDC 2002). Cyclic 
epidemics may also occur as the population reaches a threshold level of newly in-
troduced susceptibles (e.g., very young children or immigrants), who reduce herd 
immunity and permit reappearance of intense transmission. This may be consistent 
with the large 2001 spatio-temporal cluster of viral meningitis cases (#1, Fig. 
G.1.5) that was dominated by children less than ten years of age. Further studies 
of seasonal trends could improve understanding of factors that increase risk, hence 
providing an early warning of intense transmission periods. 

Regional environmental factors also may play a role in driving incidence cy-
cles, as evidenced by the strong correlation in incidence between Michigan and Il-
linois. Strikas and colleagues (1986) grouped these two states together in their 
analysis of enterovirus isolates and identified a regional pattern of incidence. 
Other studies have reported geographical clustering of enteroviral strains in the 
U.S. and in Belgium (CDC 2003). However, any regional drivers are likely to be 
influenced by local factors, as the correlation between the annual incidences of 
Michigan and Indiana during the same time period was poor. Latitude, weather ef-
fects, and other environmental differences may be at play. 
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The most commonly identified virus isolated during the 2001 outbreak in Michi-
gan was echovirus 13 (Table G.1.1). This outbreak occurred in the context of in-
creased detection of viral meningitis cases throughout the U.S. and across the 
globe. Michigan, along with Illinois, Tennessee, and Wisconsin, reported the most 
echovirus 13 isolates in 2001 in the country (CDC 2002), and epidemics of echo-
virus 13-associated viral meningitis took place in Louisiana, Mississippi, Mon-
tana, and Tennessee from April to July 2001, prompting outbreak investigations in 
these states (CDC 2001). Indeed, widespread circulation of echovirus 13 in the 
U.S. occurred for the first time in 2001 (CDC 2002, Noah and Reid 2002). Echo-
virus 13 was also very prevalent during 2000–2001 in Australia (ProMED-mail 
2001, Quirk 2001) and Europe (Noah and Reid 2002).  

Geography is represented using centroids when applying Kulldorff’s Scan test, 
in this case the centroids of Michigan counties. The presence of the Great Lakes 
therefore prevented the scan statistic from assessing spatio-temporal clustering for 
the state as a whole. Furthermore, the geographic template employed in this test is 
a space-time cylinder with a maximum radius and duration. It is consequently ca-
pable of reporting clusters only as space-time cylinders, despite whatever the true 
shape of a particular cluster may be. The test could not precisely pinpoint, for in-
stance, a cone-shaped spatio-temporal cluster, with an outbreak spreading out 
from an initial focus. If there is not enough power to detect a cluster of this shape, 
the spatial scan may continue to expand until it contains a large enough number of 
cases to declare a spurious cluster. This may explain why Cluster #1 in this study 
encompassed such a large number of counties, and implies that, as always, caution 
is necessary when drawing statistical inferences. Kulldorff’s Scan test also as-
sumes that risk within the space-time cylinder is uniform despite the potential for 
variability in disease incidence rates within a cluster. It is therefore possible for 
the test to return false positives, as geographic areas with comparatively low inci-
dence rates may be declared part of a cluster with high rates (Jacquez 2007). Other 
tests for space-time clustering could also be included in a future STIS for viral 
meningitis surveillance, to assess the sensitivity of identified clusters to the as-
sumptions of the Kulldorff’s Scan test. 

Our study analyzed case data from a passive surveillance system and may not 
be a complete evaluation of all Michigan residents who had viral meningitis dur-
ing the study period. It has been suggested that viral meningitis cases occur at 
more than ten times the number reported to the CDC (Rotbart 1995). There could 
have been reporting variability among counties or regions due to unequal human 
and monetary resources or heightened concern and greater efforts at detection. For 
example, a ten-county district in the central region of Michigan (District #10) was 
known to have intensified viral meningitis case finding during 2001 (personal 
communication via electronic mail, Dr. Patricia Somsel, August 2002). Another 
possible source of reporting bias might have involved the August 2001 detection 
of West Nile Virus (WNV) in birds in Michigan (Calisher 2001), which may have 
sensitized physicians to diagnose and report viral meningitis. WNV and enterovi-
ruses have a similar seasonal pattern and both are associated with neurological 
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signs and symptoms. However, WNV-associated meningitis tends to occur in 
adults (median age 46 years, CDC 2003), yet children are at highest risk for en-
teroviral meningitis. Furthermore, temporal analysis was based on date of report, 
not date of disease onset, and there may have been variation across counties in the 
timeliness of record submission. Since the residence of each case was defined at 
the spatial scale of county, we were unable to track transmission or to draw con-
clusions about individual risk factors.  

Despite these limitations, we identified groups at elevated risk and larger spa-
tio-temporal patterns that would be useful in hypothesis generation for future stud-
ies on epidemic patterns. However, our results suggest that improved knowledge 
of the causative agent may be essential to understanding transmission dynamics. 
To that end, more reliable and representative laboratory identification of specific 
pathogens is needed to determine whether outbreaks are caused by one or more vi-
ral strains. Indeed, the MDCH is embarking on an enterovirus laboratory surveil-
lance program in reaction to recent outbreaks and this study’s findings, in order to 
better characterize future enterovirus epidemiology. Clinical laboratories through-
out the state are being encouraged to submit samples for typing on a weekly basis. 
Evidence suggests that numerous viruses and serotypes commonly cocirculate 
(CDC 2001) and that outbreaks of specific echovirus types are more widespread 
than previously believed (Noah and Reid 2002). Temporal trends in viral meningi-
tis incidence stratified by virus type would have more interpretability than undif-
ferentiated, amalgamated disease incidence.  

The identification of spatial and temporal clusters in this study should encour-
age further research aimed at identifying local and socio-demographic influences 
on infectious disease agent transmission. We determined that counties with high 
incidence were consistently high (i.e., low coefficient of variation), suggesting in-
transient risk factors within these sites. There are no specific prevention or control 
measures known to reduce the transmission of non-polio enteroviruses beyond 
good hygienic practices, including hand washing, disinfecting contaminated sur-
faces, and not sharing utensils or drinking containers (CDC 2003). Lacking spe-
cific options for preventing enterovirus epidemics, the incorporation of data and 
methods such as are described here into a STIS could prospectively focus surveil-
lance activities and allocate limited resources for response to the districts with 
greatest need. Clinicians could thereby be better informed and equipped to assist 
health departments in responding to outbreaks by emphasizing preventive meas-
ures (Noah 1989). Spatial analytic techniques provide public health practitioners 
an opportunity to enhance early warning and response activities for viral meningi-
tis and other diseases. 
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G.2  Space-Time Visualization and Analysis in 
the Cancer Atlas Viewer 

Dunrie A. Greiling, Geoffrey M. Jacquez, Andrew M. Kaufmann  
and Robert G. Rommel 

G.2.1  Introduction 

For chronic diseases such as cancer, which have long latency and can display sig-
nificant spatial pattern, atlases of health data are an important resource. Atlases al-
low researchers and the public alike to formulate and evaluate hypotheses about 
geographic variation, such as clustering (Jacquez 1998; Moore and Carpenter 
1999; Rushton et al. 2000; Jacquez and Greiling 2003). The identification of spa-
tial pattern in mortality has stimulated research to elucidate causative relationships 
such as the association between snuff dipping and oral cancer (Winn et al. 1981); 
the association between shipyard asbestos exposure and lung cancer (Blot et al. 
1980) and others.  

Mortality atlases are available in print form, such as the Atlas of United States 
Mortality (Pickle et al. 1996) and the Atlas of Cancer Mortality of the United 
States 1950-1994 (Devesa et al. 1999) and in web format (see Table G.2.1). Web 
atlases are increasingly available at the state and national levels as the technology 
for online mapping has matured. Both print and web atlases provide a consider-
able amount of data and statistics in an easy to understand visual format, but 
online atlases offer a level of interactivity not available in printed books, as the 
user can change the colors, zoom and pan, click through to data tables, customize 
the maps to address a question or purpose not envisioned by the print map’s crea-
tors, and share maps and collaborate (Gao et al. 2008).  

While online atlases provide greater flexibility and customization than print at-
lases, their use may be hindered by performance limitations that result from Inter-

for map rendering is minimal and the user can explore the data more quickly.  The 
 

ternative to web mapping is to download a local version of the data for mapping 
net communication between the user’s computer and the mapping engine. An al-

and Rommel RG (2005), Space-time visualization and analysis in the Cancer Atlas Viewer,  

and interaction on a desktop computer. Once downloading has occurred, the time 
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Cancer Atlas Viewer is an example of a Space-Time Intelligence System (STIS) 
(described in Chapter A.6). This architecture supplies animated, interactive maps 
that allow researchers to visualize and explore the dynamic nature of cancer mor-
tality patterns. 

In this chapter, we demonstrate the Cancer Atlas Viewer by exploring colon 
cancer patterns for African-American and white females and males using NCI 
(National Cancer Institut) data. Among cancers, the highest mortality for men is 
from lung, prostate, and colon cancers respectively; for women it is lung, breast, 
and colon cancers,  all of which demonstrate spatial patterns  (Devesa et al. 1999).  

 

Table G.2.1. A listing of a few online atlas projects 

Initiative Description 

Washington State’s Epidemiologic Query-
ing and Mapping System (EpiQMS) 
http://app2.health.state.pa.us/epiqms/ 

Death certificate data (cause of death) by county along 
with population information. Users can map the data 
or prepare graphs, or view tables.  

New York State’s Cancer Surveillance Im-
provement Initiative (NY CSII) 
http://www.health.state.ny.us/nysdoh/cancer
/csii/nyscsii.htm 

Information on breast, colorectal, lung and prostate 
cancer diagnoses by ZIP code in New York State. Us-
ers can view prepared PDF maps, or view the data for 
individual ZIP codes by county. 

Reproductive Health Atlas 
http://www.cdc.gov/reproductivehealth/GIS
Atlas 

Information on variables such as infant mortality, 
pregnancy outcomes, infant health, and maternal risks 
by demographic groups and different geographic ag-
gregation. No data is currently available, but the web-
site talks about distributing starter shapefiles for poli-
cymakers and service providers. 

Cancer Mortality Maps and Graphs (NCI) 
http://www3.cancer.gov/atlasplus/ 

Data on mortality for 40 site-specific cancers by 
county, state economic area, and states from 1950-
1994. The data can be mapped online or downloaded 
for viewing and manipulation. 

One challenge in exploring patterns for multiple groups is that there are low popu-
lations of African-Americans in rural areas of the midwest and western states. Be-
cause of low population numbers, the counts used to calculate the mortality rates 
are based on small samples and are therefore unstable, subject to fluctuations that 
may be due to chance. The NCI print and online atlas masks data based on few 
counts (fewer than six deaths in the five year time period). We focus on the south-
eastern United States and Gulf Coast, including part of eastern Texas, Mississippi, 
Louisiana, Alabama, Georgia, Florida, South Carolina, and North Carolina. This 
region has high enough populations of African-Americans to avoid most rural ar-
eas becoming masked out, as geographies with a lot of missing (masked) data are 
unsuitable for spatial analysis. The southeastern US has been identified as a region 
of persistently high mortality (Cossman et al. 2003), though it is not the highest 
mortality region for colon cancer in the US. For colon cancer mortality rates, the 
southeast is exceeded by the northeastern states (Devesa et al. 1999). 
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Specifically, we assess the spatial patterns of mortality from colon cancer in the 
Southeast, using descriptive data visualization of the cancer data for state eco-
nomic areas (SEAs) and tools and spatial autocorrelation measures as discussed in 
Chapter B.3. Emphasis is laid on assessing the changes in spatial patterns by ex-
amining trends in the local Moran and the Getis-Ord statistics, and the persistence 
of patterns over time.  

G.2.2  Data and methods 

Data description. The National Cancer Institute has released age-adjusted cancer 
mortality rates for US counties, state economic areas (SEAs), and states, for 40 
site-specific cancers, four groups (African-American females, African-American 
males, white females, white males), and for several time periods from 1950-1994. 
The rates are the number of cancers per 100,000 person-years, age-adjusted to the 
1970 US population standard age distribution. We focus here on the SEA datasets. 
SEAs are aggregations of counties within state boundaries that were similar 
according to 1960 socioeconomic data (US Bureau of the Census 1966). The SEA 
data has better temporal resolution than the counties (counties have 20 or 25 year 
times only) and finer spatial resolution than the state datasets. Data for African-
American males and females starts in 1970, while data for white males and 
females begins in 1950. More information on this data is available from the 
National Cancer Institute cancer mortality maps and graphs website 
(http://www3.cancer.gov/atlasplus/) and in the printed atlas (Devesa et al. 1999). 
The National Atlas has compiled metadata for this dataset, available at 
http://www.nationalatlas.gov/mld/cancerp.html. We focus on colorectal cancer 
rates for African-American and white females and males for SEAs in five-year 
time intervals from 1970 through 1994. We use the age-adjusted rates produced by 
the NCI: these rates are for 100,000 person-years and are adjusted to the 1970 age-
classes (Devesa et al. 1999). We repeated this analysis for the county-level rates 
data, but did not include it in this write-up because of space constraints. The 
comparison between Ii and G* conclusions for the counties geography was similar 
to the SEA results we present. 

Software description. The Cancer Atlas Viewer is the first implementation of 
the more general Space-Time Information System described in Chapter A.6. Cur-
rently, the Cancer Atlas software loads text files downloaded from the NCI web-
site. This version of the graphical user interface works on Windows operating sys-
tems, although the underlying architecture is cross-platform and can be compiled 
for other operating systems.  At the time of this writing, the Cancer Atlas Viewer 
software can be accessed through the Internet (http://biomedware.com/software/Atlas 
_download.html) free of charge. A more general version of this software that ac-
cepts other datasets is available from TerraSeer, called the TerraSeer Space-Time 
Intelligence System (STIS).  
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The Cancer Atlas Viewer and STIS software contain several statistical methods, 
from data transformations, such as the Z-score standardization, over the creation 
of difference datasets, to the calculation of Moran’s I, local Moran, and local 
G∗ clustering statistics, described in Chapter B.3. The cluster statistics are evalu-
ated with Monte Carlo randomization-based hypothesis testing.  

The Cancer Atlas Viewer (and its STIS counterpart) has time as a dimension 
of the data. The spatial relationships among the observed objects (whether point 
objects or polygons) and the attribute data can be brought in as separate pieces. 
For instance, in the case of the NCI Atlas data, there is only one geography of the 
polygons (at the county, SEA, or state level) for the entire analysis. Although the 
outline of some US counties has changed over time, the NCI standardized it as one 
static geography for representation in GIS.  

Z-score.  The Cancer Atlas Viewer uses Z-score standardization to prepare the 
data for the Moran analysis. The Z-score standardizes the mortality rates by taking 
the observed rate, subtracting the mean rate for the entire region, and then dividing 
by the standard deviation. The Z-score is only one of several possible epidemi-
ologically relevant standardizations of mortality data, including the standardized 
mortality rate or ratio (observed cases/expected). It is a required step for Moran’s I 
and Ii analyses. A Z-score standardizes the mortality rate for area i, mit , by its 
mean and standard deviation, creating a new variable ˆ itm  

 

mt

tit
it s

mmm −
=ˆ  (G.2.1) 

 
where tm  is the mean mortality at time t, and mts  is the standard deviation at time 
t. After Z-score transformation, all variables in a larger dataset have equal means 
(transformed mean is equal to zero) and standard deviations (transformed s = 1), 
but different ranges. Negative Z-scores indicate the location is below the mean of 
the data, positive that it is above the mean. The magnitude of the Z-score is the 
distance in standard deviation units away from the mean.  

Difference datasets. Cancer Atlas also calculates difference datasets, to allow 
the user to view change maps. Absolute change in cancer mortality, mi for area i 
between times t and t + 1 is calculated as: 

 

ititit mm −=Δ +1α  (G.2.2) 

 
Significance and multiple testing.  We calculate p-values for Ii and G* using 999 
conditional Monte Carlo permutations of the data values. Ii and G* statistics calcu-
lated for a given study area are not independent of one another, and hence their p-
values should be corrected for multiple testing.  
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Lack of independence arises in two ways: Monte Carlo distributions under the null 
hypothesis, and in the test statistics. The reference distributions for two different 
regions i and j are not independent since they will be constructed from repeated 
drawings from the same population. Lack of independence also arises in the test 
statistics for two regions that are neighbors of one another. Because they are 
neighbors, the local Moran statistics for i, j and k will each use the values associ-
ated with one another when calculating Ii, Ij, and Ik. The test statistics therefore are 
correlated, and their p-values should be adjusted accordingly. 

We use the Simes (1986) method to adjust the p-value; the Simes correction is 
not as conservative as the Bonferroni correction. It is calculated as in Eq. (G.2.3). 
Assume three p-values pi, pj, and pk – suppose they are (0.002, 0.001, 0.036). Rank 
the p-values from lowest to highest, obtaining the vector (0.001, 0.002, 0.036). We 
wish to calculate the ‘Simed’ p-value for pi = 0.002, the second element in this 
vector. This is done as 

 

( 1 )i ip n a p′ = + −  (G.2.3) 

 
where n is the number of p-values, and a is the index (starting at one) indicating 
the location in the sorted vector of pi. The Simed p-value is then 0.002 = 0.004. 
Classification. After the software calculates the G* and the local Moran for each 
location, it classifies all of the SEAs in the geography. For the local Moran analy-
sis, it classifies all of the SEAs as being the center of low-low clusters, high-high 
clusters, a significant high outlier (high-low), a significant low outlier (low-high), 
or nonsignificant. It compares the Simed p-values to a pre-specified alpha level (in 
this case α = 0.05) and then assigns the classes based on the sign of the local 
Moran (positive indicates cluster, negative indicates outlier) and its Z-score (high 
or low). This treatment is parallel to the treatment of the local Moran in other 
software products, such as ClusterSeer, the SpaceStat extension for ArcView, and 
GeoDa. For G∗ , the software compares Simed p-values to a pre-specified alpha 
level, in this case α = 0.05, and then assigns the classes based on the sign of the 
G∗  (positive indicates high cluster, negative indicates low cluster). 

We then assessed each set of maps for similarity of classifications and for 
cluster persistence. For each race-gender subgroup, we examined cluster classifi-
cations resulting from the Ii and the G* analyses at a particular time interval (for 
example, African-American female mortality rate 1990-1994). We considered an 
Ii high-high cluster equivalent to a high G* cluster, similarly matching an Ii low-
low cluster with a low G* cluster, and a finding of nonsignificant in both analyses 
matched. All matching classifications were considered concordant. Non-concor-
dant situations occurred when the outcomes differed from this matched pairing.  

For cluster persistence, we compared sets of maps over time within one classi-
fication, for example white male G* mortality rate classes in 1985-1989 and 1990-
1994. Clusters identified in the last time period could not be scored for persistence 
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as we had no information about clustering after 1994. As most of the locations 
were classed as non-significant and stayed that way, we did not count transitions 
from the non-significant class, just transitions from a cluster class to another class 
(such as outlier or non-significant). 

G.2.3  Results 

In this Section, we describe the Atlas software and a comparison of the two clus-
tering statistics’ conclusions about the patterns in colon cancer mortality from 
1970 through 1994 rates in five-year time intervals for SEAs. The data for SEAs 
are efficiently represented as time slices in five-year time intervals (1970-1974, 
1975-1979, etc.) with a static geography. Thus, what changes when data are ani-
mated in a map, graph, or table are only the attributes, rather than the shapes and 
positions of the geographic units.  

 

Fig. G.2.1. Time enabled visualization in the Cancer Atlas Viewer. The SEAs in Florida 
have been selected on the map. The histogram views of the data are also linked, and so 
Florida’s contribution to the histograms is also highlighted in grey. The bottom histogram 
displays the distribution of 1970-1974 African-American male colon cancer mortalities. 
The top histogram and the map illustrate 1990-1994 rates. Each view of the data (maps, 
graphs, tables) has a time slider and media play buttons, so the data can be played through 
time 

Figure G.2.1 is a screenshot illustrating the software’s time-enabled views. Notice 
that each view (maps and graphs as shown, but also scatterplots, boxplots, and ta-
bles) have time sliders and media buttons that allow the viewer to pan through 
time and animate the data. The software also has linked views, a feature common 
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to spatio-temporal visualization software (Haslett et al. 1991, reviewed in An-
drienko et al. 2003). In Fig. G.2.1, SEAs in Florida have been selected on the map. 
Since all data views are linked together, the selected items in the map are also se-
lected (highlighted in grey) in both histograms. The bottom histogram displays the 
distribution of 1970-1974 African-American male colon cancer mortalities. The 
top histogram and the map illustrate 1990-1994 rates.  
 
 

 

Fig. G.2.2. Difference maps for colon cancer mortality rates between the time intervals 
1990-1994 and 1970-1974. The classification of differences in rates is diverging, with 
white indicating no change from 1970-1974, a grayscale gradient indicating increased mor-
tality rates from colon cancer, and hatching indicating decreased rates 

For all but a few SEAs, the count of deaths from colon cancer has increased since 
1970 for all gender-race combinations. Similarly, the mortality rates from colon 
cancer increased for African-American females and males and white males. The 
differences in rates are largest for African-American males, who experienced the 
greatest increase in mortality rates from 1970 to 1990. White females, however, 
experienced decreasing rates in most of the study area. The differences are illus-
trated for all four groups in Fig. G.2.2, and the distribution of rates for African-
American males is illustrated in the histograms in Fig. G.2.1. The rates in 1990-
1994 follow a similar pattern to the differences (Fig. G.2.3), with the rates for Af-
rican-American males being highest and white females lowest, with African-
American females and white males intermediate. 
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Fig. G.2.3. State Economic Areas shaded by their rates for colon cancer mortality in the 
years 1990-1994 

The global spatial pattern in these rates has been somewhat variable over time, but 
typically increasing. Table G.2.2 shows the I statistics and p-values. White males 
show the strongest patterns, with significant global autocorrelation in four of five 
SEA time periods. The white male SEA pattern is variable, with the I statistic be-
tween 0.14 and 0.21. For the other groups, there are few SEA time intervals with 
significant spatial correlation with only one or two time periods showing any sig-
nificant pattern (with a significant Moran’s I). While like values are clustered near 
each other, these patterns are not consistently strong through time.  

Table G.2.2. Moran’s I statistics and p-values (in parentheses) calculated from 999 Monte 
Carlo randomizations. Values in bold are significantly below α = 0.01 for SEAs  

Group 1970-1974 1975-1979 1980-1984 1985-1989 1990-1994 

African-American Females 0.1170 
(0.021) 

-0.0670 
(0.142) 

0.2228 
(0.001) 

0.0477 
(0.084) 

0.0640 
(0.021) 

African-American Males 0.0015 
(0.428) 

0.1008 
(0.019) 

0.1758 
(0.001) 

0.0347 
(0.196) 

0.1136 
(0.010) 

White Females 0.1750 
(0.001) 

0.0141 
(0.333) 

0.0066 
(0.370) 

0.0118 
(0.312) 

0.1749 
(0.001) 

White Males 0.2019 
(0.001) 

0.1355 
(0.008) 

0.1811 
(0.001) 

0.0795 
(0.066) 

0.1519 
(0.004) 
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Table G.2.3. Classification of 1980 locations (99 regions over five time intervals by four 
population subgroups) by the local Moran and the Getis-Ord statistic G*. The cells that hold 
the totals for agreement between the two statistics are shaded grey. Other cells show differ-
ences between the clustering results 

    Local G*  
 High Low NS 

Total 
not concordant 

Local Moran     
High-High 20 0 6 6 
Low-Low 0 16 15 15 
NS 1 3 1901 4 
Low-High 2 0 4 6 
High-Low 0 3 9 12 
Total not concordant 3 6 34 43 

Notes: NS means not significant 

Because there are four race-gender combinations and five time intervals by two 
cluster tests (that is forty cluster maps to compare), we will not detail the results of 
any single cluster test at any particular time. Instead, we present the pattern of re-
sults across all race-gender subgroups over all time intervals. Table G.2.3 com-
pares the results from the local Moran and the local G* tests. Overall the two local 
statistics were in concordance. Over 97 percent of the time, the two statistics 
agreed on the status of a location. Both agreed that there were twenty significant 
clusters of high values, sixteen significant clusters of low values, and 1,901 non-
significant areas. There is no case where the Local Moran finds a cluster of high 
values and the G* finds a cluster of low values, or the reverse. They appear to be 
drawing similar conclusions about these data.  

Yet, there are some differences between the results. These differences could 
be caused by differences in the search pattern of each statistic (the geographic al-
ternative hypothesis to which the statistic is sensitive) or because of the random 
nature of Monte Carlo probability assessment. We classed the forty-three non-
concordant results into four categories for convenience: no comment on outlier, 
outlier disagreement, significance disagreement, and marginal significance dis-
agreement. These categories are summarized in Table G.2.4.  

Table G.2.4. Some characteristics of the non-concordant classes from Table G.2.3  

Category Local Moran (Ii) Getis-Ord statistic (G*) 
 Mean 

(p-value) 
Standard 
deviation 

Mean 
(p-value) 

Standard 
deviation 

No comment on outlier 
(13 cases) 

–1.171 
(0.018) 

0.965 1.577 
(0.405) 

0.457 

Outlier disagreement 
(13 cases) 

–0.354 
(0.020) 

0.134 3.198 
(0.028) 

0.437 

Marginal disagreement 
(13 cases) 

1.104 
(0.042) 

0.654 2.683 
(0.059) 

0.518 

Significance disagreement 
(13 cases) 

0.364 
(0.038) 

0.284 1.895 
(0.284) 

0.222 
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No comment on outlier was a category we expected in the beginning—that the G* 
may have ‘no comment’ on locations identified as significant spatial outliers by Ii. 
Since G* is not designed to detect outliers, and the local Moran is, we expected 
outliers by the Moran analysis not to show up as clusters in the G* analysis. This 
occurred thirteen times (where the local Moran was Low-High or High-Low and 
the G* was not significant). What was unexpected, however, was the five times 
that the local G* called something a cluster and the local Moran called it an outlier. 
We will discuss two examples, Columbus (GA) and Greenville (SC).  

The Columbus (GA) SEA is considered the center of a cluster of low mortality 
rates for white males in 1970-1974 by the G* but a high outlier among low values 
by Ii. As shown in the left side of Fig. G.2.4, Columbus is surrounded by several 
low SEAs, with Z-scores between –4.6 to –0.69. Columbus is near the dataset 
mean, its Z-score is 0.09, and its southern neighbor is also close to the mean. In 
this case, the description of Columbus as a significant spatial outlier, specifically a 
higher outlier among low neighbors, does not correspond to the map pattern. Co-
lumbus is an average SEA with several low neighbors. Thus, the G* is a better de-
scriptor of the local area – the group of SEAs is lower than the regional average. 
The G*, however, does not describe Columbus itself very well, it is not low, but it 
does connect the low group of SEAs. This cluster of low values continues to the 
northwest, as the Auburn (AL) SEA is classed as a significant cluster of low val-
ues by Ii and a marginally significant low cluster by G* (shown in Fig. G.2.6). 

 

 
 

Fig. G.2.4. Statistical disagreement about the significance of the colon cancer mortality rate 
for white males (RWM) in Columbus (GA). This map shows the location of the SEA (with 
the dark outline) and its neighbors in Georgia and Alabama. The SEAs shown are colored 
by their Z-scores for the mortality rate for white males in the period, with SEAs within half 
a standard deviation of the mean shown as white and below the mean shown hatched. The 
local Moran and Getis-Ord statistics disagree about the classification in 1970-1974, but 
both call Columbus the center of a cluster of low values in 1975-1979 

The Greenville (SC) SEA is considered the center of a cluster of high mortality 
rates for African-American females in 1980-1984 by G* but a low outlier among 
high neighbors by Ii. Yet, as shown in Fig. G.2.5, neither classification provides an 
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entirely adequate description of the local spatial pattern. Greenville is average, 
neither especially high nor low, but it does have some very high neighbors, spe-
cifically Easley (SC) and Waynesville (NC). These high neighbors seem to be 
driving both classifications – the high neighbors result in a high local mean which 
is deemed a high cluster by G*, and they cause Greenville to be declared a low 
outlier by  Ii. As shown in Fig. G.2.5, it is not a cluster of high values but only two 
locations with high values, and there is nothing particularly extreme about 
Greenville itself. The other location that neighbors both Easley and Waynesville 
(Cornelia SEA in northeastern Georgia) is also the center of a significant cluster of 
high values, but this time both tests agree. As its rate is also high, this result makes 
more sense. So both tests found a strong signal in the vicinity of Greenville, but it 
is not correct to say that Greenville is significantly low or even surrounded by 
high neighbors or part of a cluster of high values. Neither classification provides a 
fully accurate description of the local pattern. 
 

 
 

 
 
 
 
 
 
 
 

Fig. G.2.5. Statistical disagreement about the significance of the colon cancer mortality rate 
for African-American females (RBF) in Greenville (SC). This map shows the location of 
the Greenville SEA (with the dark outline) and its five neighbors. The disjoint polygon on 
the North Carolina border to the east of the group is actually part of a polygon set that does 
border the Greenville SEA. The SEAs shown are colored by their Z-scores for the mortality 
rate for African-American females in the period 1980-1984, with darker grey indicating a 
higher mortality rate in the period 

The twenty-five other cases of difference between G* and local Moran results oc-
curred when only one of the two tests called a location the center of a significant 
cluster. In all cases, the statistics agreed about the pattern, both Ii and the G* 
showed clustering of high or low values for each location, but their results dis-
agreed about the significance of the pattern. G* called four locations clusters that 
the local Moran called not significant, while the local Moran called 21 locations 
clusters that G* called not significant. Overall, the local Moran finds clusters more 
often than G* does. Whether either is more accurately reporting the ‘true’ number 
of clusters in the region cannot be determined with this dataset, but we can exam-
ine those cases where the two tests differ to see what triggers each statistic.  
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Fig. G.2.6. Persistent clustering of low white male colon cancer mortality rates (RWM) 
centered on Auburn (AL). The Auburn SEA has the darker outlined in black, and its 
neighbors are shown with grey borders. The map shading is from the Z-score of the rate, 
with negative Z-scores shown as hatched. Auburn has three neighbors made up of more 
than one polygon; this is why some polygons are shown as neighbors but do not share a 
border with Auburn 

Of the twenty-five disagreements about the significance of the clustering, twelve 
occur when there is a marginal difference in the p-values of the two statistics. For 
all items in this category, the p-value for both Ii and G* were smaller than 0.10.  
For example, for white males in 1970, Auburn (AL) was the center of a cluster of 
low values according to the local Moran (Ii = 0.67, p = 0.049); its G* was margin-
ally significant (G* = –2.72, p = 0.056). Both statistics are in agreement about the 
pattern and its strength, but the Moran statistic happens to be just below the deci-
sion criterion (α = 0.05) and the G* above, so they provide different answers. The 
mean p-value for each statistic in this class was low (mean Ii; p = 0.042; mean G*, 
p = 0.059, see Table G.2.4). Hence this lack of concordance reflects the arbitrari-
ness of the α = 0.05 decision threshold. Because of the random nature of the con-
ditional Monte Carlo randomization used to assess significance for both statistics, 
it is entirely possible that the significance for Auburn (AL) would be the same for 
both statistics (either a significant low cluster or non-significant) or the pattern of 
significance reversed (with G* being below the threshold and Ii above) if the 
analysis was re-run. Also, we could have chosen a higher number of Monte Carlo 
randomizations (such as 9,999) to get a more precise p-value from the software. 
More p-value precision could alleviate these minor p-value disagreements.  

The other thirteen cases of disagreement about the significance of a cluster are 
more interesting. In these cases, the difference in the p-value is large. For example 
for African-American females in 1970, Sumter (SC) was the center of a significant 
low cluster according to Ii (Ii = 0.291, p = 0.040) but not close to significant by   
G* (G* = –1.68, p = 0.500). Similarly, Prattville (AL) was the center of a local 
Moran cluster of low mortality for African-American females in 1970                   
(Ii = 0.05361, p = 0.024) but not for the G* (G* = –1.83, p = 0.500). In these and 
other cases where the Moran p-value is much lower than the p-value of G* it is of-
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ten the case that the Ii statistic is low (mean of this class is 0.364, Table G.2.4) 
though significant. There is a significant but weak correlation between the values 
in the local neighborhood. Overall, the range of Ii values was from about negative 
two to seven. Positive Ii values less than 0.5, while significant, do not indicate 
strong clusters of extreme values, and correspond instead to clusters of values 
slightly lower or higher than the mean. The findings for G* and Ii differ because 
G* is considering divergence from the mean rather than correlation between the 
values. In many of these cases, G* provides a more reasonable interpretation of the 
pattern in terms of what we are looking for in the study of cancer mortality rates – 
researchers are understandably more concerned about clusters of extremely high 
or low mortality rates than clusters of rates within one standard deviation of the 
mean. 

The differences in the results of the two cluster detection statistics stem from 
two factors. The marginal significance disagreement arises from the use of the 
0.05 decision criterion.  The outlier disagreement, no comment on outlier, and sig-
nificance disagreement arise from differences in the search pattern of each statis-
tic. In some cases, such as Columbus (GA) G* provides a better description of the 
local pattern but not the ego location, while in others, such as Greenville (AL), 
neither explanation fits. 

For cluster persistence, the results were clear: most of the significant clusters 
do not persist to the next time period, as detailed in Table G.2.5. For sixty-two 
clusters or outliers identified by the local Moran from 1970 through 1989, sixty 
were no longer significant in the next time period. For thirty-six clusters identified 
by the Getis-Ord statistic, thirty-five were no longer significant in the next time 
period. Only one Ii cluster persisted into the next time period, a cluster of low 
mortality around Auburn (AL) in 1970-1974 and 1975-1979. The area around Au-
burn in both time intervals is illustrated in Fig. G.2.6. G* found this cluster to be 
marginally significant in 1970-1974 (p = 0.056). The Ii classification change oc-
curred around Columbus (GA). Columbus is shown in Fig. G.2.4. In 1970-1974, 
Columbus was classified as a high outlier among low neighbors by Ii, and then in 
1975-1979 it was classified as the center of a low cluster. The change in the data 
that drives this change in class seems to be that the rate in Columbus went down in 
this interval. So, it was more similar to its low neighbors in the second time pe-
riod. Columbus was a significant low cluster according to G* in both time periods, 
and is the only persistent G* cluster in the times studied. 
 

Table G.2.5.  Cluster persistence over time, measured in terms of number of cases. Totals 
are from all race-gender subgroups over all pairs of two sequential times 

Transitions between categories Local Moran Ii Getis-Ord statistic G* 

From cluster to not significant 60 35 

From outlier to cluster 1 n/a 

No change 1 1 

Total 62 36 
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G.2.4   Concluding remarks 

The lack of persistent clustering in the data suggests that the clusters detected may 
be ephemeral. There is not persistent clustering of high values indicating a stable 
environmental exposure or a stable social or genetic contributing factor to colon 
cancer. Ephemeral clusters can be explained in several ways. They might result 
from unstable mortality rates generated by small populations-at-risk, population 
migration, or short term factors such as geographic differences in treatment or 
screening that do not persist. This seems to be a positive conclusion – there is no 
area at high for risk colon cancer that persists through time. There are some dis-
parities in colon cancer mortality, as shown in Fig. G.2.3, with males having 
higher mortality rates than females, and African-Americans having higher mortal-
ity than whites. This does not seem to be a local phenomenon, but instead applies 
across the study geography. And, the mortality rates for African-American males 
and females are increasing more steeply than they are for whites (see Fig. G.2.2). 
Researchers have suggested that the increasing rates of colon cancer may be due 
to changing diets and increasing rates of obesity (Murphy et al. 2000). Other re-
search has shown that patterns in colon cancer mortality in African-Americans 
may in part be due to socioeconomic factors, specifically differential access to 
health care. Freeman and Alshafie (2002) found that poorer individuals are diag-
nosed with more advanced cancers and die more frequently.  

This contribution finds that the results of the two statistics are similar, with 
agreement on their classifications over 97 percent of the time. Because of the large 
amount of concordance between the two cluster statistics, there seems to be little 
additional value gained from applying both cluster statistics to a dataset. Because 
of the differences in reporting of significance, with the local Moran reporting 
some clusters quite near the mean, the Getis-Ord statistic may be more sensitive to 
clusters of extreme values. The cluster classifications produced by the statistics 
need to be further examined to be interpreted well. Although several software 
products, including the Cancer Atlas Viewer, produce crisp maps classifying loca-
tions into clusters, outliers, and non-significant areas, the simplicity of these maps 
can obscure the complexity of the observed data. The differences we found in the 
classifications of G* and Ii pointed out a few locations where the interpretation for 
either classification requires careful examination of the mapped data. These are in-
stances in which the local map pattern do not correspond to the search image of ei-
ther cluster statistic.  

The few cases they disagree on the status of an outlier seem to come from 
limitations on the shape of the cluster to be detected imposed by the first-order 
neighbor relationships considered. Disagreement emerged from a situation where 
there was variability among the neighbor set, so the ‘true cluster’, if it existed at 
all, was likely a subset of the neighbor set, rather than the whole group of first-
order neighbors. This is shown in Figs. G.2.4 to G.2.6, where significant clusters 
or sets of outliers contain individuals that are close to the mean and those that are 
more extreme. These locations would be better described by a different type of 



G.2     Space-time visualization and analysis      751 

  

cluster statistic, one that connects areas into sinuous shapes that reflect similarity 
of values rather than searches for clusters matching a preexisting shape pattern 
(such as first-order neighbors). This argument is similar to one we have made be-
fore about the limitations of centroid-based cluster statistics that search for circu-
lar clusters (Jacquez and Greiling 2003).  

The analysis reported in this chapter was performed using the free Cancer At-
las Viewer software, providing researchers with sophisticated visualization and 
statistics tools for the exploration of patterns in mortality from 40 site-specific 
cancers. It can act as a quicker and more interactive way to explore the data made 
available by the National Cancer Institute, cutting out the delays inherent in web 
mapping that may hinder exploration. The statistical analysis presented here may 
be beyond the interest and commitment of a casual user, but the software provides 
a means for researchers to assess cancer mortality patterns, examine these patterns 
over time in animated maps and graphics, and to assess the persistence of cluster-
ing. 
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G.3  Exposure Assessment in Environmental 
Epidemiology 

Jaymie R. Meliker, Melissa J. Slotnick, Gillian A. AvRuskin, Andrew 
M. Kaufmann, Geoffrey D. Jacquez and Jerome O. Nriagu  

G.3.1  Introduction  

A key component of environmental epidemiologic research is the assessment of 
historic exposure to environmental contaminants. The continual expansion of 
space-time databases, coupled with the recognized need to incorporate mobility 
histories in environmental epidemiology, has highlighted the deficiencies of cur-
rent software to visualize and process space-time information for exposure as-
sessment (Mather et al. 2004; Pickle et al. 2005).  This need is most pressing in 
retrospective studies or large studies where collection of individual biomarkers is 
unattainable or prohibitively expensive, and models and software tools are re-
quired for exposure reconstruction.  In diseases of long latency such as cancer, ex-
posure may need to be reconstructed over the entire life-course, taking into con-
sideration residential mobility, occupational mobility, changes in risk behaviors, 
and time-changing maps generated from models of environmental contaminants.  
Even for outcomes of short latency such as asthma attacks, exposure reconstruc-
tion may involve daily mobility/activity patterns and temporally-varying maps of 
contaminants.  These types of datasets, for example, mobility histories and time-
changing maps of environmental contaminants, are almost always characterized 
by spatial, temporal, and, spatio-temporal variability.  While current state-of-the-
art methods can integrate datasets that contain either spatial or temporal variabil-
ity, datasets exhibiting both spatial and temporal variability have proven largely 

dimension.   
 
 

Reprinted in slightly modified form from Meliker JR, Slotnick MJ, Ruskin Av, Kaufmann A, 
Jacquez GM, Nriagu JO (2005) Improving exposure assessment in environmental epidemiology: 

namic nature of their datasets by reducing or eliminating the spatial or temporal 
unmanageable until now, and researchers have been forced to simplify the dy-
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Despite modern computer technologies for storing and managing temporal and 
spatiotemporal datasets, surprisingly few tools are available for visualizing the 
‘what, where, and when’ of events (Andrienko et al. 2003; Chittaro et al. 2003). 
One visualization tool, GISystem software, enables users to visualize what hap-
pened, and where; and has augmented assessment of exposure to environmental 
contaminants. For example, researchers have geocoded locations of industries, in-
dustrial waste sites, pollution plumes, as well as homes, schools and jobs of study 
participants. From these geocoded features, disease maps have been created and 
spatial analyses performed (Brauer et al. 2003; Maantay et al. 2002; Meliker et al. 
2001; Reif et al. 2003; Swartz et al. 2003). A frequent criticism of GIS, however, 
is its inability to support temporal data structures (Beaubroef and Breckenridge 
2000; Dragicevic and Marceau 2000). This can be problematic if, for example, in-
vestigators wish to explore whether residences of cancer cases cluster at any time 
in the past fifty years; or whether living in close proximity to a chemical industry 
at any point  in time  is associated  with subsequent  cancer development. With 
GISystems, spatial patterns at different isolated moments can be examined, using 
animation tools. However, each map, or snapshot, must be created independently, 
requiring a substantial amount of effort and introducing greater likelihood of data 
entry error. Furthermore, information about change is not available in the interval 
between two consecutive snapshots. Visualization of a map that displays smooth, 
continuous changes over time can generate additional insights about spatial dis-
ease patterns.  

Time-GIS technology has recently been developed that takes advantage of the 
space-time variability inherent in many datasets (AvRuskin et al. 2004; Greiling et 
al. 2005; Jacquez et al. 2005; Meliker et al. 2005).  Time-GIS support evaluation 
and query of spatio-temporal datasets, and also can enrich analysis of temporal 
datasets that are devoid of geographic coordinates. A backbone of these tools is 
their temporal data structure, which enables non-geographic attributes, such as 
temporally-variant exposure estimates, to be visually examined.  

In this chapter, space-time methods are illustrated using preliminary data from 
a bladder cancer case-control study in Michigan. Established causes of bladder 
cancer include cigarette smoking and exposure to aromatic amines in occupational 
settings; however, many cases of bladder cancer remain unexplained. One possible 
cause of bladder cancer is exposure to arsenic in drinking water. Concentrations of 
arsenic in drinking water exceeding World Health Organization (WHO) and US 
Environmental Protection Agency (EPA) guidelines (10 µg/L) have been identi-
fied in ground-water supplies of eleven counties in southeastern Michigan: Gene-
see, Huron, Ingham, Jackson, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, 
Tuscola, and Washtenaw (Kim et al. 2002; Kolker et al. 2003; Slotnick et al. 
2006). Previous individual-level studies of arsenic in drinking water and bladder 
cancer have been criticized for imprecise exposure assessments (Cantor 2001) 
which failed to account for (i) changes in arsenic concentration in water over time, 
(ii) individual residential mobility patterns, and (iii) behavioral changes in drink-
ing water consumption. These shortcomings are familiar to many investigations of 
environmental exposures and cancer; Time-GIS are essential for alleviating some 
of these shortcomings.  
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G.3.2   Data and methods  

A sample of 39 cases and 39 controls from a bladder cancer case-control study in 
Michigan was selected to demonstrate applications of Time-GIS for exposure as-
sessment. This size of the dataset allows for straightforward manipulation and 
visualization of complex exposure scenarios, enhancing communication of the in-
tricacies of these visualization tools. Cases were recruited from the Michigan State 
Cancer Registry and diagnosed in the year 2000. Controls were frequency 
matched to cases by age (± five years), race, and gender, and recruited using a ran-
dom digit dialing procedure from an age-weighted list. To be eligible for inclusion 
in the study, participants must have lived in the eleven county study area for at 
least the past five years and had no prior history of cancer (with the exception of 
non-melanoma skin cancer). Participants were offered a modest financial incentive 
and research was approved by University of Michigan IRB-Health Committee. 
Participants answered a telephone questionnaire concerning drinking water habits, 
smoking, and medical history, and completed a written questionnaire describing 
residential mobility history. Information obtained from these questionnaire in-
struments was used to create spatiotemporal datasets.  

This section describes the key functionalities of Time-GIS software being de-
veloped to facilitate space-time exposure reconstruction. This software, STISTM 
(TerraSeer, Ann Arbor), supports spatio-temporal datasets but does not yet pro-
vide all of the functionalities described here (see Chapter A.6 for a description of 
TerraSeer).  

Temporal and spatio-temporal datasets on residential mobility. Participants 
provided written residential histories of each home lived-in for at least one year 
for a total of 519 homes. The duration of residence and exact street address were 
obtained, otherwise the closest cross streets were provided. Each residence in the 
study area was geocoded and assigned geographic coordinates in ArcGIS; resi-
dences outside the study area were not geocoded. Participants resided at 288 
homes within the study area, with time spent averaging 66 percent of their life-
times. Street files were downloaded from Michigan Center for Geographic Infor-
mation website, and were part of the Michigan Geographic Framework. Michigan 
Geographic Framework datasets use the Michigan GeoRef System, based on an 
Oblique Mercator projection. Residences within the study area were successfully 
geocoded: 78 percent automatically matched using ArcGIS settings of spelling 
sensitivity equal to 80, minimum candidate score equal to ten, and a minimum 
match score equal to 60. Unmatched addresses were manually matched using 
cross streets with the assistance of internet mapping services (seventeen percent). 
If cross streets were not provided, best informed guess placed the address on the 
road (three percent), and as a last resort, residence was matched to town centroid 
(two percent).  

Water supply history. Participants provided written information about primary 
water supply and any changes in water supply at each residence (for example, 
public surface, public well, private well, or bottled water). Managers of 135 public 
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water supplies in the study area answered questions about quality of drinking wa-
ter, source of water, changes in water supply, changes in extent of coverage of wa-
ter supply, and changes in treatment procedures. Each residence was classified by 
its primary water supply for a span of time based on accounts provided by partici-
pants. At approximately three percent of the addresses, participants did not assign 
a water supply. Time-GIS was used in those cases to assign a water supply. 

Arsenic data. The water sample that provided current arsenic exposure was 
collected from the kitchen tap, or primary source of water for drinking and cook-
ing at each participant’s current home. All plasticware was acid-washed for trace 
metals determination following modification of a previously described protocol 
(Nriagu et al. 1993). Blanks and replicates were collected for at least ten percent 
of the samples. Water samples were stored on ice, acidified with 0.2 percent trace 
metal grade nitric acid, and refrigerated until analysis. Water samples were subse-
quently analyzed for arsenic using an inductively coupled plasma mass spectrome-
ter (ICP-MS, Argilent Technologies Model 7500c).  

Historic databases were used to estimate arsenic concentrations at past resi-
dences. Michigan Department of Environmental Quality (MDEQ) maintains a da-
tabase of arsenic measurements (1993–2002) in private (N = 11,615 arsenic meas-
urements) and public well water supplies (N = 1675 arsenic measurements) in the 
study area, analyzed in a state laboratory with graphite furnace atomic absorptions 
spectrometry (GF/ AAS) (1993–1995), hydride flame (quartz tube AAS) (1993–
1995), and an ICP-MS (1996–2002). Private well water measurements from 
MDEQ database were utilized to generate city or township averages (means) of 
arsenic concentrations for past private well waters not monitored for arsenic (a 
geostatistical model is also being developed to predict arsenic concentrations in 
past private wells; Goovaerts et al. 2005). The MDEQ database of public well wa-
ter supplies was used to calculate a mean value of arsenic for each community’s 
ground-water supply. Community supplies relying on surface water were assigned 
an arsenic concentration equal to 0.3 µg/L, the mean level detected in tap water 
samples that rely on surface water in the area. Residences outside the study area 
were similarly assigned an arsenic concentration of 0.3 µg/L. Arsenic concentra-
tions in private and public water supplies were assumed not to change over time, 
since evidence suggests limited temporal variability (Slotnick et al. 2006; Stein-
maus et al. 2005; Ryan et al. 2000).  

Water consumption patterns. Estimates of water consumption (liters/day) 
were calculated based on answers to a series of questions from a telephone inter-
view. Participants were asked to self-report the number of glasses of water and 
beverages made with water drank at home during the past year (the year prior to 
cancer diagnosis for cases), the previous ten years, and changes in drinking water 
consumption over the course of a lifetime.  
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G.3.3  Features and architecture of Time-GIS  

Data structure.  Time-GIS support datasets in which time is a principal feature. 
For example, the data structure requires that: (i) each row in a dataset represents a 
space-time intersection and a variable of interest and (ii) when a geographic loca-
tion or a variable of interest changes value, a new row is created. Data tables can 
be linked to spatial features, and the following information must be specified: 
unique ID, start date, end date, and attributes during that time window. In the ex-
ample of drinking water history and residential mobility of participants, each 
home and water source occupy a unique row with a start year, end year, geo-
graphic coordinate, and participant ID number. Any change in location of resi-
dence or source of drinking water is characterized by a new row with a defined 
duration, using the same participant ID number (see Table G.3.1). Other variables, 
such  as  water consumption patterns,  use of home  water treatment  systems, and 
concentrations of drinking water contaminants, are stored in separate datasets, in-
cluding rows with defined durations and ID numbers. Despite different durations 
for variables, participant datasets can be joined together, using participant ID 
numbers. Using Time-GIS, a participant’s mobility history can be visualized by 
displaying specified attributes of a participant. In effect, changes in water con-
sumption patterns, water supply, contaminant concentrations in water, or other 
variables can be illustrated as participants’ move through time.  

Table G.3.1. Spatio-temporal dataset format for STIS point features: residential mobility 
history and water consumption history for two participants 

Residential mobility history Estimated water consumption 

Sample 
ID 

Year moved 
in 

Year 
moved Out 

Address* X-Coord* Y-Coord* Sample 
ID 

Start period End period Liters/ 
day 

001366 04/08/1951 01/01/1963 Address #1 694980 264132 001366 04/08/1951 01/01/1995 1.50 

001366 01/01/1963 01/01/1971 Address #2 687299 268878 001366 01/01/1995 01/01/2004 2.75 

001366 01/01/1971 01/01/1972 Address #3 694161 272042 001397 04/08/1933 01/01/1949 0.25 

001366 01/01/1972 01/01/1975 Address #4 680421 278791 001397 01/01/1949 01/01/1982 1.00 

001366 01/01/1975 01/01/2004 Address #5 649645 275342 001397 01/01/1982 01/01/2004 0.60 

001397 01/01/1933 01/01/1937 Address #1 692980 168978     

001397 01/01/1937 01/01/1950 Address #2 687699 174042     

001397 01/01/1950 01/01/1953 Address #3 692161 176791     

001397 01/01/1953 01/01/1957 Address #4 660421 177342     

001397 01/01/1957 01/01/1964 Address #5 684656 274665     

001397 01/01/1967 01/01/1969 Address #6 694766 278743     

001397 01/01/1969 01/01/1993 Address #7 686910 274183     

001397 01/01/1993 01/01/1998 Address #8 692830 280704     

001397 01/01/1998 01/01/2004 Address #9 685618 270049     

Notes: *Address and geographic coordinates are altered to protect participant confidentiality 
 

From a data input perspective, datasets of point, line, or polygon features are 
structured similarly. As with point features, visualizing changes in community at-
tributes requires geographic coordinates, a duration, unique community ID num-
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ber, and characteristics of a community. These variables are recorded in unique 
rows for each space-time intersection. The ID number remains constant, even if 
the geographic area of the community changes – analogous to a unique ID number 
for each participant, even though residences change. In this manner, polygons can 
change shape and attributes over time.  

Space-time maps. Smooth, temporally continuous, space-time maps are cre-
ated in Time-GIS using the data structure described above. To illustrate the 
changes in the source of drinking water, a series of snap-shots are presented, rep-
resenting the region’s water supply status in 1932, 1964, and 1993 (see Fig. 
G.3.1). The slider bar is dragged to the left (distant past) or right (more recent 
past) to display different years. With limitations of the printed page, only static 
images can be presented here. However, Time-GIS produces continuous space-
time animations. Valuable information can be gained by visualizing water supply 
changes. Water supply is designated as:   private wells,  public ground-water, pub-
lic surface water, purchased surface water, or mainly private wells (i.e., some 
small residential developments in the community have public ground-water sup-
plies). From 1932 through 1993, most of the region was served by private wells 
(white color in Fig. G.3.1). In 1932, only a few communities were served by sur-
face water; by 1993, several communities purchased surface water from the city of 
Detroit water system. Visualization of changes shows that over time, small com-
munities developed public ground-water systems and some public ground-water 
systems changed over to public surface water distribution systems.  

In addition to attributes changing, variations in town boundaries are displayed, 
as when new towns become incorporated, communities expand their borders, and 
when communities merge (see Fig. G.3.2). Between 1950 and 1992, several new 
communities were incorporated in Oakland County. In the database, each commu-
nity is assigned a unique ID number that remains the same; any other variable, in-
cluding geographic coordinates, is permitted to change. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. G.3.1. Public and private water supply status in Southeastern Michigan in 1932, 1964, 
and 1993. Slider Bar controls the year displayed 

Private wells 
Mainly private wells 
Public ground water 
Surface water 
Purchased surface water 
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Fig. G.3.2. Feature of Time-GIS. Town boundaries change with time (1950, 1992) 

G.3.4  Application  

Arsenic exposure reconstruction.  Given space-time maps, a natural extension is 
for the software to process space-time joins. This procedure reduces data entry 
time and error associated with manually assigning an attribute to a space-time 
object. For example, in the bladder cancer study, participants were unable to recall 
their drinking water source at approximately three percent of their lifetime 
residences. The public water supply map (see Fig. G.3.1) from 1920–2003, was 
overlaid with the residential history map, and each residence without an assigned 
drinking water source was visually overlaid with the public water supply map and 
assigned a drinking water source. The space-time join functionality of Time-GIS 
makes this assignment automatic.  

As a further example, space-time join tools can be used to assign an arsenic 
concentration to drinking water at each residence. Distinct space-time maps of ar-
senic concentration are created for residences on public water supplies and private 
wells. A space-time join procedure can differentiate between residences on private 
well water and those on public water supply, and assign arsenic to each residence, 
at all points in time. This automated procedure is flexible, allowing efficient recal-
culation of lifetime exposure when a different exposure metric or route is selected, 
or when the underlying models of environmental dispersion are refined.  This im-
provement is substantial and highlights the broad application of Time-GIS in fa-
cilitating exposure calculations and therefore improving exposure assessment.  

Intake was then calculated by multiplying arsenic concentration (µg/L) by vol-
ume of water drank at home and used for making beverages at home (L/day). Each 
change in water consumption and change in arsenic concentration was used to es-
timate exposure for a particular time-window. Results are presented as average 
exposure to arsenic in units of µg/day. Exposure calculations were performed for 



760      Jaymie R. Meliker et al. 

587 unique space-time periods, with each space-time period defined by a unique 
combination of residential location, water source, water treatment, and water con-
sumption behavior. Joining data across these space-time intervals is automated in 
Time-GIS; additional evidence of its benefit for exposure reconstruction.  

Exposure life-lines. One of the most commonly used temporal visualization 
tools is the time series graph. A time series of arsenic exposure for each case and 
control is shown in  Fig. G.3.3. Each line represents a different participant’s arse-
nic exposure trajectory. The thick line depicts average arsenic exposure for cases 
and controls, in respective graphs. Individual participants’ trajectories are difficult 
to follow, visually, because the lines intersect. The average arsenic exposure tra-
jectory for cases and controls may generate insights but information is lost by 
simply averaging participants’ exposures. Other traditional tools, such as histo-
grams and scatter plots, display variables at slices of time in Time-GIS. Similar to 
space-time maps, these tools allow for scanning smooth, continuous, temporally-
variant figures for relationships between variables at any moment in time. Histo-
grams display one variable, and scatter plots display two variables, at any time 
slice. For example, histograms for cases and controls were compared for drinking 
water source. In 1965, fifteen cases and eleven controls were drinking well water, 
while twenty-four cases and twenty-eight controls were drinking surface water 
(see Fig. G.3.4). Scatter plots were used to compare arsenic exposure and cigarette 
smoking for cases and controls (see Fig. G.3.5). In 1972, controls with arsenic ex-
posure exceeding twenty µg/L smoked fewer than twenty-one cigarettes/day. 
Cases with arsenic exposure exceeding twenty µg/L, in comparison, smoked 
greater than thirty cigarettes/day. Limited evidence suggests that cigarette smok-
ers, exposed to elevated levels of arsenic 30–40 years ago (Bates et al. 1995) or 40 
or more years ago (Steinmaus et al. 2003) are at an increased risk for bladder can-
cer. But the temporal relationship between cigarette smoking and arsenic exposure 
has not been well documented. For example, when does smoking cigarettes inter-
act with arsenic exposure: if exposure is simultaneous; if heavy smoking precedes 
a period of elevated arsenic exposure; or if heavy smoking occurs following a pe-
riod of elevated arsenic exposure? Is there a critical time when cigarette smoking 
and arsenic intake interact to increase risk of bladder cancer? Scatter plots in 
Time-GIS help researchers address these types of questions.  

While scatter plots, histograms, time graphs, and space-time maps, can each 
be employed to generate insights about space-time variability, these tools do not 
display the entire temporal dataset in a straightforward manner. The tools rely ei-
ther on time slices of continuous maps or crisscrossing trajectories of participants, 
in which the relationships between participants, their exposure, and how exposure 
changes with time, are difficult to visually comprehend. One solution is exposure 
life-lines, which display participants on the horizontal axis, time on the vertical 
axis, and measures of exposure in the life-lines’ color or thickness.  
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Fig. G.3.3. Time series graphs of arsenic exposure: cases and controls. Each line represent 
a participant’s average daily exposure to arsenic (µg/day) over his/her lifetime 

 

 

Fig. G.3.4. Histogram of source of drinking water in 1965: cases and controls. Slider Bar 
controls the year displayed 
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Fig. G.3.5. Scatter plot of arsenic exposure and cigarettes smoked in 1972: cases and con-
trols. Two cases exposed to elevated arsenic exposure and more than 30 cigarettes/day. 
Slider Bar controls the year displayed 

 

 

Fig. G.3.6. Exposure life-lines for cigarette smoking: cases and controls.  Thickness of life-
line increases with higher frequency of cigarettes smoked. There appear to be more heavy 
smokers around 40-50 years old among cases, compared with controls 

Exposure life-lines (see Fig. G.3.6) are presented to illustrate changes in cigarette 
smoking exposure among cases and controls. The thickness of the life-line reflects 
the average number of cigarettes smoked each day, with thicker lines indicating 
heavier smoking. Using these life-lines, investigators can compare cases and con-
trols to evaluate whether cases began smoking at a younger age, quit at an older 
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age, or whether there was a particularly vulnerable period in which heavy smoking 
appears to be strongly associated with bladder cancer. Similar numbers of cases 
(sixteen) and controls (fifteen) never smoked cigarettes, but seven cases smoked 
more than thirty cigarettes/day, in comparison with four controls. In addition, nine 
of the twelve cases who smoked more than twenty cigarettes/day, were smoking in 
their 40s and 50s, in comparison with just three of the nine controls who smoked 
more than a pack a day. While cigarette smoking is an established risk factor for 
bladder cancer, the timing of when cigarette smoking might exacerbate bladder 
cancer risk is not well understood. The apparent temporal cluster of heavy smok-
ers among cases in their 40s and 50s could shed light on the temporal relationship 
between cigarette smoking and bladder cancer.  

As Fig. G.3.6 illustrates, exposure life-lines may be used to investigate tempo-
ral clusters of high exposure at any point in time. They are particularly useful for 
investigating the latency period of exposure-disease relationships. These life-lines 
are a substantial improvement over such methods as cumulative exposure esti-
mates or pre-defined time windows of exposure, which rely on temporally-
aggregated exposure estimates. Exposure life-lines are helpful to investigate 
whether any years of high exposure are more prominent in cases compared with 
controls.  

Bivariate exposure life-lines can be constructed to represent historic exposure 
levels from two variables with shades of grey for the first variable, and thickness 
for the second variable. Exposure life-lines depicting arsenic exposure and ciga-
rette smoking history for cases and controls are shown in Fig. G.3.7. A life-line’s 
thickness increases with frequency of cigarettes smoked; increases in darkness 
correspond to higher levels of arsenic exposure. It is seen that more controls, 
compared with cases, were exposed to elevated levels of arsenic in drinking water 
over the course of their lives. Only one control, however, experienced simultane-
ous exposure to drinking water arsenic more than twenty-five µg/day, and more 
than twenty cigarettes/day, and that was only for three years, from 1953-1956. In 
comparison, two cases were simultaneously exposed to arsenic exposure more 
than twenty-five µg/day, and more than thirty cigarettes/day in the 1970s and 
1980s, suggesting the possibility of interaction between arsenic and cigarette 
smoking, twenty-to-thirty years prior to cancer diagnosis.  

Without exposure life-lines, an a priori hypothesis with a specified point in 
time is required to investigate when multiple variables interact. For example, re-
searchers could not visualize and evaluate the relationships between arsenic expo-
sure at any point in time, cigarette packs smoked at any point in time, and subse-
quent disease development. Exposure life-lines can be used to evaluate these 
relationships and shed light on interactions between variables, and when those in-
teractions may be occurring.  

In comparison to Fig. G.3.6 where age was used to track time, Fig. G.3.7 uses 
calendar years. Displaying different temporal orientations, such as calendar years 
and age, is beneficial in highlighting distinct trends in the data. In some situations, 
calendar years of exposure may be important, since they indicate key changes in 
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the external environment. In other situations, age at exposure may be critical, be-
cause individuals may be more vulnerable to toxic agents when they are at a spe-
cific age. Exposure life-lines can be flexible to present data using either of these 
temporal orientations, or others, including years prior to diagnosis or interview 
(Meliker and Jacquez 2007).  

 
 

 

 

 
 

Fig. G.3.7. Exposure life-lines for arsenic exposure and cigarette smoking: cases and con-
trols. Thickness of life-line increases with frequency of cigarettes smoked.  Darkness of 
life-line increases with higher arsenic exposure.  There appears to be more heavy smoking 
in 1970s among cases. A pair of heavy smokers was exposed to arsenic greater than 25 
µg/day in 1970s and 1980s 
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G.3.5  Concluding remarks 

Application of Time-GIS for exposure assessment and environmental epidemiol-
ogy is in its infancy. Processing and supporting visualization of spatio-temporal 
datasets is essential for exploring patterns in data. Beyond visualization, however, 
statistical analyses are necessary to identify significant relationships between tim-
ing or location of exposure and subsequent disease development. Statistical proce-
dures that appear to be important include spatial and spatio-temporal clustering 
techniques; focused cluster tests to examine if a cluster is associated with a point 
source, such as an industry or landfill; and temporal epidemiologic analyses to in-
vestigate if exposure at a point in time is associated with subsequent disease de-
velopment.  Another area of future research is the propagation of uncertainty asso-
ciated with calculation of exposure profiles. Specific to the bladder cancer 
example presented here, uncertainty in exposure assessment arises at several lev-
els in data collection and manipulation, including water consumption estimates, 
measured arsenic concentrations, estimated arsenic concentrations, and geographic 
location. Efforts are underway to assess sensitivity of arsenic exposure estimates 
to different sources of uncertainty, and to incorporate techniques for propagating 
uncertainty in Time-GIS.  

Despite the common perception that cancers are often caused by environ-
mental contaminants, limited evidence exists to support widespread associations. 
Reports of weak, non-significant associations between environmental agents and 
cancer (Gammon et al. 2002; Bates et al. 1995; Steinmaus et al. 2003) may be at-
tributed to exposure assessments that inadequately incorporate temporal variabil-
ity. A recent study of exposure to organochlorines and breast cancer suggests that 
biomarkers collected in younger women decades prior to diagnosis reveal an asso-
ciation not seen in studies using more recent measures of exposure (Cohn et al. 
2007).  Access to historical biomarkers, however, is rare, substantiating the need 
for improved historical exposure reconstruction methods using Time-GIS which 
enable spatially-and temporally-explicit exposure assessment and the investigation 
of ensuing disease development.  
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