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Preface to the Second Edition

The first edition of this text (O’Sullivan and Unwin, 2003) was written in the
first two years of the twenty-first century, but in its basic framework it relied
on two key ideas that have a long history in geographic information science:
cartography and statistics. Perceptive (and aged?) readers will perhaps have
noted sections that owe their origins to Introductory Spatial Analysis

(Unwin, 1981), a little book one of us wrote almost 30 years ago. The first
key idea was the use of a framework for describing geographic objects by
their dimension of length into points, lines, areas, and continuous surfaces
(fields); the second was to regard mapped distributions as realizations of
some spatial stochastic process.
Like any overarching framework, it’s not perfect. For example, heavy

reliance on fixed geometric entities and on close attention to statistical
hypothesis testing may seem dated in the light of developments in spatial
representation and statistical inference. In developing this second edition,
we thought for some time about moving with the times and adopting one of a
variety of alternative frameworks. Our eventual decision to stick to the
original blueprint was not taken lightly, but we are sure we have done the
right thing. Since the first edition appeared, we have taught classes with
curricula built on this framework at senior undergraduate and beginning
graduate levels in theUnited States, the United Kingdom,New Zealand, and
globally over the Internet, and we have found it to be pedagogically clear and
resilient. For many students, either spatial data or statistical reasoning
(and, not infrequently, both) are new or fairly new concepts, and it is
important that we provide a ‘‘way in’’ to more advanced topics for that large
segment of readers. For those few readers happily familiar with both topics,
we hope that the book is broad enough in its coverage and makes enough
nods in the direction of more advanced material to remain useful.

CHANGES

In spite of broad continuities, a chapter-by-chapter comparison will show
substantial updates in our treatment of point pattern analysis, spatial

xi



autocorrelation, kriging, and regressionwith spatial data, andwe havemade
a number of larger changes, some of which are of emphasis and some of which
are more substantial. Those familiar with the first edition will notice that
formal hypothesis testing has receded further into the background in favor of
greater emphasis on Monte Carlo/randomization approaches that, in most
practical work, using the usually messy data that we have to handle, seem to
us to offer ways around many of the well-known problems related to spatial
data. Even in the seven years since the first edition was published, comput-
ing power has made this approach more practical and easier to implement.
Second, readers will find that throughout the revised text there is a greater
emphasis on essentially local descriptions. We believe this also reflects an
importantmethodological changewithin the science, arguablymade possible
by access to today’s computing environments.

The two most substantial changes follow from and relate back to these
changes of emphasis, in that we have added entirely new chapters (Chapters
3 and 8) on geovisualization and local statistics. In fact, a chapter on maps
and mapping was written for the first edition but was not included. This we
justified to ourselves by noting the need to keep the length of the book down
and by considering that most of our readers would be familiar with some of
the central concepts of the art and science of cartography. Subsequent
experiences teaching courses on geographic information analysis to what
one of us has called ‘‘accidental geographers’’ (Unwin, 2005) have shown that
this omission was a mistake. By accidental geographer, we mean those new
to the analysis of spatial data, whose understanding of geographic science is
based largely on the operations made possible by geographic information
system (GIS) software. Cartography, or, if you prefer, geovisualization, has
added relevance for three reasons. First, even with the enormous range of
statistical methods that are available, some form of mapping remains
perhaps the major analytical strategy used. Second, an emphasis on local
statistics that are then mapped has increased the need for understanding
basic cartographic principles. Third, as a walk around almost any GIS trade
exhibition will show, otherwise sophisticated GIS users continue to make
quite basic cartographic errors. Our new Chapter 3 bears little resemblance
to the one originally drafted. The new materials rely heavily on the use of an
Internet search engine to find and critique examples, something the senior
author was taught almost half a century ago in a student class on map
appreciation. That said, we have also tried to locate much of the chapter in
the long, and regrettably sometimes neglected, cartographic tradition.

The secondmajor addition is a chapter on local statistics. Again, this is not
without its organizational problems, since, as we have discovered, a consid-
erable proportion of materials originally developed in different contexts can
plausibly be brought into this framework. Examples include all thematerials
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associated with concepts of distance, adjacency, and neighborhood that go
into the definition of geographic structure (W) matrices; estimation of the
mean height of a field from control point data (spatial interpolation); identi-
fication of local peaks in the estimated intensity of a point process (cluster-
ing); and the identification of groups of similar zones by decomposition of a
global Moran’s I measure of spatial autocorrelation (Moran scatterplot).
Readers will doubtless find other examples, a sign of the centrality of the
concept in much spatial analysis. This chapter provides a more explicit
treatment of various local indicators of spatial association and allows us to
include an introduction to the ideas behind geographically weighted regres-
sion (GWR). Although kernel density estimation (KDE) might easily be
placed in this same chapter, we believe that it is most often used in a
geovisualization context, and we have moved it to Chapter 3 from its original
home with materials on point pattern analysis in Chapter 5. We recognize
that these changesmake it necessary for the reader from time to time to refer
back to previous materials, and we have attempted to signal when this is
wise by use of boxed thought exercises.
These additions have been balanced by the removal of some materials.

First, for entirely pragmatic reasons, we have removed almost all the text on
the analysis of line objects. Although it dealt with some of the basic ideas,
neither of us was happywith the original chapter, which for reasons of length
did not, and could not, reflect the increasing importance of network analysis
in almost every branch of science. As readers of that chapter would have
recognized, when dealing with linear objects we struggled to maintain our
basic stochastic process approach. Somebody, somewhere, someday will
write what is necessary—a major text book on geographic information
analysis in a network representation of geography—but the task is well
beyondwhat can be covered in a single chapter of the present book. A chapter
onmultivariate statistics, which sat a little uncomfortably in the first edition
on the pretext of treating n-dimensional data as spatial, has been omitted.
We have retained some of that material in the new chapter on geovisualiza-
tion under the heading of ‘‘spatialization.’’ In addition to these larger-scale
adjustments, we have removed the extended treatment of the joins count
approach to characterizing spatial autocorrelation, which, although peda-
gogically useful, seemed increasingly irrelevant to contemporary practice.
Finally, in the interests of keeping the size of the book manageable, we have
dropped an appendix introducing basic statistical concepts, assuming that
readers canwork from one of themany fine introductory text books available.
Since the publication of the first edition, much has changed and the

general field has grown enormously, with developments in computing,
statistics, and geographic information science. In updating the materials,
we have tried as best we can to reflect this new work and the increasingly
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‘‘location-aware’’ scientific and social environment in which it is placed, but
we are aware of numerous things that we have omitted. If you look for
something and are disappointed, we can only apologize.

SOFTWARE

One major change that we have tried to reflect is the increasing gap between
methods used by academic spatial analysts and the functionality embedded
in most commercial GIS. It is true that, if you know what you are doing and
don’t always rely on default settings, many of themethods we describe can be
used within such a system, but such use is not ideal. Over the past decade, it
has become increasingly obvious that most of today’s leading researchers
have developed their work in the public domain R programming environ-
ment (see Ihaka and Gentleman, 1996). Readers looking to implement the
methods we describe should note that almost all of them, and many more,
have been implemented in this environment (Baddeley and Turner, 2005;
Bivand et al., 2008). Readers wishing to develop new and innovative
approaches to geographic information analysis would be well advised to
join this community of scholars.

David O’Sullivan
University of Auckland

Te Whare W�ananga o T�amaki Makaurau

David Unwin
Birbeck, University of London

Matariki 2009
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Preface to the First Edition

Like Topsy, this book ‘‘jes growed’’ out of a little book one of us wrote in the
period from 1979 to 1981 (Introductory Spatial Analysis, London: Methuen).
Although that was fully a decade after the appearance of the first commercial
geographical information systems (GIS) and more or less coincided with the
advent of the first microcomputers, that book’s heritage was deep in the
quantitative geography of the 1960s, and themethods discussed used nothing
more sophisticated than a hand calculator. Attempts to produce a second
edition from 1983 onward were waylaid by other projects—almost invariably
projects related to the contemporary rapid developments inGISs. At the same
time, computers became available to almost everyone in the developed world,
and in research and commerce many people discovered the potential of the
geography they could dowithGIS software. By the late 1990s, it was apparent
that only a completely new text would do, and it was at this point that the two
of us embarked on the joint project that resulted in the present book.
The materials we have included have evolved over a long period of time

and have been tried and tested in senior undergraduate and postgraduate
courses we have taught at universities in Leicester, London (Birkbeck and
University Colleges), Pennsylvania (Penn State), Waikato, Canterbury
(New Zealand), and elsewhere. We are passionate about the usefulness
of the concepts and techniques we present in almost any work with
geographic data and we can only hope that we have managed to communi-
cate this to our readers. We also hope that reservations expressed through-
out concerning the overzealous or simpleminded application of these ideas
do not undermine our essential enthusiasm. Many of our reservations arise
from a single source, namely the limitations of digital representations of
external reality possible with current (and perhaps future?) technology.
We feel that if GIS is to be used effectively as a tool supportive of numerous
approaches to geography and is not to be presented as a one-size-fits-all
‘‘answer’’ to every geographical question, it is appropriate to reveal such
uncertainty, even to newcomers to the field.
Although it was not planned this way, on reflection we progress from

carefully developed basics spelled out in full and very much grounded in the
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intellectual tradition of Introductory Spatial Analysis, to more discursive
accounts of more recent computationally intensive procedures. The early
material emphasizes the importance of fundamental concepts and problems
common to any attempt to apply statistical methods to spatial data and
should provide a firm grounding for further study of the more advanced
approaches discussed in more general terms in later chapters. The vintage of
some of the references we provide is indicative of the fact that at least some of
the intellectual roots of what is now called geographical information science
are firmly embedded in the geography of the 1960s and range far and wide
across the concerns of a variety of disciplines. Recent years have seen
massive technical innovations in the analysis of geographical data, and
we hope that we have been able in the text and in the suggested reading
to capture some of the excitement this creates.

Two issues that we have struggled with throughout are the use of mathe-
matics and notation. These are linked, and care is required with both.
Mathematically, we have tried to be as rigorous as possible, consistent
with our intended audience. Experience suggests that students who find
their way to GIS analysis and wish to explore some aspects in more depth
come from a wide range of backgrounds with an extraordinary variety of
prior experience of mathematics. As a result, our ‘‘rigor’’ is often a matter
merely of adopting formal notations. With the exception of a single ‘‘it can be
shown’’ in Chapter 9, we have managed to avoid use of the calculus, but
matrix and vector notation is used throughout and beyond Chapter 5 is more
or less essential to a complete understanding of everything that is going on.
Appendix B provides a guide tomatrices and vectors that should be sufficient
for most readers. If this book is used as a course text, we strongly recommend
that instructors take time to cover the contents of this appendix at appro-
priate points prior to the introduction of the relevant materials in the main
text. We assume that readers have a basic grounding in statistics, but to be
on the safe side we have included a similar appendix outlining the major
statistical ideas on which we draw, and similar comments apply.

Poor notation has a tremendous potential to confuse, and spatial analysis
is a field blessed (perhaps cursed) by an array of variables. Absolute
consistency is hard to maintain and is probably an overrated virtue in
any case. We have tried hard to be as consistent and explicit as possible
throughout. Perhaps the most jarring moment in this respect is the intro-
duction in Chapters 8 and 9 of a third locational coordinate, denoted by the
letter z. This leads to some awkwardness and a slight notational shift when
we deal with regression on spatial coordinates in Section 9.3. On balance we
prefer to use (x,y,z) and put up with accusations of inconsistency than to have
too many pages bristling with subscripts (a flip through the pages should
reassure the less easily intimidated that many subscripts remain). This
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pragmatic approach should serve as a reminder that, like its predecessor,
this book is about the practical analysis of geographic information rather
than being a treatise on spatial statistics. First and foremost, this is a
geography book!
No book of this length covering so much ground could ever be the unaided

work of just two people. Overmany years one of us has benefited from contacts
with colleagues in education and the geographic information industry far too
numerous to mention specifically. To all he is grateful for advice, for discus-
sion, and for good-natured argument. It is a testament to the open and
constructive atmosphere in this rapidly developing field that the younger
half of this partnershiphas already benefited fromnumerous similar contacts,
which are also difficult to enumerate individually. Suffice it to say that
supportive environments inUniversityCollege London’s Centre forAdvanced
Spatial Analysis and in the Penn State Geography Department have helped
enormously. As usual, the mistakes that remain are our own.

David O’Sullivan
The Pennsylvania State University

(St Kieran’s Day, 2002)

Dave Unwin
London, England

(St Valentines’ Day, 2002)

Preface to the First Edition xix



Chapter 1

Geographic Information Analysis
and Spatial Data

CHA P T E R O B J E C T I V E S

In this first chapter, we:

� Define geographic information analysis as it is meant in this book
� Distinguish geographic information analysis from GIS-based spatial

data manipulation while relating the two
� Review the entity-attribute model of spatial data as consisting of
points, lines, areas, and fields, with associated nominal, ordinal,
interval, or ratio data

� Note some of the complications in this view, especially multiple

representation at different scales, time, objects with uncertain bound-
aries, objects that are fuzzy, and objects that may be fractal

� Review spatial data manipulation operations and emphasize their
importance

� Examine the various transformations between representations, not-
ing their utility for geographic information analysis

After reading this chapter, you should be able to:

� List four different approaches to spatial analysis and differentiate
between them

� Give reasons why modern methods of spatial analysis are not well
represented in the tool kits provided by the typical GIS

� Distinguish between spatial objects and spatial fields and discuss why
the vector-versus-raster debate in GIS is really about howwe choose to
represent these entity types

1
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� Differentiate between point, line, and area objects and give examples
of each

� List the fundamental data properties that characterize a field
� Provide examples of real-world entities that do not fit easily into this
scheme

� Maintain a clear distinction between a real-world entity, its represen-
tation in a digital database, and its display on a map

� Differentiate between nominal, ordinal, interval, and ratio attribute
data and give examples of each

� Give examples of at least 12 resulting types of spatial data
� List some of the basic geometrical data manipulations available in the
typical GIS

� Outline methods by which the representations of entities can be
transformed and explain why this is useful for geographic information
analysis

1.1. INTRODUCTION

Geographic information analysis is not an established discipline. In fact, it is
a rather new concept. To define what we mean by this term, it is necessary
first to define amuch older term—spatial analysis—and then to describe how
we see the relationship between the two. Of course, a succinct definition of
spatial analysis is not straightforward either. The term comes up in various
contexts. At least four broad areas are identifiable in the literature, each
using the term in different ways:

1. Spatial data manipulation, usually in a geographic information
system (GIS), is often referred to as spatial analysis, particularly in
GIS companies’ promotional material. Your GIS manuals will give
you a good sense of the scope of these techniques, as will the texts by
Tomlin (1990) and Mitchell (1999).

2. Spatial data analysis is descriptive and exploratory. These are
important first steps in all spatial analysis, and often are all that
can be done with very large and complex data sets. Books by
geographers such as Unwin (1982), Bailey and Gatrell (1995),
and Fotheringham et al. (1999) are very much in this tradition.

3. Spatial statistical analysis employs statistical methods to interro-
gate spatial data to determine whether or not the data can be
represented by a statistical model. The geography texts cited above
touch on theses issues, and there are a small number of texts by
statisticians interested in the analysis of spatial data, notably those
by Ripley (1981, 1988), Diggle (1983), and Cressie (1991).

2 GEOGRAPHIC INFORMATION ANALYSIS



4. Spatial modeling involves constructing models to predict spatial
outcomes. In human geography, models are used to predict flows of
people and goods between places or to optimize the location of
facilities (Wilson, 2000), whereas in environmental science, models
may attempt to simulate the dynamics of natural processes (Ford,
1999). Modeling techniques are a natural extension of spatial
analysis but are beyond the scope of this book.

In practice, it is often difficult to distinguish between these approaches,
and most serious research will involve all four. First, data are collected,
visualized, and described. Then exploratory techniques might raise ques-
tions and suggest theories about the phenomena of interest. These theories
are then subjected to statistical testing using spatial statistical techniques.
Theories of what is going on might then be the basis for computer models of
the phenomena, and their results, in turn, may be subjected to more
statistical investigation and analysis.
It is impossible to consider geographic informationwithout considering the

technology that is increasingly its home: geographical information systems
(GISs). Although GISs are not ubiquitous in the way that (say) word
processors are, they have infiltrated more and more businesses, government
agencies, and other decision-making organizations. Even if this is the first
time you’ve read a geography textbook, chances are that you will have
already used a GIS without knowing it, perhaps when you used a website
to generate a map of a holiday destination or to find driving directions to get
you there.
In the above list, current GISs typically include item 1 as standard (since a

GIS without these functions would be just a plain old IS!) and have some
simple data analysis capabilities, especially exploratory analysis usingmaps
(item 2). GISs have recently begun to incorporate some of the statistical
methods of item 3 and only rarely include the capability to build spatial
models and determine their likely outcomes (item 4). In fact, it can be hard to
extend GIS to perform such analysis, which is why many geographic infor-
mation analysts use other software environments for work that would be
classified as belonging to items 3 and 4. In this book, we focusmostly on items
2 and 3. In practice, you will find that, in spite of rapid advances in the
available tools, statistical testing of spatial data remains relatively rare.
Statistical methods are well worked out and understood for some types of
data but less so for many others. As this book unfolds, you should begin to
understand why this is so.
If spatial analysis is so necessary— evenworthwriting a book about—then

why isn’t it a standard part of the GIS toolkit? We suggest a number of
reasons, among them the following:

Geographic Information Analysis and Spatial Data 3



� The GIS view of spatial data and that of spatial analysis are different.
The spatial analysis view of spatial data is more concerned with
processes and patterns than it is with database management and
manipulation, whereas the basic requirement for a spatial database
is far more important to most large GIS buyers (government agencies,
utilities) than the ability to perform complex and (sometimes) obscure
spatial analysis.

� Spatial analysis is not widely understood. Spatial analysis is not
obvious or especially easy, although we aim to address that issue in
this book. The apparent difficulty means that it is difficult to convince
software vendors to include spatial analysis tools as standard prod-
ucts. Spatial analysis tools are a possible addition to GIS that is
frequently left out. This rationale has become less significant in recent
years as software engineering methods enable GIS vendors to supply
‘‘extensions’’ that can be sold separately to those users whowant them.
At the same time, third-party vendors can supply add-on components
more easily than previously, and open source software has become an
increasingly important alternative in some quarters.

� The spatial analysis perspective can sometimes obscure the advantages
of GIS. By applying spatial analysis techniques, we often raise awk-
ward questions: ‘‘It looks like there’s a pattern, but is it significant?
Maybe not.’’ This is a hard capability to sell!

Despite this focus, don’t underestimate the importance of the spatial data
manipulation functions provided by GIS such as buffering, point-in-polygon
queries, and so on. These are essential precursors to generating questions
and formulating hypotheses. To reinforce their importance, we review these
topics in Section 1.5 and consider how they might benefit from a more
statistical approach. More generally, the way spatial data are stored—or
how geographical phenomena are represented in GIS—is becoming increas-
ingly important for analysis. We therefore spend some time on this issue in
Sections 1.2 and 1.3.

For all of these reasons, we use the broader term geographic information
analysis for the material we cover. A working definition of this term is that it
is concerned with investigating the patterns that arise as a result of processes
that may be operating in space. Techniques and methods to enable the
representation, description, measurement, comparison, and generation of
spatial patterns are central to the study of geographic information analysis.
Of course, at this point our definition isn’t very useful, since it raises the
question of what we mean by pattern and process. For now, we will accept
whatever intuitive notion you have about themeaning of the key terms. Aswe
work through the concepts of point pattern analysis in Chapters 4 and 5, it
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will become clearerwhat ismeant by both terms. For now,wewill concentrate
on the general spatial data types you can expect to encounter.

1.2. SPATIAL DATA TYPES

When you think of the world in map form, how do you view it? In the early
GIS literature, a distinction was often made between two kinds of system
characterized by how the geography is represented digitally:

Thought Exercise: Representation

Throughout this book, you will find thought exercises to help you follow the

text in a more hands-on way. Usually, we ask you to do something and use

the results to draw some conclusions. You should find that these exercises

help you remember what we’ve said. This first exercise is concerned with how

we represent geography in a digital computer:

1. Assume that you are working for a road maintenance agency. Your

responsibilities extend to the roadsover a county-sizedarea.YourGIS is

required to support operations such as surface renewal, avoiding

clashes with other agencies—utility companies, for example—that

also dig holes in the roads and make improvements to the road

structure.

Think about and write down how you would record the geometry

of the network of roads in your database.What road attributes would

you collect?

2. Imagine that you are working for a bus company in the same area.

Now the GIS must support operations such as time-tabling, predicting

the demand for existing and potential new bus routes, and optimizing

where stops are placed.

Howwould the recording of the geometry of the road network and

its attributes differ from your suggestions in step 1 above?

What simple conclusion can we draw from this? It should be clear that

how we represent the same geographic entities differs according to the

purpose of the representation. This is obvious, but it can easily be forgotten.

Quite apart from the technical issues involved, social critiques of geo-

graphic information analysis often hinge on the fact that analysis frequently

confines itself to those aspects of the world that can be easily represented

digitally (see Fisher and Unwin, 2005).
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1. One type of system provides a vector view, which records locational
(x, y) coordinates of the features that make up a map. In the vector
view, we list features and represent each as a point, line, or area
object. Vector GIS originated in the use of computers to draw maps
based on digital data and were particularly valued when computer
memory was an expensive commodity. Although the fit is inexact,
the vector model is closest to an object view of theworld, where space
is thought of as an empty container occupied by different sorts of
objects.

2. Contrasted with vector systems are raster systems. Instead of
starting with objects on the ground, a grid of small units, called
pixels, of the Earth’s surface is defined. For each pixel, the value, or
presence or absence of something of interest, is then recorded. Thus,
we divide a map into a set of identical, discrete elements and list the
contents of each. Because every location in space has a value (even if
it is zero or null), a raster approach generally uses more computer
memory than a vector one. Raster GIS originated mostly in image
processing, where data from remote sensing platforms are often
encountered.

In this section, we hope to convince you that at a higher level of abstraction
the vector/raster distinction isn’t very useful, and that it obscures a more
important division between what we call an object and a field view of the
world.

The Object View

In the object view, we consider the world as a series of entities located in
space. Entities are (usually) real: you can touch them, stand in them,
perhaps even move them around. An object is a digital representation of
all or part of an entity. Objects may be classified into different object types—
for example, point objects, line objects, and area objects—and in specific
applications, these types are instantiated by specific objects. For example, in
an environmental GIS, woods and fieldsmight be instances of area objects. In
the object view of the world, places can be occupied by any number of objects.
A house can exist in a census tract, which may also contain lampposts, bus
stops, road segments, parks, and so on.

Because it is also possible to associate behavior with objects, the object
view has advantages when well-defined objects change over time—for exam-
ple, the changing data for a census area object over a series of population
censuses. Note that we have said nothing about object orientation in the
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computer science sense. Worboys et al. (1990) give a straightforward de-
scription of this concept as it relates to spatial data.

The Fie ld View

In the field view, the world consists of properties continuously varying across
space. An example is the surface of the Earth itself, where the field variable is
elevation above sea level. Similarly, we can code the ground in a grid cell as
either having a house on it or not. The result is also a field, in this case of
binary numbers where 1 ¼ ‘‘house’’ and 0 ¼ ‘‘no house’’. If a single house is
large enough or if its outline crosses a grid cell boundary, it may be recorded
as being in more than one grid cell. The key ideas here are spatial continuity
and self-definition. In a field, every location has a value (including ‘‘not here’’
or zero) and sets of values taken together define the field. This is in contrast
with the object view, in which it is necessary to attach further attributes to
represent an object fully—a rectangle is just a rectangle until we attach
descriptive attributes to it.
The raster data model is one way to record a field. In this model, the

geographic variation of the field is represented by identical, regularly shaped
pixels. Earth’s surface is often recorded as a regular grid of height values (a
digital elevation matrix). An alternative is to use area objects in the form of a
mesh of nonoverlapping triangles (called a triangulated irregular network or
TIN) to represent the same field variable. In a TIN, each triangle vertex is
assigned the value of the field at that location. In the early days of GIS,
especially in cartographic applications, values of the field given by land
height were often recorded using digital representations of the contours
familiar from topographic maps. This is a representation of a field using
overlapping area objects, the areas being the parts of the landscape enclosed
within each contour. The important point is that a field can be coded digitally
using either a raster or a vector approach.
Finally, another type of field is one made up of a continuous cover of

assignments for a categorical variable. Every location has a value, but the
‘‘values’’ are the names given to phenomena. Consider a map of soil type.
Every location has a soil, so we have spatial continuity, and we also have self-
definition by the soil type involved, so this is a field view. Other examples
might be land usemaps, even a simplemap of areas suitable or unsuitable for
some development. In the literature, these types of field variable have gone
under a number of different names, among them k-color maps and binary
maps. A term that is gaining ground is categorical coverage, indicating a field
made up of a categorical variable. The important point is that such categori-
cal coverage can be coded digitally using either a vector or a raster approach.
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Choosing the Representat ion to Be Used

In practice, it is useful to think about the elements of realitymodeled in aGIS
database as having two types of existence and to keep both distinct from the
way the same entities might be displayed on a map. First, there is the
element in reality, which we call the entity. Second, there is the element as it
is represented in the database. In database theory, this is called the object

(confusingly, this means that a field is a type of object). Clearly, what we see
as entities in the real world depends on the application, but to make much
sense, an entity must be

� Identifiable. If you can’t see it, then you can’t record it.
� Relevant. It must be of interest.
� Describable. It must have attributes or characteristics that we can
record.

Formally, an entity is defined as a phenomenon of interest in reality that is
not further subdivided into phenomena of the same kind. For example, a road
network could be considered an entity and subdivided into component parts
called roads. Thesemight be further subdivided, but these parts would not be
called roads. Instead, they might be considered road segments or something
similar. Similarly, a forest entity could be subdivided into smaller areas
called stands, which are in turn made up of individual trees.

The relationship between the object and field representations is a deep
one, which, it can be argued, goes back to philosophical debates in ancient
Greece about the nature of reality: a continuously varying field of phe-
nomena or an empty container full of distinct objects? You should now be able
to see that the key question, from the present perspective, is not which
picture of reality is correct but which we choose to adopt for the task at hand.
A GIS-equipped corporation concerned with the management of facilities
such as individual buildings, roads, or other infrastructure would almost
certainly consider an object viewmost appropriate. In contrast, developers of
a system for the analysis of hazards in the environment may adopt a field
view. Most theory in environmental science tends to take this approach,
using, for example, fields of temperature, wind speed, height, and so on.
Similarly, data from remote sensing platforms are collected as continuous
rasters, so a field view is the more obvious approach.

It is also a good idea tomake a clear distinction not only between the entity
and its representation in a GIS database, but also between both of these and
the way the same entity is displayed on a map. Representing the content of a
map is not the same as representing the world. The objectives of map design
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are visual—to showmap users something about the real world—whereas the
objectives of a database are concerned with management, measurement,
analysis, and modeling. It pays to keep these objectives distinct when
choosing how to represent the world in digital form.

Types of Spat ia l Object

The digital representation of different entities requires the selection of
appropriate spatial object types, and there have been a number of attempts
to define general spatial object types. A common approach—reinvented
many times—is based on the spatial dimensionality of the object concerned.
Think about howmany types of object you can draw. You canmark a point, an
object with no length, which may be considered to have a spatial dimension
or length, L, raised to the power zero, henceL0. You can draw a line, an object
having the same spatial dimension as any simple length, that is, L1. You can
also shade an area, which is an object with spatial dimension length squared,
or L2. Finally, you can use standard cartographic or artistic conventions to
represent a volume, which has spatial dimension length cubed, or L3. The U.
S. National Standard for Digital Cartographic Databases (DCDSTF, 1988)
and Worboy’s generic model for planar spatial objects (Worboys, 1992, 1995)
both define a comprehensive typology of spatial objects in terms similar to
these.

An Exercise: Objects and Fields Decoded

1. Obtain a topographic map at a scale of 1:50,000 or larger of your

home area. Study the map, and for at least 10 of the types of entity

the map represents—remember that the map is already a represen-

tation—list whether they would best be coded as an object or a field.

If the entity is to be represented as an object, state whether it is a

point, line, or area.

2. If you were asked to produce an initial specification for a data model

that would enable a mapping agency to ‘‘play back’’ this map from a

digital version held in a database, how many specific instances of

objects (of all kinds) and fields would you need to record?

Hint: Use the map key. There is, of course, no single correct answer to this

question.
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1.3. SOME COMPLICATIONS

The view of the world we have presented so far is deceptively simple, and
deliberately so. There are a number of complications, whichwe now examine.
In each case, our perspective is that of a geographic information analyst, and
the key question to be asked is the extent to which the complication impacts
on any analytical results obtained.

Objects Are Not Always What They Appear to Be

Students often confuse the various cartographic conventional representa-
tions with the fundamental nature of objects and fields. For example, on a
map, a cartographic line may be used to mark the edge of an area, but the
entity is still an area object. Real line objects represent linear entities such as
railways, roads, and rivers. On topographic maps, it is common to represent
the continuous field variable of height above sea level using the lines we call
contours; yet, as we have discussed, fields can be represented on maps in
many different ways.

Objects Are Usual ly Mult id imensional

Very frequently, spatial objects have more than the single dimension of
variability that defines them. We might, for example, locate a point object by
its (x, y) coordinates in two spatial dimensions, but in many applications it
would be much better to record it in three spatial dimensions (x, y, z), with
depth or height as a third dimension. A volume of rock studied by a geologist
exists at some depth at a location but also has attributes such as it porosity or
color; the interest will be in how this attribute varies in (X, Y, Z) space. Many
GISs do not cope easily with such data, so frequently it is necessary to record
the additional coordinate as another attribute of an object fixed at a location
in (x, y). This can make perfectly natural queries and analyses that require
the full three spatial dimensions awkward or even impossible. Raper (2000)
provides numerous illustrations of the multidimensional nature of geo-
graphic objects.

Objects Don’t Move or Change

The view of the world presented so far is a static one, with no concept of time
except possibly as an attribute of objects. This is fine for some problems, but
in many applications our major interest is in how things change over time.
Standard GISs do not easily handle location in time as well as location in
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space. A moment’s thought will reveal the problems that incorporating an
object’s location in time might generate. The idea of change over time, what
we call process, is of particular importance tomost sciences, yet handling it in
a digital environment that does not readily incorporate it in any object’s
description will always be difficult. The problem has been discussed formany
years (see Langran, 1992, and O’Sullivan, 2005, for a review of progress), but
as far as we are aware, no commercial temporal GIS has yet been produced.
In research there have been many attempts, such as PC-RasterTM (see
Wesseling et al., 1996), to create one, almost all of which involve the definition
of some generic language for describing change in both space and time.

Objects Don’t Have Simple Geometr ies

Some aspects of geographic reality that we might want to capture are not
well represented in either the raster/vector or object/field views. The obvious
example here is a transport or river network. Often, a network is modeled as
a set of line objects (routes) and a set of point objects (transport nodes), but
this data structure is very awkward inmany applications, and it is difficult to
get the representation just right (think of one-way streets, restricted turns,
lanes, and so on). Another example is becoming increasingly important:
image data. An image in a GISmight be a scannedmap used as a backdrop or
it might be a photograph encoded in a standard format. At the nuts and bolts
level, images are coded using a raster approach, but the key to under-
standing them is that, other than being able to locate a cursor on an image,
the values of the attributes themselves are not readily extracted, nor, for that
matter, are the individual pixel values important: it is the image as a whole
that matters. In the most recent revision of the ArcGIS, some of these
complexities are recognized by having five representations of geography,
called locations, features (made up of locations), surfaces (fields), images, and
networks (see Zeiler, 1999). As geographic information analysis becomes
increasingly sophisticated and is extended to embrace applications that
hadn’t even been considered when the basic framework we adopt was
developed, this issue is likely to be of greater importance.

Objects Depend on the Scale of Analys is

Different object types may represent the same real-world phenomenon at
different scales. For example, on his daily journey to work, one of us used to
arrive in London by rail at an entity called Euston Station. At one scale this is
best represented by a dot on a map, which in turn is an instance of a point
object that can be represented digitally by its (x, y) co-ordinates. Zoom in a
little, and Euston Station becomes an area object, best represented digitally
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as a closed string of (x, y) coordinates defining a polygon. Zooming in closer
still, we see a network of railway lines (a set of line objects) together with
some buildings (area objects), all of which would be represented by an even
more complex data description. Clearly, the same entity may be represented
in several ways. This is an example of themultiple representation problem in
geographic information analysis. Its main consequence is to make it impera-
tive that in designing a geographic information database and populating it
with objects of interest, it is vital that the type of representation chosen will
allow the intended analyses to be carried out. As the next exercise illustrates,
this is also true for any maps produced from the same database.

Scale and Object Type

We can illustrate this idea using a convenient example from Great Britain

accessed via your Web browser. The same exercise can easily be done using

paper maps or Web-delivered map extracts from another national mapping

agency.

1. Go to www.ordnancesurvey.co.uk. This will bring you to a screen

with an option to ‘‘Get-a-map.’’ At the window, enter ‘‘Maidwell’’

(without quotation marks) which is the name of a small village in the

English Midlands and hit GO.

2. You arrive at a screen with an extract from the 1:50,000 topographic

map of the area around this village.

3. To the left of the map are some balloons labeled ‘‘þ’’ and ‘‘�’’. If you

run the mouse over them, you will see that each balloon corresponds

to a map of the area at scales of 1:25,000 (zoom level 5), 1:50,000

(zoom level 4), and 1:250,000 (zoom level 3 in two versions, a

‘‘Miniscale’’ and a ‘‘Simplified Miniscale’’).

4. The exercise is simple. Make a table in which columns represent each

of the five mapping scales and the rows are entities of interest—we

suggest ‘‘roads’’, ‘‘houses’’, ‘‘public house’’ (there is a rather good

one), ‘‘rivers,’’ and ‘‘land-height’’; enter a code into each cell of this

table to indicate how the feature is represented. It will help if you use

codes such as P (point feature), L (line feature), A (area object), F

(field), and X for features that are absent at that scale.

5. What does this tell you about multiple representation?

CEOs of national mapping agencies know to their cost that it is almost

impossible to produce maps from a single digital database at scales other

than that for which the original database design was intended.

12 GEOGRAPHIC INFORMATION ANALYSIS



Objects Might Have Fracta l Dimension

A further complication is that some entities are fractals, having the same or
similar level of detail no matter how closely we zoom in. Fractals are difficult
to represent digitally unless we accept that the representation is only a
snapshot at a particular resolution. The classic example is a linear feature
such as a coastline whose ‘‘crinkliness’’ remains the same no matter how
closely we examine it. No matter how accurately we record the spatial
coordinates, it is impossible to capture all the detail. A rather unexpected
consequence is that when dealing with irregular lines, their length appears
to increase the more ‘‘accurately’’ we measure it!
Imagine measuring the coastline of (say) a part of the North Island of

New Zealand using a pair of dividers set to 10 km, as in the top left panel of
Figure 1.1.Wewill call thedividers’ separation the yardstick.With a yardstick
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Figure 1.1 Determining the fractal dimension of part of the

New Zealand coastline.
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of 10 km, we count 18 segments and get a coastline length of 18 � 10 km ¼
180 km.Repeating the processwith a 5 kmyardstick, as in the top right panel,
we count 52 segments and get a length of 52 � 5 ¼ 260 km. Finally, using a
yardstick of 2.5 km, we obtain a total length of 132 � 2.5 ¼ 330 km. The
coastline appears longer the closer we look. What would happen if we had a
1-km or a 100-m yardstick? What about 100 mm?What is the ‘‘real’’ length of
this coastline?

Fractal dimension is a mathematical idea for dealing with this difficulty.
Although it was popularized by Mandelbrot (1977), the idea that the length
of lines varies with the scale of their representation was spotted long before
the fractal concept was widespread in mathematics (Richardson, 1961).
Fractal is a compression of fraction and dimensional and expresses the
idea that a linemay be somewhere between one- and two- dimensional, with a
fractal dimension of, say, 1.2 or 1.5. One understanding of an object’s
dimension is that it expresses how its apparent size (in this case length),
measured by counting smaller elements (in this case yardsticks), changes as
the linear size (or resolution) of the smaller elements changes. A simple
nonfractal one- or two- dimensional entity’s size, as measured by counting
subelement yardsticks, increases with the power of its dimension, so that the
number of shorter segments in a simple straight line doubles if we halve the
yardstick size. The count of small cube yardsticks in a large volume increases
eightfold if we halve the dimension of the small cubes. If the linear dimen-
sions of the yardsticks for two measurements are L1 and L2, and the
respective counts of yardsticks are N1 and N2, then the fractal dimension
D is given by

D ¼ log(N1=N2)

log(L1=L2)
ð1:1Þ

This definition does not restrict D to whole number values, and it can be
used to estimate the fractal dimension of irregularly shaped entities. The
lower right panel of Figure 1.1 shows each yardstick length and yardstick–
count combination on a log-log Richardson plot. The three points lie roughly
on a straight line, whose negative slope, fitted by simple linear regression,
gives the fractal dimension. In the example, we arrive at an estimate for the
fractal dimension of 1.44. In fact, we can properly make this measurement
only on the coastline itself, because any stored representation, such as the
map we started with, has a limiting resolution at which the length of the line
will become fixed as we set our dividers smaller. However, the yardstick
length–count relationship is often stable over several orders of magnitude,
and we can estimate the fractal dimension of an entity from a large-scale
object representation.
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So, what does this all mean? The simplest interpretation of the fractal
dimension of a line is as a measure of its ‘‘wiggliness’’ or ‘‘crinkliness.’’ The
fractal dimension of an entity expresses the extent to which it ‘‘fills’’ up the
next dimension from its topological dimension. A line has a single topological
dimension of length L1. A line with fractal dimension 1.0 (note the decimal
point) is an idealized line and takes up no space in two dimensions. However,
a line with fractal dimension 1.1 or 1.15 begins to ‘‘fill up’’ the two dimensions
of the plane in which it is drawn. Many linear features in geography have a
fractal dimension somewhere between about 1.1 and 1.5.
Variants of the Richardson plot can be used to estimate the fractal dimen-

sion of area and volume objects (or surfaces) by counting the number of

Some More Work: Do It for Yourself

As so often is the case, the best way to understand this is to do it yourself.

1. Find a reasonably detailed topographic map at a scale of about

1:25,000 or 1:50,000 and select a length of river as your object of

study. Obviously, since we are interested in the sinuosity of linear

objects, it makes sense to choose a river that shows meandering

behavior. The equivalent of a 20-km length is about right and will not

involve too much work.

2. Now set a pair of dividers at a large equivalent distance on the

ground, say 1 km, and ‘‘walk’’ them along the river counting the

number of steps. Record the yardstick length and the number of

segments.

3. Repeat using a halved yardstick, equivalent to 500 m on the ground.

4. Repeat the process again and again until the yardstick becomes so

short that the experiment is impractical. You should now have a table

of values.

5. Convert both the number of steps and the yardstick length to their

logarithms and plot the resulting numbers with log(number of steps)

on the vertical axis and log(yardstick length) on the horizontal axis. If

you have access to a spreadsheet, you should be able to do this easily.

The points should fall roughly along a straight line, although success

isn’t guaranteed.

6. Finally, use the spreadsheet, (or a straight edge and a good eye) to fit

a best-fit line to your data and estimate the fractal dimension of your

river.
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elements they contain at different linear resolutions. A considerable amount
of work has been done on measuring the fractal dimension of the developed
area of cities (Batty and Longley, 1994). While a perfectly smooth surface has
fractal dimension 2.0, a rough one might have fractal dimension 2.3. Often,
the fractal dimension of surface topography can be related to other character-
istics. Other examples of fractal dimension in geographic phenomena are
provided by soil pH profiles and river networks (see Burrough, 1981; Good-
child and Mark, 1987; Lam and De Cola, 1993; Turcotte, 1997).

The fractal concept is strongly related to the notion of scale. Some
researchers have tried to make use of this in cartographic generalization,
with mixed results. It should be clear that fractal dimension is indicative of
how measures of an object will change with scale and generalization, and, in
general, scale-varying properties of phenomena can be related to their
fractal dimension (Goodchild, 1980). More recently, it has been suggested
that measuring the fractal dimension of digitized data can help to determine
the scale of the source map line work from which it is derived (Duckham and
Drummond, 2000).

Objects Can Be Fuzzy and/or Have
Indeterminate Boundar ies

The preceding discussion has assumed that the objects we deal with arewhat
is technically called crisp, and that if they have a spatial extent, their
boundaries can in principle be recognized exactly. Many spatial entities
that we might want to describe and analyze aren’t crisp, and some may also
have uncertain boundaries. The archetypal example is soil. On a map, the
soil type will be represented by nonoverlapping area polygons, with hard and
fast lines separating the various soil types that the surveyor recognizes. This
is an example of a k-color map discussed in Section 3.7, but as any soil
surveyor knows, it is really a fiction—for two possible reasons.

First, although the soil can change very abruptly, such that a line can be
drawn on a map to separate different soil types, soil types may also grade
almost imperceptibly from one to another, such that there is no certain
boundary between them. Honest soil surveyors often recognize the uncertain
nature of such a boundary by marking the transition with a dotted line. In a
GIS and in subsequent spatial analysis, this uncertainty is often simply
erased by assuming that such lines are in fact certain. The same issue arises,
for example, in geology, where rock types can change imperceptibly; in
marketing, where the boundaries of some trade area might be uncertain;
and when describing mental maps. Every Londoner knows that a part of the
city is called ‘‘Soho,’’ but this has no legislative basis and most people would
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have difficulty deciding where it begins and ends. In the same city, ‘‘West-
minster’’ has a legislative basis and so, in principle, has a certain boundary,
but we doubt thatmany Londoners would know this and instead think of it in
much the same uncertain way that they would think of Soho. To add to the
complexity, and as with Soho and some soil types, some parts of an object’s
boundary might be uncertain but other parts of the same boundary might be
certain. One possible way to handle this boundary uncertainty is to assign
some probability of membership of the defined type to each location, so that
instead of saying ‘‘Here we are on soil type such and such,’’ ourmaps and data
would say ‘‘Here there is a probability of (say) 0.7 that we are on soil type
such and such.’’
Second, and again best illustrated using soils, objects might be fuzzy. In

saying that a given soil belongs to a specific soil type, we are asserting that
this type (or set) is itself crisp, by which wemean that we can unambiguously
state whether or not the soil really is of that type. Yet, some sets might defy
such assignment, so all we can say is that the given soil is more or less of a
given sort, replacing our certainty with a value that expresses the extent to
which it might belong to the given type. This isn’t the same as the boundary
uncertainty discussed above, where we are certain about the types but
uncertain about the given soil. Here we are uncertain about the type of
soil itself but, in a sense, certain about the soil belonging to that uncertain
type. Practically, the extent to which any given entity is a member of such a
fuzzy set is often recorded using a ‘‘membership’’ value ranging from 0 to 1.
This can give rise to confusion with the probabilities associated with un-
certain boundaries. Thinking through the exercise below might help you
distinguish the two sorts of uncertainty.

Thought Exercise: Certainty and Uncertainty

Consider the following hierarchy of statements:

John is over 1.8 m tall.

This is a certain statement about John being a member of the crisp set of all

people over 1.8 m tall.

I think John is over 1.8 m tall.

This set is still crisp, but we aren’t sure about John’s membership of it and

might assign a probability to our uncertainty. This is analogous to the

uncertain boundary issue.

(continues)
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1.4. SCALES FOR ATTRIBUTE DESCRIPTION

In addition to point, line, and area object types, we need ameans of assigning
attributes to spatially located objects. The range of possible attributes is
huge, since the number of possible ways we can describe things is limited
only by our imagination. For example, we might describe buildings by their
height, color, age, use, rental value, number of windows, architectural style,
ownership, and so on. Formally, an attribute is any characteristic of an entity
selected for representation. In this section, we explore a simple way of
classifying attributes into types based on their level of measurement. The
level of measurement is often a constraint on the choice of method of analysis
and, ultimately, on the inferences that can be drawn from a study of that
attribute’s spatial structure.

It is important to clarify what is meant by measurement. When informa-
tion is collected, measurement is the process of assigning a class or value to
an observed phenomenon according to some set rules. It is not always made
clear that this definition does not restrict us to assignments involving
numbers. The definition also includes the classification of phenomena into
types or their ranking relative to one another on an assumed scale. You are
reading a work that you assign to the general class of objects called books.

John is tall

‘‘Tall’’ is a fuzzy set, but we are certain that John belongs to it. It is the fuzzy

category ‘‘tall’’ that now encapsulates the uncertainty. It is also possible that

John is in the fuzzy set ‘‘really tall’’ or ‘‘of average height’’ (although probably

not in all three of these fuzzy sets, since they now cover quite a range of

circumstances). For any particular height, we might assign a membership

value for these sets that records how ‘‘tall,’’ ‘‘really tall,’’ or ‘‘of average

height’’ it is. If John’s actual height is 1.9 m, then his membership in the set

‘‘tall’’ might be 1.0, ‘‘really tall’’ 0.6, and for ‘‘of average height’’ 0.05. This is

the fuzziness issue.

I think John is really tall.

This combines the two types of uncertainty into one statement about John

Now think about how these same statements can be translated into spatial

examples.What are the implications of both types of uncertainty for allegedly

simple measures such as the total area of a given soil that could be extracted

from a GIS in a matter of seconds?

(box continued )
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You could rank it relative to other books on some scale of merit as good,
indifferent, or bad. It is apparent that this general view of measurement
describes a process that goes on in ourminds virtually all our waking lives as
we sense, evaluate, and store information about our environment.
If this everyday process is to yield useful measurements, it is necessary to

insist that measurements are made using a definable process, giving repro-
ducible outcomes that are as valid as possible. The first requirement implies
that the measurer knows what he or she is measuring and is able to perform
the necessary operations; the second is that repetition of the process
yields the same results and gives similar results when different data are
used; the third implies that the measurements are true or accurate. If any of
these requirements are not met, the resulting measurements will be of
limited use in any GIS, or at any rate, we will need good information about
the ways in which the measurements fail to comply with these requirements
in order to make effective use of them. In short, we need to knowwhat we are
measuring, there must be a predefined scale on which we can place phe-
nomena, and we must use a consistent set of rules to control this placement.
Sometimes what we need to measure to produce attribute data is obvious,

but at other times, we are interested in analyzing concepts that are not
readily measured and for which no agreed-upon measurement rules exist.
This is most common when the concept of interest is itself vague or has a
variety of possible interpretations. For example, it is easy to use aGIS tomap
the population density over a region, but because it involves people’s
reactions, standard of living, and available resources, the concept of over-
population cannot be measured simply by the population density. Note that
these ideas do not prevent us from creating measures based on opinions,
perceptions, and so on, and therefore admit the development of GIS dealing
with qualitative data, provided that attention is paid to the difficulties.
The rules defining the assignment of a name, rank, or number to phe-

nomena determine what is called the level of measurement, different levels
being associated with different rules. Stevens (1946) devised a useful clas-
sification of measurement levels that recognizes four levels: nominal, ordi-
nal, interval, and ratio.

Nominal Measures

Because no assumptions are made about relative values being assigned to
attributes, nominalmeasures are the lowest level in Stevens’s scheme. Each
value is a distinct category, serving only to label or name the phenomenon.
We call certain buildings ‘‘shops,’’ and there is no loss of information if these
are called ‘‘category 2’’ instead. The only requirement is that categories are
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inclusive and mutually exclusive. By inclusive, we mean that it must be
possible to assign all objects to some category or other (‘‘shop’’ or ‘‘not a
shop’’). By mutually exclusive, we mean that no object should be capable of
being placed inmore than one class. No assumption of ordering or of distance
between categories is made. In nominal data, any numbers used serve
merely as symbols and cannot be manipulated mathematically in a mean-
ingful way. This limits the operations that can be performed on them. Even
so, we can count category members to form frequency distributions. If
entities are spatially located, we may map them and perform operations
on their (x, y) locational coordinates.

Ordinal Measures

For nominal measures, there are no implied relationships between classes
other than their mutual exclusivity. If it is possible to rank classes consis-
tently according to some criterion, then we have an ordinal level of mea-
surement. An example is the classification of land into capability classes
according to its agricultural potential. We know the order, but not the
differences, along an assumed scale. Thus, the difference between the first
and second classes may be very different from that between the ninth and
tenth classes. Like nominal data, not all mathematical operations are clearly
meaningful for ordinal data, but some statistical manipulations that do not
assume regular differences are possible.

Attributes measured on the nominal and ordinal scales are often collect-
ively referred to as categorical data.

Interval and Rat io Measures

In addition to ordering, the interval level of measurement has the property
that differences or distances between categories are defined using fixed equal
units. Thermometers typically measure on an interval scale, ensuring that
the difference between, say, 25�C and 35�C is the same as that between
75.5�C and 85.5�C. However, interval scales lack an inherent zero and so can
be used only to measure differences, not absolute or relative magnitudes.
Ratio scales have an inherent zero. A distance of 0 m really does mean no
distance, unlike the interval scale 0�C, which does not indicate no tempera-
ture. By the same token, 6m is twice as far as 3m, whereas 100�C is not twice
as hot as 50�C.

The distinction is clarified by examining what happens if we calculate the
ratio of two measurements. If place A is 10 km (6.2137 miles) from B and 20
km (12.4274 miles) from C, then the ratio of the distances is
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distanceAB

distanceAC
¼ 10

20
� 6:2137

12:4274
� 1

2
ð1:2Þ

whatever units of distance are used. Distance is fundamentally a ratio-scaled
measurement. Interval scales do not preserve ratios in the sameway. If place
B has a mean annual temperature of 10�C (50�F) and place C is 20�C (68�F),
we cannot claim that C is twice as hot as B because the ratio depends upon
our units of measurement. In Celsius it is 20/10 ¼ 2, but in Fahrenheit it is
68/50¼ 1.36. In spite of this difference, interval and ratio data can usually be
manipulated arithmetically and statistically in similar ways, so it is usual to
treat them together. Together, they are called numerical measures.
Although data may have been collected at one measurement level, it is

often possible and convenient to convert them into a lower level for mapping
and analysis. Interval and ratio data can be converted into an ordinal scale,
such as high/low or hot/tepid/cold. What is generally not possible is to collect
data at one level and attempt to map and analyze them as if they were at a
higher level, as, for example, by trying to add ordinal scores.
It is important to note that not everybody is convinced by Stevens’s scheme

for classifying levels of measurement. Velleman and Wilkinson (1993) have
pointed out that it may be unnecessarily restrictive to rule out various types
of analysis because the level of the attribute measurement seems not to
support it (they also point out that this was not Stevens’s intention). A good
example is where a nominal attribute—say, a county ID number—seems to
have some relationship with another variable of interest. Often in spatial
numbering schemes there is a spatial pattern to the numbering—perhaps
from east to west or north to south, or from an urban center outward. In such
cases, relationships might very well be found between a theoretically nomi-
nal attribute (the ID number) and some other variable. Of course, in this case
it would be important to determine what is responsible for the relationship
and not simply to announce that zip codes are correlated with crime rates!
Later, Stevens himself added a log interval scale to covermeasures such as

earthquake intensity and pH in which the interval between measures rises
according to a power rule. Later still, Chrisman (1998) pointed out that there
are many types of attribute data in GISs that don’t fit this scheme. For
example, many types of line objects are best represented by both their
magnitude and direction as vector quantities, and we often refer measures
to cyclical scales such as angles that repeat every 360�. Such criticism of the
measurement level approach emphasizes the important principle that it is
always good to pursue investigations with an open mind. Nevertheless, the
nominal, ordinal, interval, ratio scheme remains useful in considering the
possibilities for analysis.
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Dimensions and Units

Apart from their level of measurement, attributes have the property of
dimensionality and are related to some underlying scale of units. If we
describe a stream as a line object, variables we might consider important
include its velocity, cross-sectional area, discharge, water temperature, and
so on. These measurable variables are some of its so-called dimensions of
variability. The choice of dimensions depends on the interests of the re-
searcher, but in many problems in science it can often be reduced to
combinations of the three fundamental dimensions of mass, length, and
time, indicated by the lettersM, L, and T. For example, a velocity dimension
is distance L divided by time T, or L/T. This is true regardless of whether
velocity is recorded in miles per hour or meters per second. LT–1 is another
way of writing length divided by time.

Similarly, cross-sectional areas can be reduced to the product of two length
dimensions, or L2, discharge is a volume L3 per unit of time T with dimen-
sions L3T�1, and so on. Nondimensional variables are an important class
whose values are independent of the units involved. For example, an angle
measured in radians is the ratio of two lengths—arc length and circle
radius—whose dimensions cancel out (LL�1 ¼ L0) to give no dimension.
An important source of nondimensional values is observations recorded as
proportions of some fixed total. For example, the proportion of the population
that is white in some census district is a nondimensional ratio.

Dimensional analysis is an extremely valuable method in any applied
work. Because equationsmust balance dimensionally as well as numerically,
the method can be used to check for the existence of variables that have not
been taken into account and even to help in suggesting the correct form of
functional relationships. Surprisingly, geographers have shown little inter-
est in dimensional analysis, perhaps because in a great deal of human
geographic work no obvious fundamental dimensions have been recognized.
Yet, as Haynes (1975, 1978) has shown, there is nothing to stop the use of
standard dimensions such as P (¼ number of people) or $ (¼money), and this
usage may often suggest possible forms of equations.

Finally, interval and ratio attributes are related to a fixed scale of units,
the standard scales used to give numerical values to each dimension.
Throughout history, many systems of units have been used to describe
the same dimensions. For example, in distance measurement, use has
been made of ‘‘British’’ or Imperial units (inches, feet, miles), metric units
(meters, kilometers), and other traditional systems (hands, rods, chains,
nautical miles), giving a bewildering and confusing variety of fundamental
and derived units. Although many systems were used because of their
relevance to everyday life and are often convenient, in science they are
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unsatisfactory and can become confusing. This is something that NASA
found out to enormous cost in 1998 when confusion over the system of units
used to measure the gravitational acceleration of Mars spelled disaster for
the Mars Climate Orbiter mission.

Thought Exercise: Spatial Data Types in Everyday Life

Look at Figure 1.2, which attempts to cross-tabulate measurement level with

the geometric object types we have discussed to arrive at 12 possible spatial

data types.

Now we want you to think about the rather abstract ideas we have been

discussing.

What types of spatial object do you move among in your day-to-day life?

For example:

� Is your house a point, an area, or both?
� Is your route to work, school, or college a line? What attributes might

be used to describe it?
� Are you a nominal point data type? Perhaps you are a space–time

(hence four-dimensional) line?
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Figure 1.2 A schematic representation of entity-attribute spatial data types.

(continues)
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1.5. GIS AND SPATIAL DATA MANIPULATION

We have noted that it is the ability to perform spatial manipulations on its
data that distinguishes a GIS from any standard database management
system. In this section, we examine a selection of these spatial data manipu-
lations from our perspective as geographic information analysts. We do not
intend to cover all these operations in detail since the number is very large
and their implementation varies from system to system. In this section, we
develop two spatial analytical perspectives on them. First, we develop the
idea that these geometric operations involve some form of transformation
between spatial data types. Second, we draw attention to the impact of error
in our coding of the (x, y) coordinates used on the various outcomes.

Sometimes the geometry involved is simple—for example, finding the total
length of line objects with a given characteristic (rivers, railways, roads
needing repair) or calculating the total area and perimeter of some area
objects (woodlands, crops of a certain type). At other times, it is intersecting
types of spatial units in different ways that is the key. For example, we can
easily use a GIS to determine how many cases of a disease occur within
various distances of certain kinds of factories or other point objects. We need
geo-coded data for cases of the disease and also for the facilities. These are
usually available in the form of mailing addresses both for those afflicted by
the disease and for the suspect facilities. We can then buffer the facilities to
some distance (say 1 km) and use point-in-polygon operations to determine
how many cases of the disease occur in the relevant buffer areas. The end
result is a set of numbers recording how many cases of the disease occurred
in the vicinity of each factory and how many occurred nowhere near a
factory. Having determined these numbers, we could use appropriate sta-
tistical methods to determine whether or not the rates exhibit some non-
random pattern.

� What measurement scales would be suitable for the attributes you

would use to describe each of these (and any other) spatial objects you

have suggested?

The answers to these questions give a sense of how potentially rich but also

how reductive the entity-attribute framework is. As we explore spatial

analysis further, remember this point: regardless of the insights that spatial

analysis may yield, it is always performed on a representation of reality that

may ultimately limit its usefulness.

(box continued )
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Similarly, map overlay is where two or more map layers are combined in
various ways to produce new combined layers. The classic example involves
combining a number of development suitability classifications into a single
composite index. This application was one of the original inspirations for GIS
technology (see Ian McHarg’s 1969 classic book Design with Nature). Input
map data might include land slope, woodland density, transport accessibility
(which might have been generated from buffer operations on the transport
system), environmental sensitivity, and geological suitability for building.
Map overlay produces a compositemap formed frommultiple intersections of
all the inputs. Areas in the composite map have multiple attributes, derived
from the attributes of their ‘‘parents,’’ and can be assigned an overall
suitability rating for development. The fundamental operation here is
geometric intersection of the polygon areas in each map. A related operation
merges polygons in different maps, depending on the similarity of their
attributes. Incidentally, both of these operations are examples of the inter-
changeability of the raster and vector models, since either can readily be
performed in a system based on either model. In fact, the two operations are
developments—in geographic space—of the intersection and union opera-
tions familiar from set theory and Venn diagrams. Because it is so often a
part of geographic information analysis, map overlay and the issues it raises
are further discussed in Chapter 11.
Whether we are referring to point, line, area, or field entities, these

operations (length, area, perimeter, intersection, buffer, merger, point-in-
polygon, overlay, etc.) all involve relatively simple geometric manipulations
of locational (x, y) coordinates. A useful way to think of them is as transfor-
mations between the various spatial data types that we recognized in Section
1.2. For example, if we have a data set made up of point objects, we might be
interested in the areas within, say, 5 km of these objects defined by a series of
circular buffers centered on each object. The buffered areas form a set of area
objects, and we have transformed from points of length dimensionL0 to areas
of length dimension L2 (L0 to L2). In fact, such a buffer can also be considered
to be a defined isoline on a continuous surface of distances from the points
which is L0 to L3. Had the original buffer been along a line object, the
transformation would have been from line to area (L1 to L2), and a buffer
around an area object creates a second area object (L2 to L2). Reverse
operations are also possible. We could start with area objects, and transform
them into lines by computing their skeleton network (L2 to L1) or find their
centroids, thus generating point objects (L2 to L0) (see Chapter 7 for more on
these operations). Table 1.1 attempts to summarize this transformational
view of GIS operations.
Rows of the table represent the data type from which we transform, and

columns represent the resulting data type. Each row and column
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intersection defines one or more possible geometric operations. Whether you
are a novice or expert user of a GIS, it is worth while spending a little time on
the following thought exercise.

Why is the ability to change the way we represent spatial entities impor-
tant? First, as our example of cases of a disease around a suspect facility

Table 1.1 Spatial Geometric Operations as Transformations Between Data Types

TO

Point, L0 Line, L1 Area, L2 Field, L3

F

R

O

M

Point,

L0

Mean

center

Network
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Proximity

polygons

TIN, point
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Interpolation.

Kernel density

estimation

Distance surfaces

Line,

L1

Intersection Shortest

distance

path

Line buffer Distance to nearest

line object

surface
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L2

Centroid Graph of area

skeleton

Area buffer,

Polygon

overlay

Pycnophylatic

interpolation and

other surface

models

Field,

L3

Surface

specific

points

VIPs

Surface

network

Watershed

delineation,

Hill masses

Equivalent vector
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Thought Exercise: Geometry and GIS

If you already know enough to navigate your way around aGIS, we invite you

to see how many of these operations can be achieved using it. If you are new

to geographic information analysis, it is worthwhile to check your favorite GIS

textbook for examples of each of these operations. We would be the first to

admit that our matrix is certainly incomplete! We also recognize, following

Chrisman (1999), that it oversimplifies the transformations involved.
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indicates, wemight have hypotheses that can only be tested if wemake use of
appropriate geometric transformation. Second, it is very often the case that
changing the way we represent our spatial data types allows us to gain a new
perspective on our problem and may in itself lead easily and directly to a
solution. The next exercise gives an example.

Viewed from our perspective as geographic information analysts, these
transformations share a characteristic that can be worrying but that is often
forgotten. With some exceptions, such as kernel density estimation and
spatial interpolation using kriging, all are deterministic operations assum-
ing that, since the input data are exact (x, y) coordinates and the processes
are simple arithmetic manipulations performed by computer using many
significant digits, the outputs must similarly be, to all intents and purposes,
also exact. What this view forgets is that in any GIS these same coordinates
are themselves a digital representation of the real world and that this

Changing the Representation: Delimiting Town Centers

A town center (or downtown) is a good example of an area object with

uncertain boundaries.Weall knowwhenwe are in one, but preciselywherewe

enter it is more difficult and the criteria we use vary from place to place. In the

United Kingdom, the need tomonitor the economic health of town centers led

in the 1990s to a desire in government to develop a consistent set of town

center boundaries relevant to all towns in the country. A paper by Mark

Thurstain-Goodwin and David Unwin (2000) reports on the method that was

adopted. It gives a good illustration of how changing the representation by a

geometric transformation led to the development of a working system.

In the United Kingdom, the increasing availability of high-resolution spatial

data using the so-called unit post code as its georeference not only makes this

transformation useful, it also make it essential for analysis. At this very high

level of spatial resolution in which data on a series of urban functions (retail,

entertainment, commercial, and so on) are known as nearly exact (x, y)

locations, use of these data as either point or area objects is not easy. What

happens is that the intrinsic spatial ‘‘granularity’’ of these functions makes it

difficult to apply any of the traditional point- or area-based methods. The

alternative that was developed used kernel density estimation (see Section

3.6) to transform the data from point or area objects into continuous surfaces

of spatial densities. Town centers could then be delineated by choosing

appropriate contours on the density surfaces as their boundaries.
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representation cannot be exact. Locations are often found using error-prone
semiautomatic digitizing or are badly recorded in some original field survey.
The result of any geometric operations on such data will to a greater or lesser
extent carry forward this uncertainty into any outputs. If there is further
uncertainty introduced by the algorithms we apply to the data, as in kernel
density estimation (Section 3.6), interpolation (Chapters 9 and 10), and
overlay (Chapter 11), then the situation becomes even more complex. In
Section 1.3 we encountered one consequence of such errors when discussing
the true length of a line object, such as a coastline, thought to be of fractal
dimension. Even if we know any line connecting two digitized locations to be
straight, what is the impact of uncertainty in these coordinate locations on
the true position of the line? Similarly, if we have a digitized outline of a
wooded area, what is the impact of a similar error on our estimate of the true
wooded area? And how are such errors propagated through into the results of
a complex series of spatial geometric manipulations?

These questions have been addressed in the research literature (see, for
example, Heuvelink et al., 1989; Heuvelink, 1993; Heuvelink, Burrough,
1993), but there is little evidence that their implications are being carried
forward into routine workwith spatial data andGISs. Over a decade ago, one
of us (Unwin, 1995) reviewed the literature on error and uncertainty in GISs
and concluded that systems need to be sensitive to these issues. The simple
truth is that they (and the great majority of their users) are not.

1.6. THE ROAD AHEAD

In the remainder of this book, we take you on a tour of the field of geographic
information analysis. We have organized the tour in what we hope you will
find is a logical way. The next chapter looks at some of the big problems of
spatial analysis—what makes spatial statistical analysis different from
standard statistical analysis and the pitfalls and potential therein. Chapter
3 looks at methods by which spatial data can be visualized. Chapter 4
describes some fundamental issues in the analysis of spatial data, defining
the important concepts of pattern and process, and Chapter 5 deals with the
description and statistical analysis of point patterns. Chapter 6 looks atmore
recent approaches to this important topic. The critical property of spatial
autocorrelation is introduced in Chapter 7, which deals with analysis of area
objects. Chapter 8 brings together these ideas with some of the visualization
materials from Chapter 3 to look at the relatively recently developed idea of
local statistics. Chapters 9 and 10 deal with the analysis of continuous fields.
In Chapter 11, we look at map overlay operations from a spatial analytic
perspective. Finally, Chapter 12 describes some newer directions and devel-
opments in spatial analysis.
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Throughout, we have tried to keep the level of mathematics as low as
possible, but there are places where we have to draw on what to somemay be
unfamiliar matrix algebra. To help you, we have included an Appendix that
summarizes the basics you need to know. If your mathematics is a little
rusty, we suggest that you have a look at this appendix now.

CHAPTER REVIEW

� Spatial analysis is just one of a whole range of analytical techniques
available in geography. It should be distinguished from spatial data
manipulations, on the one hand, and spatial modeling, on the other.

� For the purposes of this book, geographic information analysis is the
study of techniques and methods to enable the representation, descrip-
tion, measurement, comparison, and generation of spatial patterns.

� Exploratory, descriptive, and statistical techniques may be applied to
spatial data to investigate the patterns that may arise as a result of
processes operating in space.

� Spatial data may be of various broad types: points, lines, areas, and
fields. Each type typically requires different techniquesandapproaches.

� The relationship between real geographic entities and spatial data is
complex and scale-dependent.

� Representing geographic reality as points, lines, areas, and fields is
reductive, and this must be borne in mind in all subsequent analysis.

� These objects are frequently not as simple as this geometric view leads
one to assume. They may exist in three spatial dimensions, move and
change over time, have a representation that is strongly scale-depen-
dent, relate to entities that are themselves fuzzy and/or have in-

determinate boundaries, or even be fractal.
� Although we have emphasized the difference between spatial analysis
and GIS operations, the two are interrelated, andmost current spatial
analysis is carried out on data stored and prepared in GISs.

� Simple geometric transformations enable us to change the way enti-
ties are represented, and this might be useful for analysis.

� Finally, in any analysis of geographic information, we need to develop
a sensitivity to the likely sources of error in our results.
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Chapter 2

The Pitfalls and Potential of Spatial Data

CHA P T E R O B J E C T I V E S

In this chapter, we attempt to:

� Justify the view that spatial data are in some sense special
� Identify a number of problems in the statistical analysis of spatial data
associated with spatial autocorrelation, modifiable areal units, the
ecological fallacy, and scale, what we call the ‘‘bad news’’

� Outline the ideas of distance, adjacency, interaction, and neighbor-

hood —the ‘‘good news’’ central to much spatial analysis
� Show how proximity polygons can be derived for a set of point objects
� Introduce the idea that these relations can be summarized using
matrices and encourage you to spend some time getting used to
this way of organizing geographic data

After reading this chapter, you should be able to:

� List four major problems in the analysis of geographic information
� Outline the geographic concepts of distance, adjacency, interaction,
and neighborhood and show how these can be recorded using matrix
representations

� Explain how proximity polygons and the related Delaunay triangula-
tion can be developed for point objects

2.1. INTRODUCTION

It may not be obvious why spatial data require special analytic techniques,
distinct from standard statistical analysis that might be applied to ordinary
data. As the spatial aspect of more and more data has been recognized due to
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the diffusion of GIS technologies and the consequent enthusiasm for map-
ping, this is an important issue to understand clearly. The academic litera-
ture is replete with essays on why space either is or is not important, or on
why we should take the letterG out of GIS. In this chapter, we consider some
of the reasons why adding a spatial location to some attribute data changes
them in fundamental ways.

There is bad news and good news here. Some of themost important reasons
why spatial data must be treated differently appear as problems or pitfalls
for the unwary. Many of the standard techniques and methods documented
in statistics textbooks are found to have significant problems when we try to
apply them to the analysis of spatial distributions. This is the bad news,
which we deal with first in Section 2.2. The good news is presented in Section
2.3. This boils down to the fact that geospatial referencing inherently
provides us with a number of new ways of looking at data and the relations
among them. The concepts of distance, adjacency, interaction, and neighbor-
hood are used extensively throughout this book to assist in the analysis of
spatial data. Because of their all-encompassing importance, it is useful to
introduce these concepts early on in a rather abstract and formal way so that
you begin to get a feel for them immediately. Our discussion of these
fundamentals also includes proximity polygons, which appear repeatedly
in this book and are increasingly being used as an interesting way of looking
at many geographical problems. We hope that by introducing these concepts
and ideas early on, you will begin to understand what it means to think

spatially about the analysis of geographic information.

2.2. THE BAD NEWS: THE PITFALLS OF SPATIAL DATA

Conventional statistical analysis frequently imposes a number of conditions
or assumptions on the data it uses. Foremost among these is the requirement
that samples be random. The most fundamental reason that spatial data are
special is that they almost always violate this requirement. The technical
term describing this problem is spatial autocorrelation, which must there-
fore come first on any list of the pitfalls of spatial data. Other closely related
tricky problems frequently arise, including the modifiable areal unit prob-
lem, associated issues of scale and edge effects, and the ecological fallacy.

Spat ia l Autocorrelat ion

Spatial autocorrelation is a complicated name for the obvious fact that data
from locations near one another in space are more likely to be similar than

data from locations remote from one another. If you know that the elevation
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at point X is 250 m, then you have a good idea that the elevation at point Y,
10m fromX, is probably in the range 240 to 260m. Of course, there could be a
huge cliff between the two locations. Location Y might be 500 m above sea
level, although it is highly unlikely. It will almost certainly not be 1000 m
above sea level. On the other hand, location Z, 1000m fromX, certainly could
be 500 m above sea level. It could even be 1000 m above sea level or even
100 m below sea level. We are much more uncertain about the likely
elevation of Z because it is farther away from X. If Z is instead 100 km
away fromX, almost anything is possible, because knowing the elevation at X
tells us very little about the elevation 100 km away.
If spatial autocorrelation were not commonplace, then geographic analysis

would be of little interest and geography would be irrelevant. Again, think of
spot heights:we know that high values are likely to be close to oneanother and
in different places from low values—in fact, these are called mountains and
valleys. Many geographic phenomena can be characterized in these terms as
local similarities in some spatially varying phenomenon. Cities are local
concentrations of population—and much else besides: economic activity
and social diversity, for example. Storms are local foci of particular atmo-
spheric conditions. Climate consists of the repeated occurrence of similar
spatial patterns of weather in particular places. If geography is worth study-
ing at all, it must be because phenomena do not vary randomly through space.
The existence of spatial autocorrelation is therefore a given in geography.
Unfortunately, it is also an impediment to the application of conventional
statistics.
The nonrandom distribution of phenomena in space has various conse-

quences for conventional statistical analysis. For example, the usual param-
eter estimates based on samples that are not randomly distributed in space
will be biased toward values prevalent in the regions favored in the sampling
scheme. As a result, many of the assumptions we are required to make about
data before applying statistical tests become invalid. Another way of looking
at this is that spatial autocorrelation introduces redundancy into data, so
that each additional item of data provides less new information than is
indicated by a simple assessment based on n, the sample size. This affects the
calculation of confidence intervals and so forth. Such effects mean that there
is a strong case for assessing the degree of autocorrelation in a spatial data
set before doing any conventional statistics at all. Diagnostic measures for
the autocorrelation present in data are available, such as Moran’s I, and
Geary’s C, and these will be described in Chapter 7. Later, in Chapter 10, we
introduce the variogram cloud, a plot that also helps us understand the
autocorrelation pattern in a spatial data set.
These techniques help us to describe how useful knowing the location of an

observation is if we wish to determine the likely value of an attribute
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measured at that location. There are three general possibilities: positive
autocorrelation, negative autocorrelation, and noncorrelation or zero auto-
correlation. Positive autocorrelation is themost commonly observed case and
refers to situations where nearby observations are likely to be similar to one
another. Negative autocorrelation is much less common and occurs when
observations from nearby locations are likely to be different from one
another. Zero autocorrelation is the casewhere no spatial effect is discernible
and observations seem to vary randomly through space. It is important to
be clear about the difference between negative and zero autocorrelation, as
students frequently confuse the two.

Describing and modeling patterns of variation across a study region,
effectively describing the autocorrelation structure, is of primary importance
in spatial analysis. Again, in general terms, spatial variation is of two kinds:
first- and second-order. First-order spatial variation occurs when observa-
tions across a study region vary from place to place due to changes in the
underlying properties of the local environment. For example, the rates of
incidence of crime might vary spatially simply because of variations in the
population density, such that they increase near the center of a large city. In
contrast, second-order variation is due to interaction effects between obser-
vations, such as the occurrence of crime in an areamaking it more likely that
there will be crimes surrounding that area, perhaps in the shape of local
‘‘hotspots’’ in the vicinity of bars and clubs or near local street drug markets.
In practice, it is difficult to distinguish between first- and second-order
effects, but it is often necessary to model both when developing statistical
methods for handling spatial data. We discuss the distinction between first-
and second-order spatial variation in more detail in Chapter 4 when we
introduce the idea of a spatial process.

Although autocorrelation presents a considerable challenge to conven-
tional statistical methods and remains problematic, quantitative geogra-
phers have made a virtue of it by developing a number of autocorrelation
measures into powerful descriptive tools. It would be wrong to claim that the
problem of spatial autocorrelation has been solved, but considerable progress
has been made in developing techniques that account for its effects and in
taking advantage of the opportunity it provides for useful geographic
descriptions.

The Modifiable Areal Unit Problem

Another major difficulty with spatial data is that they are often aggregates
of data originally compiled at a more detailed level. The best example is a
national census, which is collected at the household level but reported for
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practical and privacy reasons at various levels of aggregation such as city
districts, counties, and states. The problem is that the aggregation units
used are arbitrary with respect to the phenomena under investigation, yet
the units used will affect statistics determined on the basis of data reported
in this way. This difficulty is referred to as themodifiable areal unit problem
(MAUP). If the spatial units in a particular study were specified differently,
we might observe very different patterns and relationships. The problem
is illustrated in Figure 2.1, where two different aggregation schemes
applied to a spatial data set result in two different regression results. There
is a clear impact on the regression equation and the coefficient of determi-
nation, R2. This is an artificial example, but the effect is general and is
not widely understood, even though it has been known for a long time
(see Gehlke and Biehl, 1934). Usually, as shown here, regression relation-
ships are strengthened by aggregation. In fact, using a simulation
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Figure 2.1 An illustration of MAUP.
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approach, Openshaw and Taylor (1979) showed that with the same under-
lying data, it is possible to aggregate units together in ways that can
produce correlations anywhere between �1.0 and +1.0!

The effect is not altogether mysterious, and two things are happening. The
first relates to the scale of analysis and to aggregation effects such that
combining any pair of observations will produce an outcome that is closer to
the mean of the overall data, so that after aggregation, the new data are
likely to bemore tightly clustered around a regression line and thus to have a
stronger coefficient of determination. This effect is shown in our example by
both the aggregation schemes used producing better fits than the original
disaggregated data. Usually this problem persists as we aggregate up to
larger units. A second effect is the substantial differences between the
results obtained under different aggregation schemes. The complications
are usually referred to separately as the aggregation effect and the zoning

effect.
MAUP is of more than academic or theoretical interest. Its effects have

been well known for many years to politicians concerned with ensuring that
the boundaries of electoral districts are defined in themost advantageousway
for them. It provides one explanation for why, in the 2000 U.S. presidential
election, Al Gore, with more of the popular vote than George Bush, still failed
to become president. A different aggregation of U.S. counties into states could
have produced a different outcome (in fact, it is likely that in this very close
election, switching just one or two northern Florida counties to Georgia or
Alabama would have produced a different outcome.)

The practical implications of MAUP are immense for almost all decision-
making processes involving GIS technology, since with the now ready
availability of detailed but still aggregated maps, policy could easily focus
on issues and problems which might look very different if the aggregation
scheme used were changed. The implication is that our choice of spatial
reference frame is itself a significant determinant of the statistical and other
patterns we observe. Openshaw (1983) suggests that a lack of understanding
ofMAUP has ledmany to choose to pretend that the problem does not exist in
order to allow some analysis to be performed so that we can ‘‘just get on with
it.’’ This is a little unfair, but the problem is a serious one that has had less
attention than it deserves. Openshaw’s suggestion is that the problem be
turned into an exploratory and descriptive tool, as has been done with spatial
autocorrelation. In this view, we might postulate a relationship between,
say, income and crime rates. We would then search for an aggregation
scheme that maximizes the strength of this relationship. The output from
such an analysis would be a spatial partition into areal units. The interesting
geographic question then becomes ‘‘Why do these zones produce the stron-
gest relationship?’’ Perhaps because of the computational complexities and
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the implicit requirement for very detailed individual-level data, this idea has
not been widely taken up.

The Ecologica l Fal lacy

MAUP is closely related to a more general statistical problem: the ecological

fallacy. This arises when a statistical relationship observed at one level of
aggregation is assumed to hold because the same relationship holds at amore
detailed level. For example, we might observe a strong relationship between
income and crime at the county level, with lower-income counties being
associated with higher crime rates. If from this we conclude that lower-
income individuals are more likely to commit a crime, then we are falling for
the ecological fallacy. In fact, it is only valid to say exactly what the data say:
that lower-income counties tend to experience higher crime rates. What
causes the observed effect may be something entirely different—perhaps
lower-income families have less effective home security systems and aremore
prone to burglary (a relatively direct link); or lower-income areas are home to
more chronic drug users who commit crimes irrespective of income (an
indirect link); or the cause may have nothing at all to do with income.
It is important to acknowledge that a relationship at a high level of

aggregation may be explained by the same relationship operating at lower
levels. For example, one of the earliest pieces of evidence to make the
connection between smoking and lung cancer was presented by Doll
(1955; cited by Freedman et al., 1998) in the form of a scatterplot showing
per capita national rates of cigarette smoking and the rate of death from lung
cancer for 11 countries. A strong correlation is evident in the plot. However,
we would be wrong to conclude, based on this evidence alone, that smoking is
a cause of lung cancer. It turns out that it is, but this conclusion is based on
many other studies conducted at the individual level. Data on smoking and
cancer at the country level can still only support the conclusion that
countries with larger numbers of smokers tend to have higher death rates
from lung cancer.
Having now beenmade aware of the problem, if you pay closer attention to

the news, you will find that the ecological fallacy is common in everyday and
media discourse. Crime rates and (variously) the death penalty, gun control
or imprisonment rates, and road fatalities and speed limits, seat belts, or
cycle helmet laws are classic examples. Unfortunately, the fallacy is almost
as common in academic discourse! It often seems to arise from a desire for
simple explanations, but in human geography things are rarely so simple.
The common thread tying the ecological fallacy to MAUP is that statistical
relationships may change at different levels of aggregation.

The Pitfalls and Potential of Spatial Data 39



Scale

This brings us neatly to the next point. The geographic scale at which we
examine a phenomenon can affect the observations we make, and this must
always be considered prior to spatial analysis. We have already encountered
one way that scale can dramatically affect spatial analysis since the object
type that is appropriate for representing a particular entity is scale depen-
dent. For example, at the continental scale, a city is conveniently repre-
sented by a point. At the regional scale, it becomes an area object. At the local
scale, the city becomes a complex collection of point, line, area, and network
objects. The scale we work at affects the representations we use, and this in
turn is likely to have effects on spatial analysis; yet, in general, the correct or
appropriate geographic scale for a study is impossible to determine before-
hand, and due attention should be paid to this issue.

Nonuniformity of Space and Edge Effects

A final significant issue distinguishing spatial analysis from conventional
statistics is that space is not uniform. For example, we might have data on
crime locations gathered for a single police precinct. It is very easy to see
patterns in such data, hence the pin maps (see Chapter 3) seen in any self-
respecting movie police chief’s office. Patterns may appear particularly
strong if crime locations are mapped simply as points without reference
to the underlying geography. There will almost certainly be clusters simply
as a result of where people live and work, and apparent gaps in (for example)
parks or at major road intersections. These gaps and clusters are not
unexpected but arise as a result of the nonuniformity of the urban space
with respect to the phenomenon being mapped. Similar problems are
encountered in examining the incidence of disease, where the location of
the at-risk population must be considered. Such problems also occur in point
patterns of different plant types, where underlying patterns in soil types, or
simply the presence of other plant types, might lead us to expect variation in
the spatial density of the plants we’re interested in.

A particular type of nonuniformity problem, which is almost invariably
encountered, is due to edge effects. These arise where an artificial boundary
is imposed on a study, often just to keep it manageable. The problem is that
sites in the center of the study area can have nearby observations in all
directions, whereas sites at the edges of the study area only have neighbors
toward the center of the study area. Unless the study area has been very
carefully defined, it is unlikely that this reflects reality, and the artificially
produced asymmetry in the data must be accounted for. In some specialized
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areas of spatial analysis, techniques for dealing with edge effects are well
developed, but the problem remains poorly understood in many cases.

2.3. THE GOOD NEWS: THE POTENTIAL
OF SPATIAL DATA

It should not surprise you to find out that many of the problems outlined in
Section 2.2 have not been solved satisfactorily. Indeed, in the early enthu-
siasm for the quantitative revolution in geography (in the late 1950s and the
1960s), many of these problems were glossed over. Unfortunately, dealing
with these problems is not simple, so that onlymoremathematically oriented
geographers and relatively small numbers of statisticians have paid much
attention to the issues. More recently, with the advent of GIS and a much
broader awareness of the significance of spatial data, there has been con-
siderable progress, with new techniques appearing all the time. Regardless
of the sophistication and complexity of the techniques adopted, the funda-
mental characteristics of spatial data are critical to unlocking their potential.
To give you a sense of this, we continue our overview of what’s special about
spatial data, not focusing on the problems that consideration of spatial
aspects introduces, but instead examining some of the potential for addi-
tional insight provided by an examination of the locational attributes of data.
The important spatial concepts that appear throughout this book are

distance, adjacency, and interaction, together with the closely related notion
of neighborhood. These appear in a variety of guises in most applications of
statisticalmethods to spatial data. Herewe point to their importance, outline
some of their uses, and indicate some of the contexts where they will appear.
The reason for the importance of these ideas is clear. In spatial analysis,
while we are still interested in the distribution of values in observational
data (classical descriptive statistical measures like the mean, variance, and
so on), we are now also interested in the distribution of the associated entities
in space. This spatial distribution can only be described in terms of the
relationships between spatial entities, and spatial relationships are usually
conceived in terms of one or more of the relationships we call distance,
adjacency, interaction, and neighborhood.

Distance

Distance is usually (but not always) described by the simple crow’s flight
distance between the spatial entities of interest. In small study regions,
where the Earth’s curvature effects can be ignored, simple Euclidean

The Pitfalls and Potential of Spatial Data 41



distances are usually adequate and may be calculated using Pythagoras’s
familiar formula, which tells us that

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2q
ð2:1Þ

is the distance between two points located by their spatial coordinates (xi, yi)
and (xj, yj). Over larger regions, more complex calculations may be required
to take account of the curvature of the Earth’s surface.

Euclidean, straight-line, or crow’s flight distances are the simplest, but
there aremany othermathematicalmeasures of distance thatwe could adopt.
It might, for example, be necessary to consider distances measured over an
intervening road, rail, river, or air transport network, and such notions of
distance significantly extend the scope of the idea. It is a short step to go from
distance over a road network to expected driving time. Distance is then no
longer measured in kilometers, but rather in units of time (hours and min-
utes). Suchbroader concepts ofdistance canbenonintuitiveandcontradictory.
For example, wemight have a distancemeasure based on the perceived travel
timeamonga set of urban landmarks.Wemight collect suchdata by surveying
a number of people and asking themhow long it takes to get from themuseum
to the railway station, for instance. These alternative distances can exhibit
some very odd properties. It may, for example, be generally perceived to take
longer to get fromA toB than fromB toA. Such effects arenot absent fromreal
distances, however. In a city, the structure of the transport network can affect
distances, making them actually vary at different times of the day or in dif-
ferent directions. As another example, transatlantic flight times at northern
latitudes (from theU.S. Eastern Seaboard toWestern Europe) generally vary
considerably, being shorter flying east, with the prevailing winds, than flying
west against the same winds.

Sadly, in most of this book, we ignore these complexities and assume that
simple Euclidean distance is adequate. If you are interested, Gatrell’s book
Distance and Space (1983) explores some of these intricacies and is highly
recommended. You might also undertake the research suggested in the
thought exercise that follows.

Thought Exercise: Conceptions of Distance

In Distance and Space, Gatrell (1983) shows that, however defined, distance

is an example of a relationship between elements of a set, in this case of

spatial locations. This exercise uses a journey in London (England) but could

easily be modified for any other city with which you are familiar.

42 GEOGRAPHIC INFORMATION ANALYSIS



Adjacency

Adjacency can be thought of as the nominal, or binary, equivalent of distance.
Two spatial entities are either adjacent or they are not. Of course, how
adjacency should be determined is not necessarily clear. The most obvious
case is a set of polygons, in which we consider any two polygons that share an
edge to be adjacent. An equally simple formulation is to decide that any two
entities within some fixed distance of one another (say 100m) are adjacent to
one another. Alternatively, we might decide that the six nearest entities to
any particular entity are adjacent to it. We might even decide that only the
single nearest neighbor is adjacent.

Our objective is to get from the Euston main-line railway station to the

Waterloo main-line station using different notions of the distance

between them, according to the methods of transport (and the size of our

wallet!).

1. First of all, what is the straight-line distance between these stations? A

suitable map can be found at the Transport for London Web site:

tfl.gov.uk/assets/downloads/Central-London-Day-Bus-Map.pdf.

You will need to use a ruler and knowledge of the scale of the map

to answer this question.

2. Second, suppose you were to hire a taxicab for the same journey.

These cabs usually take the shortest route, but the distance is

obviously governed by the roads followed, and in any case, you

would almost certainly be interested in the cost. There is a schedule

of taxi fares for London that you can use to estimate this cost at

www.tfl.gov.uk/gettingaround/taxisandminicabs/taxis/1140.aspx.

3. Finally, of course, many Londoners would make the same journey by

the Underground (the famous ‘‘Tube’’) at a standard fare for a

journey in what’s called Zone 1. The distance of concern would

almost certainly be the time the journey takes. The sameWeb site has

a trip choice aid at www.tfl.gov.uk/gettingaround that will estimate

this for you, and you can see which Tube line is involved by looking at

www.tfl.gov.uk/assets/downloads/standardtube-map.pdf.

So, in an applied problem—getting from station to station—which distance

is appropriate?
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As with distance, we can play with the adjacency concept, and two entities
that are adjacent may not necessarily be near each other. A good example of
this is provided by the structure of scheduled air transport connections
between cities. In the British Isles, it is possible to fly between London and
Belfast, or between London and Dublin, but not between Belfast and Dublin.
If adjacency is equated with connection by scheduled flights, then London is
adjacent to Belfast and Dublin (both roughly 500 km away), but the two Irish
cities (only 136 km apart) are not adjacent to each other. Adjacency is an
important idea in the measurement of autocorrelation effects when a region
is divided into areal units (Chapter 7) and in spatial interpolation schemes
(Chapters 9 and 10).

Interact ion

Interaction may be considered as a combination of distance and adjacency,
and rests on the intuitively obvious idea that nearer things are more closely
related than distant things—a notion often referred to as the ‘‘first law’’ of
geography (see Tobler, 1970). Mathematically, we often represent the degree
of interaction between two spatial entities as a number between 0.0 (no
interaction) and 1.0 (a high degree of interaction). If we represent adjacency
in the same way, it can be measured on the same scale with only 0
(nonadjacent) or 1 (adjacent) allowed, because adjacency is binary. Typically,
in spatial analysis, the interaction between two entities is determined by
some sort of inverse distance weighting. A typical formulation is

wij / 1

dk
ð2:2Þ

Thought Exercise: A Map Based on Adjacency

If you did the previous exercise, the final map you looked at was a represen-

tation of the London Underground Railway network based on one of the

most famous maps of all time: Harry Beck’s iconic map dating from 1933.

Note that its ‘‘distances’’ are really determined by whether or not stations are

adjacent to each other. Similar maps based on conceptions of distance such as

time, cost, or even human perception can be drawn, and these same ideas

extended to create what in Chapter 3 we call spatialization of information

that is not intrinsically spatial at all.
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wherewij is the interactionweight between the two entities i and j that are a
distance d apart in space. The distance exponent, k, controls the rate of
decline of the weight. An inverse power law for interaction like this ensures
that entities close together have stronger interactions than those farther
apart. Often, the interaction between two entities is positively weighted by
some attribute of those entities. A common formulation uses somemeasure of
the size of the entities, such as the populations, pi and pj. This gives us a
modified interaction weight

wij /
pipj

dk
ð2:3Þ

Workingwith purely spatial characteristics of entities, wemight positively
weight the interaction between two areal units by their respective areas and
divide by the distance between their centers.
As with distance, measures other than simple geographic distance may be

appropriate in different contexts. For example, we might think of the trade
volume between two regions or countries as a measure of their degree of
interaction. Interaction of the simple geometric kind is important to the
study of simple interpolation methods discussed in Chapters 9 and 10.

Neighborhood

Finally, we may wish to employ the concept of neighborhood. There are a
number of ways of thinking about this. We might, for example, define the
neighborhood of a particular spatial entity as the set of all other entities
adjacent to the entity we are interested in. This clearly depends entirely on
how we determine the adjacencies. Alternatively, the neighborhood of an
entity may also be defined not with respect to sets of adjacent entities, but as
a region of space associated with that entity and defined by distance from it.
An approach closer than either of these to the common use of the word
neighborhood is the idea that regions in a spatial distribution that are alike
are neighborhoods distinct from other regions which are also internally
similar, but different from surrounding regions. This notion of neighborhood
is very general indeed. For example, many geographic objects may be
thought of as local neighborhoods in numerical field data. What we call a
mountain is a neighborhood in a field of elevation values that is distin-
guished by its consisting of higher values than those in surrounding regions.
Figure 2.2 illustrates versions of these four fundamental concepts. In the

upper left panel, thedistancebetween the central point objectAand the others
in the study regionhas beenmeasured and is indicated.Generally speaking, it
is always possible to determine the distance between a pair of objects. In the
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second panel, adjacency between objectA and two others (E andF) is indicated
by the lines joining them. In this case, objects E and F are the two that are
closest toA in terms of the distances shown in the first panel. This definition of
adjacency might have been arrived at by a number of methods. For example,
we might have decided that pairs of objects within 50 m of one another are
adjacent. Notice that this definition would mean that the object labeled D has
no adjacent objects. An alternative definition might be that the two objects
closest to each object are adjacent to it. This would guarantee that all the
objects have two other adjacent objects, although it would also mean that
adjacency was no longer a symmetrical relationship. For example, on this
definition, E is adjacent toD (whose two nearest neighbors areC andE), butD
is not adjacent to E (whose two nearest neighbors are A and F). In the third
panel at the lower left, an interaction measure is indicated by the line
thickness drawn between A and every other object. The interaction weight
here is inversely related to the distances in the first panel, so that interaction
betweenAandE is strongest, and isweakbetweenAandeachofB,C,andD. In
the final panel, two possible ideas of the neighborhood of object A are illus-
trated. The outlined curved area is the set of objects adjacent to A, which
includes A, E, and F. An object is usually considered to be adjacent to itself, as
here. Another possible interpretation is the shaded polygon, which is the
region of this space that is closer to A than to any other object in the region.

68

6866

24
41

A A

A A

B B

B B

D D

D D

C C

C C

F F

F F

E E

E E

Figure 2.2 A schematic representation of the distance, adjacency, interaction,

and neighborhood concepts.
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Summariz ing Relat ionships in Matr ices

One way of pulling all these concepts together is to note that they may all be
represented conveniently in matrices. If you know nothing at all about
matrices, we advise you to read the Appendix, where some of the mathemat-
ics of matrices is introduced. Simply put, a matrix is a table of numbers
organized in rows and columns; for example,

2 1
5 3

� �
ð2:4Þ

is a two-by-two (2 � 2) matrix with two rows and two columns. Matrices are
normally written this way with square brackets. Now we can summarize the
information on distances in any spatial data using a distance matrix such as

D ¼

0 66 68 68 24 41
66 0 51 110 99 101
68 51 0 67 91 116
68 110 67 0 60 108
24 99 91 60 0 45
41 101 116 108 45 0

2
6666664

3
7777775

ð2:5Þ

where the uppercase, boldface letter D denotes the entire table of numbers.
The distances in this matrix are all the distances between objects A, B, C, D,
E, and F in Figure 2.2. Notice that the first row represents object A, with its
series of distances to objects B, C, D, E, and F, respectively of 66, 68, 68, 24,
and 41 m. A number of things are important to note:

� The row and column orders in the matrix are the same: both are in the
order ABCDEF.

� This means that because it contains the ‘‘distance’’ from each object to
itself, themain diagonal of thematrix from top left to bottom right has
all zeros.

� The matrix is symmetrical about the main diagonal, so that (for
example) the number in the third row, fourth column is equal to
the number in the fourth row, third column (equal to 67). This is
because these elements record the distance from C to D and from D to
C, which are identical.

All the distance information for the data set is contained in the matrix.
Therefore, any analysis based on these distances alone can be performed
using the matrix.
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In much the same way, although matrix elements are now 1s or 0s, we can
construct an adjacency matrix, A, for the same set of objects:

Ad�50 ¼

� 0 0 0 1 1
0 � 0 0 0 0
0 0 � 0 0 0
0 0 0 � 0 0
1 0 0 0 � 1
1 0 0 0 1 �

2
6666664

3
7777775

ð2:6Þ

This is the matrix we get if the rule for adjacency is that two objects must
be less than 50 m apart. Again, the matrix is symmetrical. Notice that if we
sum the numbers in any row or column, we get the number of objects
adjacent to the corresponding object. Thus, the row total for the first row
is 2, which corresponds to the fact that under this definition, object A has two
adjacent objects. Notice that we have put a � symbol in the main diagonal
positions, because it is not clear if an object is adjacent to itself or not. In
specific applications, it may be appropriate to consider objects as adjacent to
themselves or not.

Using a different adjacency rule gives us a different matrix. If the rule for
adjacency is that each object is adjacent to its three nearest neighbors, then
we get a different A matrix:

Ak¼3 ¼

� 1 0 0 1 1
1 � 1 0 1 0
1 1 � 1 0 0
1 0 1 � 1 0
1 0 0 1 � 1
1 1 0 0 1 �

2
6666664

3
7777775

ð2:7Þ

Notice that the matrix is no longer symmetrical, because, as already
mentioned, a ‘‘nearest-neighbors’’ rule for adjacency makes the relationship
asymmetric. Each row sums to 3, as wewould expect, but the column totals of
5, 3, 2, 2, 4, and 2 are different. This is because the definition of adjacency is
such that E being adjacent to B does not guarantee that B is adjacent to E.We
can see from this matrix that object A is actually adjacent to all the other
objects. This is due to its central location in the study area.

Finally, we can construct an interaction orweights matrix,W, for this data
set. If we use a simple inverse distance (1/d) rule, then we get the following
matrix:
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row totals:

W ¼

1 0:0152 0:0147 0:0147 0:0417 0:0244
0:0152 1 0:0196 0:0091 0:0101 0:0099
0:0147 0:0196 1 0:0149 0:0110 0:0086
0:0147 0:0091 0:0149 1 0:0167 0:0093
0:0417 0:0101 0:0110 0:0167 1 0:0222
0:0244 0:0099 0:0086 0:0093 0:0222 1

2
6666664

3
7777775

0:1106
0:0639
0:0688
0:0646
0:1016
0:0744

ð2:8Þ

Note that the main diagonal elements have a value of infinity. Often these
elements are ignored because infinity is a difficult number to deal with. A
common variation on theweightsmatrix is to adjust the values in each row so
that they sum to 1. Row totals for thematrix (discounting the infinity values)
are shown above, so we divide each entry in the first row by 0.1106, the
second row entries by 0.0639, and so on, to get

W ¼

1 0:1370 0:1329 0:1329 0:3767 0:2205
0:2373 1 0:3071 0:1424 0:1582 0:1551
0:2136 0:2848 1 0:2168 0:1596 0:1252
0:2275 0:1406 0:2309 1 0:2578 0:1432
0:4099 0:0994 0:1081 0:1640 1 0:2186
0:3279 0:1331 0:1159 0:1245 0:2987 1

2
6666664

3
7777775

column
totals:

1:4161 0:7949 0:8949 0:7805 1:2510 0:8626

ð2:9Þ

In this matrix, each row sums to 1. Column totals now reflect how much
interaction effect or influence the corresponding object has on all the other
objects in the region. In this case, column 1 (object A) has the largest total,
again reflecting its central location. The least influential object is D, with a
column total of only 0.7805 (compared to A’s total of 1.4161).
The important point to take from this section is not any particular way of

analyzing the numbers in a distance, adjacency, or interaction weights
matrix, but the fact that this organization of the spatial data is helpful in
analysis. Matrix-based methods become increasingly important as more
advanced techniques are applied. Sometimes this is because various mathe-
matical manipulations of matrices produce a new perspective on the data.
Often, however, it is simply because concise description of rather complex
mathematical manipulations is possible using matrices, and this helps us to
develop techniques further. You will be seeing more of matrices elsewhere in
this book.
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Proximity Polygons

Another very general tool in specifying the spatial properties of a set of
objects is the partitioning of a study region into proximity polygons. This
procedure is most easily explained by starting with the proximity polygons of
a simple set of point objects. The proximity polygon of any entity is that
region of the space which is closer to the entity than it is to any other. This is
shown in Figure 2.3 for a set of point entities. Proximity polygons are also
known as Thiessen or Voronoi polygons and have been rediscovered several
times inmany disciplines (for a very thorough review, see Okabe et al., 2000).
Although this is a computationally inefficient approach, for point objects the
polygons are surprisingly easy to construct using the perpendicular bisectors
of lines joining pairs of points, as shown in Figure 2.4.

More complex constructions are required to determine the proximity
polygons for line and area objects. However, it is always possible to partition
a region of space into a set of polygons, each of which is nearest to a specific
object of any kind—point, line, or area—in the region. This is true even for

Thought Exercise

If you still haven’t read the Appendix, then do so now. A few hours of effort

won’t make you a great mathematician, but it will pay enormous future

dividends as you explore the world of geographic information analysis.

Figure 2.3 The proximity polygons for a set of point events.
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mixed sets of objects, where some are points, some are lines, and some are
areas. The idea of proximity polygons is therefore very general and powerful.
In fact, it can also be applied in three dimensions when the polygons become
like bubbles. Note that the polygons always fill the space without over-
lapping, since any particular location must be closest to only one object, or, if
it is equidistant from more than one object, it lies on a polygon boundary.
From a set of proximity polygons we can derive at least two different

concepts of neighborhood. The first is the obvious one. The proximity polygon
associated with an entity is its neighborhood. This idea has some geograph-
ically useful applications. For example, the proximity polygons associated
with a set of (say) post offices allow you quickly to decide which is the
closest—it’s the one whose polygon you’re in! The same idea may be applied
to other types of buildings, such as schools, hospitals, supermarkets, and so
forth. The proximity polygon of a school is often a good first approximation to
its catchment area, for example.
A second concept of neighborhood may also be developed from proximity

polygons. Thinking again of point objects, we may join any pair of points
whose proximity polygons share an edge. The resulting construction is shown
inFigure 2.5 and is known as theDelaunay triangulation. A triangulation of a
set of points is any system of interconnections between them that forms a set
of triangles. The Delauanay triangulation is frequently used, partly because
its triangles are as near to equilateral as possible. This is useful, for example,
in constructing representations of terrain from spot heights.
One criticism of the other approaches to neighborhood and adjacency that

we have examined is that they ignore the nonuniformity of geographic space,
because they simplistically apply an idea like ‘‘Any two objects less than
100 m apart are adjacent,’’ regardless of the number of other objects nearby.
Although proximity polygons do not address this criticism directly, the
neighborhood relations that they set up are determined with respect to local
patterns in the data rather than by using criteria such as ‘‘nearest neighbor’’
or ‘‘within 50 m.’’ This may be an advantage in some cases. The proximity
approach is also easily extended to nonuniform spaces if determination of
distance is done over (say) a street network rather than a plane area (see

Figure2.4 Construction of proximity polygons. Polygon edges are all perpendicular

bisectors of lines joining pairs of points.
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Okabe et al., 2000, 2008). Other versions of the idea include defining
polygons that are regions where objects are second closest, third closest,
or even farthest away. These constructions are generally more complex
however, with overlapping regions, and they have less obvious application.

Approaches to analysis based on proximity polygons are still relatively
unexplored, because construction of the polygons, although simple, is
extremely tedious. Recently, researchers have started to take advantage
of the ready availability of computer processing power, and the idea is
becoming increasingly widely used in many areas of spatial analysis. We
will encounter it again.

CHAPTER REVIEW

� Autocorrelation undermines conventional inferential statistics due to
redundancy in data arising from similarity in nearby observations.

� The modifiable areal unit problem (MAUP) also undermines conven-
tional methods, especially regression.

� As always in geography, scale can have a significant impact on spatial
analysis, and choosing an appropriate scale is an important first step
in all spatial analysis.

� The nonuniformity of space is also problematic.Edge effects are almost
always present and should be considered.

� Although these issues remain problematic, the last 30 years or so have
seen progress on many of them, and spatial analysis involving quan-
titative geographicmethods spatial analysis ismore sophisticated now

Figure 2.5 Derivation of the Delaunay triangulation from proximity polygons.
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than it was when it was heavily criticized in human geography in the
1970s and 1980s.

� Important concepts in geographic information analysis are distance,
adjacency, interaction, and neighborhood, and all may be defined in
different ways.

� Using matrices is a convenient way to summarize these concepts as
they apply to any particular distribution of geographic objects.

� Proximity polygons and their dual, the Delaunay triangulation, are
useful constructions in geographic analysis.

� Spatial data really are special!
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Chapter 3

Fundamentals—Mapping It Out

CHA P T E R O B J E C T I V E S

In this chapter, we:

� Describe the changing role of maps in geographic information analysis
� Justify the use of maps as analytical devices, equivalent to graphics
such as histograms and boxplots used in conventional statistical
description and analysis

� Define the so-called graphic variables and show how geovisualization

by computer extends them in new ways
� Outline the major mapping options available to display points, areas,
and fields

� Introduce the idea of spatialization, the production of map-like dis-
plays of nonspatial data

After reading this chapter and following the various boxed thought
exercises, you should be able to:

� Justify why geographic information analysis should be concerned with
maps and mapping

� Outline themajor differences betweenmaps drawn on paper andmaps
drawn on screen

� List and describe Bertin’s original set of seven graphic variables and
explain why they need to be qualified when we use them to describe
ways of mapping

� List and describe various additional graphic variables introduced
when we use modern computing hardware and software

� Select an appropriate map type for a given geographic phenomenon
being displayed
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� Outline the basic rationale and strategy involved in spatialization
� Above all else, look at any maps critically

This chapter contains very little direct advice on explicitly cartographic
questions such as the choice of symbolism and color scheme, nor do we
provide many illustrative examples; each of these issues is worth a textbook
of its own. These issues are covered in the relevant textbooks, for example
those by Dent (1990), Robinson et al. (1995), and Krygier and Wood (2005)
and, perhaps more accessibly nowadays, on the World Wide Web using
appropriate searches. In what follows, we provide pointers to relevant
literature, as well as advice on the design and use of maps from the
perspective of data exploration and analysis rather than of map design.

3.1. INTRODUCTION: THE CARTOGRAPHIC
TRADITION

Maps are the most persuasive GIS output. This is something that GIS
vendors recognize, and is obvious at exhibitions where many trade stands
display maps produced using their systems. Less obvious, however, is that
maps also play a major role in determining the nature of the inputs to GIS.
Despite advances in the direct collection of spatial information using tech-
nologies such as the global positioning system (GPS), paper maps remain a
source of data for GIS and, for better or worse, methods of analysis originally
developed usingmaps have also affectedmuch of the spatial analysis that we
undertake with GIS. It follows that the traditions of cartography are of
fundamental importance to GIS at data entry, in analysis, and in presenta-
tion (see Kraak, 2006).

The past few years have seen a number of popular accounts of specific
maps (see, for example, Winchester, 2002; Foxell, 2008; Johnson, 2006;
Schwartz, 2008), and as we write, it is obvious that societies worldwide
are discovering maps andmapping throughmedia such as in-car navigation,
GPS with mapping capabilities, location-aware information served to cell
(mobile) phones, and numerous Web sites that serve mapping customized to
meet specific locational needs. Evenmore exciting has been the opening up of
mapping capability so that almost anyone with an Internet connection can
create personalized maps, perhaps as a way of cataloging photographs or
recording a vacation trip. Hudson-Smith (2008) provides an easy-to-follow
guide on how to create maps using the facilities and data available from
Google MapsTM and Google EarthTM. The term neogeography has been
coined to refer to a whole raft of activities that have map creation as a
central objective but owe little to past cartographic traditions and
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motivations. Rather than being based on the digital data provided by
national mapping agencies, much neogeography is based on data provided
by private individuals, called crowd sourcing or, more formally, volunteered
geographic information and through data aggregation companies such as
GoogleTM. Paradoxically, while all this activity has been going on, and as
Dodge and Perkins (2008) document, academic geographers do not seem to
have taken much notice, with maps and mapping becoming less and less
their concern.
Maps have been used for centuries as a data storage and accessmechanism

for topographic and cadastral (land ownership) information, and since the
nineteenth century the thematic map has been used to display statistical
data. These uses ofmaps for storage, access, and communication of results are
well known and, by and large, are understood and accepted. Less widely
accepted is the use of maps as a direct means of analysis where the act of
display is itself an analytical strategy. If you are brought up in the Western
scientific tradition, reliance on a display as ameans of analysis can be difficult
to accept. Although visualization has long been used as an informal route to
understanding, graphical analysis has usually been subsidiary to mathemat-
ics and statistics. Although we say that we ‘‘see’’ a result, almost invariably
the preferred form of analysis has been mathematical or statistical.
Suspicion of display as a form of analysis can be justified in three ways.

First, maps do not seem to compress data. One way to define science is as a
search for algorithmic compressions, that is, methods that lead to simplifi-
cation by reducing the incoherence of vast arrays of information to explan-
ations. From this viewpoint, like pictures, maps may well be worth a
thousand words, but equations are even more compact descriptions and
hence to be preferred. Indeed, the argument often made in favor of maps—
that they increase the information available by showing spatial relationships
and patterns—can be seen as running totally counter to the idea of algorith-
mic compression. Second,maps give mixed messages. Like natural language
and figurative imagery, maps are a polysemic (many-signed) means of
communication. In polysemic communication, the meaning of each symbol
is deduced from observation of the collection of signs and thus is capable of
many different interpretations. It follows that displays are almost always
ambiguous and that cartography must concern itself with models of the
communication process from data through cartographer to map user. Maps
can fail to communicate what is intended or give a false impression. This is in
contrast to the monosemic nature of mathematics, in which the meaning of
symbols is rigorously defined in advance so that each symbol signifies just
one thing: alternative interpretations are simply not allowed. Third, maps
are hard to draw. Until recently, limited data availability and manual
drafting methods using specialized tools meant that maps required skill
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to produce. This discouraged the use of display as a mode of data exploration
because the costs in labor, time and money were prohibitive.

3.2. GEOVISUALIZATION AND ANALYSIS

The attitudes to display outlined above changed with the development and
use of scientific visualization, defined as exploring data and information

graphically as a means of gaining understanding and insight (Earnshaw
and Wiseman, 1992). There are many reasons why visualization has become
popular in all the sciences. First, developments in sensor technology and
automated data capture have provided data at rates faster than they can be
easily converted into knowledge. Second, some of the most exciting discov-
eries in science have been associated with nonlinear dynamics, or chaos

theory, where apparently simple mathematical equations conceal enor-
mously complex behaviors and structures that are most readily appreciated
when displayed graphically. Third, as complex simulation models have
become common scientific products, it has become necessary to use visual-
ization as the only practical way to assimilate their outputs. A good example
is the display of output from the atmospheric general circulationmodels used
in the investigation of global warming. Last, but emphatically not least,
improvements in computing mean that scientific visualization is now rou-
tinely possible using standard computing hardware on the desktop.

Visualization is in the tradition of exploratory data analysis in statistics.
Its worth lies in its emphasis on the use of graphics in the development of
ideas—not, as in traditional graphics, in their presentation. Indeed, visual-
ization often turns traditional research procedures upside down by develop-
ing ideas graphically and then presenting them by nongraphic means.
Modern visualization and traditional cartography have much in common,
and it is hardly surprising that we now see studies that could be called
cartography or visualization according to taste. Techniques borrowed from
visualization have been used to improve on traditional map design, to
visualize quantities such as the errors in interpolation and satellite image
classification, and to create entirely new forms of display (Fisher et al., 1993).
Since the use of graphics in science has been called scientific visualization
(see, for example, Hearnshaw and Unwin, 1994), the term geovisualization
has been coined to describe the fusion of visualization and cartography (see
Dykes et al., 2005; Dodge et al., 2008).

The technical changes that underpin geovisualization don’t simply mean
that we draw ourmaps in different ways; they lead to amuchmore important
set of changes in the ways that we design and use them. Instead of usingmap
symbols to represent selected features, geovisualization frequently attempts
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to create photo-realistic scenes that display as much data as possible (Fisher
and Unwin, 2002). In the world of geovisualization, maps are seldom
completed end products of an investigation intended for a general audience.
Instead, they are the means to an end and are most often viewed just once by
a single person.
So, the main consequence of making maps easy to draw on screen is to

extend their role so that they are now visualization and analysis tools. This
view is illustrated in Figure 3.1. Traditional research plans are illustrated on
the left-hand side, proceeding in a linear fashion from questions to data,
analysis, and conclusions, where maps were an important presentation tool.
The contemporary GIS research environment is more like that illustrated on
the right. Data are readily available in the form of maps, prompting
questions. Of course, the researcher may also come to a problem with a
set of questions and begin looking for answers using available data by
mapping them. Maps produced as intermediate products in this process
(and not intended for publication) may prompt further questions and the
search for more data. This complex and fluid process continues until useful
conclusions are produced. Of course, the traditional approach was never as
rigid or linear as portrayed here, and the contemporary approach may be
more structured than this description suggests. The important point is that

Maps

Conclusions

Research
question

DataQuestions

Maps
(analysis)

Data
gathering

(Statistical)
analysis

Conclusions

Figure 3.1 The changing role of maps in the analysis process.
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maps have become tools of analysis; they are no longer simply tools for the
presentation of results.

Two related consequences of the changing role of maps have been the
demise of cartography as a distinct discipline and the recognition that maps
are just one form of display. Early progress in relating ideas from visualiza-
tion to GIS and mapping can be found in Hearnshaw and Unwin (1994),
MacEachren and Fraser Taylor (1994), and Unwin (1994). Now, in a world
where almost everyone can have mapping capabilities on their desktop, it is
worth emphasizing that computer scientists and others concerned with
visualization also have much to learn from the accumulated wisdom of
cartographers. Our reason, then, for devoting this chapter to maps and
mapping should now be clear. Dynamic and interactive map displays are
powerful analytical tools, but if we are to use them, it is important that the
lessons learned by cartographers about making useful and meaningful map
products are not forgotten. It is some of those lessons that we discuss in the
remainder of this chapter.

3.3. THE GRAPHIC VARIABLES OF
JACQUES BERTIN

Maps are drawn on flat sheets of paper, so the ways that a cartographer can
display information are limited. An influential analysis of the toolbox of
graphic techniques available for the display of information was presented by
Jacques Bertin in his book Semiologie Graphique, originally published in
French in 1967 and translated into English (and updated) by W. J. Berg as
Semiology of Graphics (Bertin, 1983). Semiology, incidentally, means the
study of signs, and Bertin tried to develop a theory of the signs used in all
graphics. He recognized seven ways in which graphic signs may be varied to
indicate different information. These have become known as his graphic

variables, which are location, value, color/hue, size, shape, spacing/texture,
and orientation:

� Location, where a symbol is placed on a map, is determined by
geography and is the primary means of showing spatial relations.
Although the property of location is straightforward for many types of
graphic, in geography we must be careful. This is because changing
the map projection used can change the relative locations of map
symbols. It is well known that all projectionsmust distort in someway:
the important thing is to understand this point and work within the
resulting limitations.

60 GEOGRAPHIC INFORMATION ANALYSIS



� Value refers to the lightness or darkness of a symbol. Typically,
differences in the value of a symbol are used to represent differences
in interval and ratio scaled variables. In paper mapping, the usual
rule is that the darker a symbol, the higher the value it represents,
although in computer cartography, where dark backgrounds are
common, lighter (brighter) shading may indicate higher values. In
fact, Bertin’s analysis of value was simplistic, and it is now understood
that the relationship between the value of a symbol and the numerical
value it is thought to represent is not straightforward.

� Hue, or color, is an obvious graphic variable and, by contrast with
value, it is usually used to represent qualitative variables on nominal
or ordinal scales rather than quantitative differences. Color used to be
expensive to reproduce on paper, so that maps intended for research
publications were often designed to be printed in one color only.
Moreover, a continuous grading of color was extremely difficult and
expensive to create. Nowadays, color printing is less expensive, and
almost all computer displays are capable of generating many more
hues than our eyes can reliably distinguish, so color is now a widely
used graphic variable.

� Color is also a much-abused graphic variable partly because it is
extremely complex. There are at least four reasons for this. First,
color theory demonstrates that there is more to color than just hue,
which is the sensation of color as red, blue, green, and so on. In
addition, we must consider a color’s value—the sensation of
lightness or darkness produced—and its chroma—its apparent in-
tensity or brilliance. Second, the human eye-brain system does
not see hues with equal sensitivity. Sensitivity varies, being
highest for green, followed by red, yellow, blue, and purple. Third,
colors have cultural associations that affect the way we read a map
containing them. You can probably list numerous color associations,
and skilful cartographers (not to mention advertisers) make clever
use of them. Finally, the appearance of a color is not a simple
function of its own hue, value, and chroma; it also depends on the
size of area colored and on the surrounding colors. For example, a
small area of a brilliant red may be visually acceptable where a large
one is not, and any color tends to take on some of the appearance of
its background. The golden rule for any use of color in mapping is to
be careful, since color may create more problems than it solves. The
temptation to create highly colored displays and assume that they
will automatically help the visualization process should always be
resisted.
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� It is obvious that the size of a symbol can be used to show quantitative
differences. It might be thought that a simple linear function could be
used such that increases in the area of a symbol are proportional to the
value represented. However, it has been shown that the brain has
difficulty inferring quantity accurately from symbol size. We consider
this issue in more detail in our discussion of proportional symbol maps
in Section 3.6.

� Shape, the geometric form of a symbol, may be used to differentiate
between different types of objects. Cartographers use this variable
often—for example, in the way different types of building are repre-
sented, or on road maps, where shape is applied to line objects to
distinguish different classes of highway.

� Spacing, the arrangement and/or density of symbols in a pattern, may
also be used to show quantitative differences. In cartography, a simple
example is the use of a pattern of dots to indicate the areal density of a
phenomenon in a dot density map.

� Finally, the orientation of a pattern—of cross-hatching, for example—
may be used to show qualitative difference.

AlthoughBertin’s seven-variable schemeappears logicalandall-embracing,
research on how people perceive the graphic variables has shown that none
are as simple as he suggests. A critical point is that each graphic variable
should only be used to show types of variation for which it is suited. For
example, hue works well if we use it to show differences in qualitative
information, but attempts to use it for quantitative variation require great
care. Conversely, although value and size work well for displaying quantita-
tive information, they are not easily adapted to show qualitative differences.

Avoiding the Cartographic Quagmire?

Mark Monmonier’s classic little book How to Lie with Maps (Monmonier,

1991) has a whole chapter titled ‘‘Color: Attraction and Distraction’’ that

starts with a very direct message: ‘‘Color is a cartographic quagmire’’

(p. 147). All too often, we see on the World Wide Web and elsewhere

wholly inappropriate and incorrect use of color in mapping.

An obvious solution is to keep it simple. Cindy Brewer and Mark Harrower

have together produced ColorBrewer, a very useful online guide to color use

on maps to be found at www.colorbrewer.org. It is worth spending time

looking at the advice it gives.
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3.4. NEW GRAPHIC VARIABLES

Developments in computer technology allow us to create new forms of display
that extend the number of graphic variables well beyond the original seven.
These new cartographic variables include animation to create sequences of
maps, creative use of map projection, the ability to link maps back to data,
and the ability to link maps to other graphics.

Animat ion and Graphics Scr ipts

The use of animation to produce linked sequences of maps is not particularly
new (see Tobler, 1970). However, until recently, producing map sequences
was a considerable undertaking that involved laboriously drawing and
photographing individual maps for movie projection. The availability of
large volumes of digital data and fast computers with good graphics capa-
bilities now enables maps to be animated with little difficulty. A sequence of
maps can have time rescaled to display either more quickly (common) or less
quickly (unusual) than the real-world phenomenon of interest. This is an
obvious way to animate a map, but it is not the only one.
Interactive dynamic maps enable the focus of interest to be varied either

spatially, by changing scale and location, with zoom and pan functionality, or
statistically, by selecting subsets from statistical views of the same data.
Animation may also use out-of-sequence orderings of time, or sequencing by
the value of a selected variable or to emphasize the dynamic nature of a
variable portrayed, as in maps of streamlines of a flow. You often see the
wind arrows or storm systems on a TV weather map animated in this way.

A Summary Exercise

Two things you might like to think about here are:

1. In what ways do Bertin’s graphics variables oversimplify?

2. Looking back at the distinctions between variables recorded using

different levels of measurement (see Section 1.4), which of the

graphic variables are best used for nominal, ordinal, and interval/

ratio scaled data?

Ausefulway toaddress the second issue is to createa cross-tabulationof the

seven graphic variables (rows) and the four levels of measurement (columns),

noting for each cell whether or not the graphic variables can be used.
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An early example of transient private maps that embraced dynamic tech-
niqueswas provided by Ferreira andWiggins (1990). Theirdensity dial allows
users to slice through a variable’s range at a chosen level and view the
resulting classification on a map. Such a dial enables users to determine
the sensitivity of a classification scheme. By interactively varying the scheme,
they may determine the regions or levels at which a variety of patterns occur.
Cartographic visualization researchers at The Pennsylvania StateUniversity
have developed the use of animation that includes a whole series of new
dynamic variables. These include the duration, rate of change, ordering,
and phase (or rhythmic repetition of events) of a map sequence (DiBiase
et al., 1992).

Although animation is attractive for detecting patterns at the first stages
of an investigation, difficulties remain. First, although an investigator may
gain insights from animation, it is difficult to publish such insights in the
usual way. Instead, it is slowly becoming routine for visualization sequences
to bemade available as videos on theWeb. Second, as withmany new graphic
variables, there are few established design rules for its effective use.

Linking and Brushing

Transient symbolism may be used to highlight symbols on a computer map
display when they have been selected for investigation. This idea has been
extended to the process of brushing, where corresponding symbols in two or
more views are identified by similar distinct symbolism. Monmonier (1989)
extended the technique by linking choropleth maps of area-valued data (see
Section 3.7) with statistical plots of the same data, adding a geographic
component to scatterplots, and vice versa. Just as transient maps eliminate
the constraints associated with producing single representations, linking
removes the restriction of having to use the spatial dimensions of the page to
show geographic locations. Maps use the spatial arrangement of symbols on
a display to reflect geographic relationships while simultaneously using the
screen location on linked views to show statistical variation. This can be a
powerful exploratory technique.

Project ion

The projection used for a map is usually considered fixed and is often chosen
from a limited number of standard forms, each suited to particular appli-
cations. It is also well understood that nonstandard forms of standard
projections (such as the Mercator) can be excellent graphic devices in
themselves, and that more obscure projections that are seldom drawn
also have useful properties. Computerization enables maps to be drawn
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easily in almost any projection and so should encourage more innovative use
of projection as an effective graphic variable. In fact, systematic, exploratory
use of map projection in this way remains rare. In Section 3.7 we will deal
with cartograms, which can be regarded as a particular—some would say
peculiar—map projection.

3.5. ISSUES IN GEOVISUALIZATION

Geovisualization is not without problems. The change frommaps on paper to
maps on screen enables the analyst to use many new graphic variables, and
the temptation is to create highly colorful, dynamic, and linked displays. A
major problem is that we still know very little about good design using these
variables. Sometimes they can be effective, but just because technology
allows you to do something clever doesn’t mean that you should! Similarly,
just because paper and screen differ, this does not mean that the GI analyst
should lightly discard the accumulated wisdom of well over a century and a
half of thematic mapping.
Geovisualization is not a single analytical strategy. We can identify at

least three different approaches, relating to the interplay between the data,
their geography, and the technology used. The first is the pure geovisual-

ization route, attempting to enable interactive exploration of the data using
object linking, brushing, and so on, but by and large leaving the data intact.
The second is the spatial analytical route, which modifies the numbers to be
mapped mathematically—for example, by converting them into density
estimates, probabilities against some hypothesized process, or the derivation
of ‘‘local’’ statistics to isolate areas of specific research interest. Much of the
remainder of this book develops this approach. The third approach involves
some transformation, often by reprojecting the data into a space, such as an
area cartogram, in which some aspects of geographic reality are more
apparent. Currently, work tends to be channeled down one or another of
these routes, but it is clear that most progress will be made by combining
them. Mennis (2006) provides an example of careful visualization of the
results of the local statistical operation known as geographically weighted

regression (see Chapter 8). Similarly, a classical spatial analytical tool, the
Moran scatterplot (Anselin, 1996), seldom makes much sense unless it is
linked back to a choropleth map of the individual values.
As yet, there is little well-established theory to enable us to answer basic

visualization questions such as ‘‘What works?’’, ‘‘Why does it work?’’ or even
‘‘What is likely to be the best way of displaying these data?’’ All we have are
some moderately well-articulated design rules, some interesting specula-
tion based in, for example, communication theory or semiotics, some results
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from usability and perception experiments, and appeals to our instincts.
The result is that geovisualization sometimes seems to consist of finding
new ways of turning one complex, hard-to-understand graphic and its
associated data into another that is also complex and hard to understand.
It may be that a basis for useful theory exists and that only the required
synthesis is lacking, but it may also be that geovisualization cannot be
formalized.

A final issue concerns the relationship of geovisualization to the deriva-
tion, testing, and presentation of theory. Although it is frequently claimed
that visualization provides a way to develop theory, we doubt that theory
generation using just graphics is possible. The interplay between graphics,
theory, and prior domain knowledge is often more complex than geovisual-
izers recognize. There are many examples of geovisualization as a way to test
existing hypotheses. This is the map as proposition. A simple example is
provided by recent accounts of John Snow’s iconic 1854 map of the cholera
epidemic in Soho and its demonstration that a single polluted water supply
pump was its cause, not the then popular notion of a ‘‘miasma’’ in the air.
Statistical analysis has verified Snow’s visual association (see Koch and
Denke, 2004), and many authors cite Snow’s map as a classic example of
geovisualization yielding the hypothesis that cholera is water borne. The
recent debate (see Brodie et al., 2000; Koch, 2004, 2005) makes it clear that
Snow already had his hypothesis and that the map was a specific test of it
against alternatives.

3.6. MAPPING AND EXPLORING POINTS

Dot or Pin Maps

The simplest map we can draw has a number of dots, one at each point where
a specified object is located. In the terminology of Chapter 1, each dot
represents a nominal-level attribute of an entity at a point location; in
Bertin’s typology (Section 3.3), we are using location as our graphic variable.
If you are accustomed to using the Web and GIS, you will probably think of
these maps as pin maps.

Creating a Pin Map Using Google Maps

Point your Web browser at www.google.com and click on the ‘‘Maps’’

option. If you live in a reasonably large city, enter text such as ‘‘coffee shops

in’’ <name of your town>. (Failing this, have a look at the center of

Northampton (England) by typing ‘‘coffee shops in NN1’’.) The result will
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The theory of dotting is straightforward: simply place a point symbol at
each location where an instance of the entity being mapped occurs. Because
there is only one symbol for each entity, this is a one-to-one mapping, and
the number of symbols is the same as the number of entities represented. The
only design considerations are the shape, size, and hue of the symbol. The
simplest symbol we can imagine is a small circular black dot, of a size
large enough for dots to be individually visible on the final map but not so
large that adjacent dots coalesce. The overall visual impression depends on
relative areas of black and white, so that, ideally, as more dots are placed in
an area, the result should seem denser in proportion. Unfortunately, experi-
ment shows that we do not perceive dot density this way. Mackay (1949)
suggested that at wide dot spacing changes in apparent density are rapid,
but asmore dots are added, the perceived change is less, until dot coalescence
occurs when there is another large perceptual change.
In a simple dot map, the cartographer has no control over the number of

dots. However, practicality often requires that each dot represent a defined
number of objects, thus giving a many-to-one mapping. The result is a dot
density map, and instead of location, we are now reliant on spacing as the
graphic variable. The advantage of this technique is the control it gives over
the overall visual impression. Unfortunately, there are no clear rules on the
choice of the per-dot value. Some authors suggest that, for a given dot size, a
value should be chosen so that dots coalesce only in the densest areas. Others
argue that the original data should be recoverable from the map, implying
that each dot must be distinct and countable. Dot density maps have the
disadvantage that the location of dots is arbitrary. In the absence of other
information about the distribution, the cartographer has little choice but to
apply dots evenly over an area. When other information is available, dots
may be located to reflect this. In a computer environment it would ideally be
possible to experiment with dot size and value settings, but since no algo-
rithm for satisfactory automated placement of dots has been developed, this
is not usually possible.

be a pin map of coffee shops in the town concerned. Note that each pin has

an exact one-to-one correspondence with an ‘‘event’’ (the existence of such

a shop) and that there is also a link to additional data, such as the shop’s name

and other particulars. However, you may well find that the list is flawed in

some way and that the locations at which the pins are placed are not exact.

This is good enough, perhaps, for you to find a shop, but not for any formal

statistical analysis of the pattern of locations revealed.
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Kernel Density Maps

A key property of any pattern of point-located events is its overall areal
density, given by the number of point events per unit of area. Aswewill see in
Chapter 5, in spatial analysis we prefer to think of this as an estimate of the
intensity of the process, l, given by

l̂ ¼ n

a
¼ # S 2 Að Þ

a
ð3:1Þ

where # S 2 Að Þ is the number of events in pattern S found in study region A
and a is thearea of the region.This overallmeasure is often of only limiteduse;
instead, many statistical techniques use some estimate of the local density of
points. This idea underlies kernel density estimation (KDE) methods. The
concept is that the pattern has a density at any location in the study region—
not just at locations where there is an event. This density is estimated by
counting the number of events in a region, or kernel, centered at the location
where the estimate is to be made. In terms of the geovisualization strategies
suggested in Section 3.2, KDE uses a transformation approach, in this case
from point objects to a field of density estimates that can be easily visualized.

The simplest approach is to use a circle centered at the location for which a
density estimate is required, count the number of point events falling into
this circle, and divide by the circle’s area. Thenwe have an intensity estimate
at point p

l̂p ¼ # S 2 C p; rð Þð Þ
pr2

ð3:2Þ

where C(p,r) is a circle of radius r centered at the location of interest p, as
shown in Figure 3.2. If wemake estimates for a series of locations throughout

Looking at Some Pin Maps

Go to Google (not Google Maps) and search for dot map. We are willing to

bet that most of the images returned are dot density maps of the type

described above. When we tried this, we got some fairly nice examples from

the USDA 2002 Census of Agriculture, but the only true dot maps that had a

one-to-one mapping with the events were for the locations of crime incidents

in Sri Lanka! Searching for pin maps improves things a bit, but not much. Can

you do any better?
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the study region, then it is possible to map the values produced, and this
gives us an impression of the point pattern.
More sophisticated variations on the basic KDE idea make use of kernel

functions, which weight nearby events more heavily than distant ones in
estimating the local density. If the kernel functions are properly designed,
KDE produces a surface that encloses a volume equivalent to the total
number of events n in the pattern. A quartic kernel function, often used,
is shown schematically in Figure 3.3.
Other functional forms, based on the distance of the point to be estimated

from events in the pattern, are possible and are specified with a parameter
that is equivalent to the simple bandwidth r. This means that the procedure
is arbitrary to some degree, but distance-weighted kernel-fitting procedures
ensure that the resulting surfaces of density estimates will be continuous. A
typical output is shown in Figure 3.4. The resulting map is a surface, and

Kernel function

Figure 3.3 KDE using a quartic distance-weighted function.

Kernel
Grid of locations at which
density is to be estimated

Figure 3.2 Simple, or naive, density estimation.
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contours can be drawn on it to give an indication of regions of high and low
point density.

It should be clear that the choice of r, the so-called kernel bandwidth,
strongly affects the resulting estimated density surface. If the bandwidth is
large, then estimated densities l̂pwill be similar everywhere and close to the
average density for the whole pattern. When the bandwidth is small, then
the surface pattern will be strongly focused on individual events, with
density estimates of zero in locations remote from any events. In practice,
this problem is reduced by focusing on kernel bandwidths that have some
meaning in the context of the study. For example, in examining point
patterns of reported crime, we might use a bandwidth related to patrol
vehicle response times. Generally, experimentation is required to arrive at a
satisfactory density surface.

An important variant on KDE allows events in the pattern to be counts
allocated to points. For example, points might correspond to places of
employment, with associated counts of the number of employees. The
resulting KDE surface shows ‘‘employment density’’ across the study region
andmay be a useful way of visualizing otherwise very complex distributional
information. Some care is required in using this variation of the method to
avoid confusion with interpolation techniques, which are discussed in
Chapters 9 and 10.

The kernel density transformation is one of the most useful in applied GIS
analysis. It provides a very good way to visualize a point pattern to detect
‘‘hot spots’’ where the local density is estimated to be high. In addition, it
provides a good way of linking point objects to other geographic data. For

Figure 3.4 A typical output surface from KDE and its original point pattern.
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example, if we have mortality data across a region as a set of point locations
and want to relate these to a spatially continuous variable such as atmo-
spheric pollution, a simple approach is to transform the mortality data on
deaths into a density surface and compare this with a surface of atmospheric
pollutant concentrations. Density estimation tools are provided in many
commercial GISs, although often no detailed information is provided about
the kernel functions used, so care should be exercised in using them. Public
domain software to create surface estimates using a variable bandwidth that
adapts automatically to the local density of observations has been published
by Brunsdon (1995).

Located Proport ional Symbol Maps

If we systematically vary the size of a point symbol, it is possible to show
attribute data measured at ordinal, interval, and ratio levels on a located
proportional symbol map. Examples might be the outputs of a series of
factories, the number of people they employ, or the population of cities over a
wide area. In each case, the data are attributes of point objects, and are not
samples drawn from an underlying continuous field. The most common style
of proportional symbol map employs circles whose areas are varied according
to the value to be represented.
The simplicity of this approach hides troublesome technical details. If a

map is intended to allow users to estimate numerical data based on symbol
sizes, problems arise, and the choice of functional form is not straightfor-
ward. The human perceptual system does not register increases in circular
area well. Most people underestimate the size of larger circles relative to
small ones, so this approach tends to cause underestimation of larger values.
Various solutions have been suggested (see Robinson et al., 1995).
Another point symbol map that makes use of geolocated proportional

symbols is a pie chart map. Such maps show data that make up proportions
of a whole—for example, the proportions of different products in the total
output of a factory. Each pie symbol is scaled to reflect the total as before, but
is subdivided into two or more differently shaded parts, one for each of the
components. Almost invariably, sectors of a circle are used.
Before we leave the visualization of point event data, one further warning

is in order. Frequently, all the devices we have discussed (dots, proportionate
symbols, pie charts) are used to visualize data that are some form of areal
aggregate, such as the total population of an area or its mix of industries.
Such maps are perfectly legitimate, but from the viewpoint of geographic
information analysis, they are not maps of point events; rather, they are
maps that use similar symbolism to display area–value information. If you
see such maps, then ask the two simple questions:
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� Are the symbols placed at the exact locations of the point events, or are
they at some arbitrary location within an area object?

� What is the relationship between the number of symbols and the
number of events? Is it one to one, many to one, or one to many?

If the symbols are arbitrarily located and the relationship isn’t one to one,
then you are really dealing with some form of area object display.

3.7. MAPPING AND EXPLORING AREAS

Color Patch Maps

Many different types of maps can be drawn to represent area data. The
simplest is the color patch map, which has been give the fancy name of
chorochromatic (choro ¼ relating to area, chroma ¼ relating to color), where
graphic symbolism (not necessarily color) indicates the presence of a named
attribute over a natural or imposed area. One might, for example, shade all
the areas of the United Kingdom classified as urban in character, or all rock
outcrops of Silurian age, or rainfall in excess of a specified threshold. The
simplest maps of this type portray one nominal category in one color, giving a
two-phasemosaic or binarymap. Sometimes this kind ofmap is referred to as
a two-color map, because one color is used to indicate the presence of an
attribute and, by implication, the white areas are a second color, indicating
where the attribute is not found. Chorochromatic maps can also use several
colors to show a number of nominal classes simultaneously. In general, we
talk of a k-color map, where k is the number of colors, and therefore also the
number of nominal categories involved.

Finding Some Examples

Visit your library or surf theWeb to see if you can find examples of these types

of point symbol maps:

� Dot density
� Proportional point symbols
� Pie chart maps

In each case, ask yourself the two questions that we ask above.
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Color maps using natural areas are unlikely to be misinterpreted, but the
same cannot be said for those based on data collected over a set of imposed
areas. Without further information, all that the second type of map tells us is
that the attribute is present somewhere in the area or, in aggregate, that the
area is of the type implied. Problemsmay also occur if the nominal categories
used, althoughmutually exclusive, are not spatially exclusive. On amap, the
distributions will overlap. To solve this problem, several solutions can be
adopted. An obvious one is to choose and map only those categories that
are spatially exclusive; others are to intermingle sets of point symbols, to use
special symbols or colors for the mixed distributions, or, evenmore simply, to
draw a separate map for each category.

Choropleth Maps

The second major type of map for area objects is probably the most widely
used, and also the most misunderstood and incorrectly produced of all the
map types discussed in this chapter. This is a map that displays interval or
ratio scaled attribute data collected over imposed or, less commonly, natural
areas. Suchmaps are called choropleths, or area-valuemaps (choro¼ relating
to area, pleth = relating to value). Because geographic data, especially from
census sources, are almost always agglomerated to areal units, choropleth
maps are common, and the technique is available in virtually all GISs.
Figure 3.5 provides an example. It attempts to show the density of

population across approximately 250 census area units in the Auckland
region of New Zealand. Themap has several elements with two distinct types
of data. First, there are the actual head counts of people living in each area,
except those shown in outline only where no data have beenmapped. Second,

Some Color Patch Maps

Use Google ImagesTM or a similar search engine to find examples of simple

color patch maps. They are most likely to deal with phenomena such as

geology and land cover. You might search for a copy of the map that

Winchester (2002) claims ‘‘changed the world,’’ which is William Smith’s

superb first geology map dating from 1815. How many ‘‘colors’’ did Smith

use? Having looked at Smith’s map, next find amap of the political ‘‘color’’ of

the U.S. states in the 2008 presidential election. In what important ways does

this map differ from Smith’s? There is an obvious and important difference in

the way the areas are defined.
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there are the data that describe the outlines of the areas over which the
counts have been aggregated. These have been used to find the area, based on
which population densities have been calculated. To create the map, the
density values have been classified into five bands and a shade style has been
assigned to each, from light (lowest population density) to dark (highest).

Statisticians will recognize that what we have created is in some respects a
two-dimensional version of a histogram in which the individual small areas
have the same role as the bins (classes) and the mapped density values are
similar to the heights of the histogram bars. Choropleth maps are honest in
the sense that they are true to the data, but they can be very poor represen-
tations of the underlying geographic patterns they purport to represent.
Thinking of them as two-dimensional versions of the standard histogram
helps us see why. In statistics, histograms are used to describe the distribu-
tion of sample data and to provide a graphical estimate of an unknown
underlying probability density function. In such work, there are two sources
of variation—the value range along the x-axis and the frequencies shown by
the bar heights on the y-axis—and so the two dimensions provided by a sheet
of paper or a screen are sufficient. When compiling a histogram, the analyst
has complete control over the size of the bins used and can show each height
exactly using just the two dimensions given by a sheet of paper or a screen.

Population density
per square km

0 - 1114

1115 - 1793

1794 - 2907

2908 - 4734

4735 - 7730

2
Kilometers

Figure 3.5 A choropleth map showing, the 2006 density of population over census

area units of the Auckland region of New Zealand.

74 GEOGRAPHIC INFORMATION ANALYSIS



Neither is possible when drawing a choropleth, which has unequally sized
zones over which the analyst has no control and whose heights have to be
classified in some way, such that symbolism can be used to show the third
dimension. It follows that choroplethmaps can often give a poor visualization
of any underlying patterns:

� The areas used. Are these natural or imposed? If the former, howwere
they defined and by whom? If the latter, are the areas used appropri-
ate? Do large areas dominate theway themap looks? Are the ‘‘steps’’ at
the edges of each block of color likely to reflect variation in the
underlying phenomenon?

� The data. Are they counts of some sort? If so, there is a built-in
tendency for larger areas to have bigger values, and the map may
be worthless. Choropleth maps make sense only if the numbers being
mapped are ratios, either areal densities (such as the number of people
per unit of area) or population rates (such as the number of births per
thousand population in the area). If the data are ratios, are these
based on low numbers? If so, the mapped values may be very unstable
to small changes. If we add one person to an area where there is
already just one person, we double the population density, whereas
adding one person to several thousand people makes virtually no
difference at all.

� The classification used. Prior to the use of computers, almost all
choropleth maps were ‘‘classed,’’ that is, each data value was assigned
to one of a small number of classes. Experience suggests that five to
sevenclasses isappropriate, but it is easy to showthat theappearance of
a map can be changed dramatically by varying the number of classes.
Figure 3.6 illustrates the effect. These maps show the percentage of

2.5

11.1

19.7

28.3

36.9

45.6

2.5

7.7

13.0

17.5

29.4

45.6

% Asian

Figure3.6 Theeffectof changingclass intervalsontheappearanceofachoropleth.
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population of Asian ethnicity in 53 census area units in North Shore
City, Auckland, in 2006. The left-hand map uses five equal intervals,
while the right-hand one uses five ‘‘quantiles.’’ In a classic paper, Evans
(1977) describes a large number of possible schemes. His conclusion is
that youmust examine the statistical frequency distribution of the data
before deciding on a classification scheme.

� The symbolism used. This is the most obvious attribute of a choro-
pleth. Traditionally, choropleths were created by shading each area
using a ‘‘screen’’ pattern of lines such that the more lines there were,
the darker the area looked and the higher the value. It is now more
usual to use gradations of a single color to show the increase in
intensity. Either way, how you choose to shade the map greatly affects
its final appearance.

These issues are discussed and illustrated in more detail in Dykes and
Unwin (2001), which shows how the visual appearance of any choropleth is
extremely sensitive to the choices made in its construction.

One result of this sensitivity of the appearance of a choropleth map to the
choices made in its construction has been a number of experiments by
statisticians and cartographers to develop alternatives. The list of sugges-
tions is long. The strategies adopted have used both geovisualization and
spatial analysis as a way of improving on the basic map type.

Some Choropleth Maps

Use Google Images or a similar search engine to find examples of choropleth

color maps. In each case, make a summary commentary on:

� The suitability of the areas used
� The appropriateness of the data used (for example, are they ratios or

absolute numbers?)
� The classification scheme used, if any
� The method by which these numbers are displayed
� The overall effectiveness of the map

We suspect that after completing this exercise, you might well agree with

one of our students, who said that he would ‘‘never look at this sort of map

again without taking a large pinch of salt.’’
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Class less Choropleths

Many years ago, Tobler pointed out that modern displays don’t actually need
to class choropleths since they are capable of showing asmany shades of color
as needed (Tobler, 1973). His point was debated at the time (see Dobson,
1973), but nowadays it is relatively common to see classless choropleths, and
the approach is available as an option in most GISs. Although this approach
has some attractive features, it is by no means a solution to the problem of
choosing appropriate class intervals, because the human visual system is
poor at judging exact color shades relative to a range of possible values. This
makes it hard for a map reader to estimate values in particular units in a
classless map.

Maps of Relat ive Rates

Another enhancement of choropleth maps adopts a different strategy, mod-
ifying the numbers to be mapped rather than the cartography. It is common,
particularly in epidemiology, to encounter data sets for which many of the
area counts are very small numbers, many of them zeros. The frequency
distribution of such data is far from normal, making selection of class
intervals difficult, and computed rates will be unstable to small changes
in the data, leading to absurd maps when the counts in some zones are close
to zero. A simple way to cope with the presence of many zeros due to Cressie
and his co-workers (Cressie, 1993) is to add 1 to each value before calculating
the rates of incidence relative to the area population totals. This has the
effect of discriminating (slightly) among the zero-valued areas, but the
problem of instability remains. An alternative is to map area scores relative
to some assumed distribution. In epidemiology, use is often made of stan-
dardized mortality ratios, which are the ratios of the deaths in each zone
relative to those expected on the basis of some externally specified (typically
national) age/sex-specific rates. Almost any approach along similar lines will
produce more sensible choroplethmaps. For example, in their census atlas of
population, the Census Research Unit (CRU, 1980) mapped a series of
variables using what they called the signed chi-square statistic. This was
defined as the square of the difference between the actual number in each
zone and the number expected under the assumption of an evenly distributed
population, divided by the expected value itself, much as in the conventional
chi-square statistic. Use of the square required each value to have its positive
(more than expected) or negative (less than expected) signs added after the
calculation, with the mapped values displayed using a bipolar scale centered
on zero. A simpler alternative, illustrated by Dykes and Unwin (2001), is to
use the simpler square root relation (Oi�Ei)=

ffiffiffiffi
E

p
i, which automatically takes
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care of the sign. Another approach, suggested byChoynowski (1959), is tomap
the probabilities of getting values more or less extreme than those observed,
assuming that the underlying distribution is Poisson. This type of map has
been frequently used inmedical geography and spatial epidemiology. Finally,
several authors have suggested that it is possible to take a Bayesian approach
to the problem, adjusting estimated ratios in each zone either away from or
toward an overall global value for the rate according to some prior measure of
confidence in the ratios (see Marshall, 1991; Langford, 1994).

Dasymetr ic Mapping

There have been a number of attempts to use transformation of the base map
to produce better visualizations. If, for example, the data to be visualized
relate to some aspect of the population and the zones come from some census
subdivision, then it makes sense in each zone to exclude any part of the land
that does not have any residential housing, such as parks, water bodies, and
commercial premises, when calculating areal density estimates. Such maps
are called dasymetric, and the approach has been suggested many times.
Usually, authors attribute the idea to Wright (1936), but it was also sug-
gested in Russia in the 1920s (Fabrikant, 2003). In his study, Wright used a
manual analysis of a standard topographicmap to define the settled area, but
within a GIS it is relatively easy to use remote sensed imagery to obtain the
same information (Langford and Unwin, 1994; Mennis, 2003).

Surface Models for Area Objects

A second alternative that also transforms the areal base is to estimate a
continuous surface of rates from the irregular pattern of zones that make up
the area objects and to visualize this as a surface display. As spatial data
have become available at increasingly high spatial resolution, the size of the
zones used has become smaller, making it possible to use the basic choropleth
data in much the same way as a statistician would use a histogram, as
estimates of some underlying continuous field of spatial densities using
either a variant of KDE (Thurstain-Goodwin and Unwin, 2000; Donnay
and Unwin, 2001) or interpolation onto a fine raster (Martin, 1989). Once
such a surface transformation has been obtained, it is possible to explore the
data further using standard surface processing (Dykes et al., 1997).

Area Cartograms

A final approach to improving the visualization of area-aggregated data is
to reproject the data onto an area cartogram base. This is a radical but
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justifiable solution to the choropleth problem that has been used for many
years (see one of the geography literature’s all-time classics: Tobler, 1963).
On an area cartogram, the zones themselves are drawn such that the area
of each is set proportionate to some other variable—typically, but not
always, the population of the zone. Meeting area cartograms for the first
time, people often think that they are ‘‘funny-looking maps’’ and, perhaps
for that reason, find them difficult to ‘‘read’’, but they have considerable use
in geographic analysis. As extensive reviews by their major current expo-
nents show (Dorling, 1996; Tobler, 2004), they have been drawn for many
years, and if we view them from the perspective of our third visualization
strategy, as transformations, they are not as unusual as people sometimes
think.

Cartograms are a form of map projection. What an area cartogram does is
systematically to expand/contract areas locally as some function of another
variable for every zone on the map. There is no single or simple way of
effecting an area cartogram transformation, although there is a long history
of attempts (for reviews, see Dorling, 1994; Tobler, 2004). Early attempts
used a variety of mechanical methods (see Hunter and Young, 1968; Skoda
and Robertson, 1972) and the results were not often used, but by the 1980s,
work was well underway to develop computer algorithms capable of produc-
ing useful results. Probably themost popular algorithms currently in use are
those by Dorling (1992, 1995) and, more recently, those by Gastner and
Newman (2004), but others have been reported (Gusein-Zade and Tikunov,
1993; Keim et al., 2004).

Getting the Idea

A very comprehensive set of cartogram world maps of single variables prod-

uced by Daniel Dorling’s team can be found at www.worldmapper.org/. It is

interesting to see how cartograms change one’s view of the planet. Carto-

grams of world population show the importance of India and China, but the

remaining displays for a whole series of variables associated with social and

economic matters highlight global inequalities in a way that conventional

choropleth mapping of the same data cannot. These maps are also available

as an atlas (Dorling et al., 2008). Alternatively, you can use your favorite

search engine to find some of the many cartograms produced after the 2008

U.S. presidential election.
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3.8. MAPPING AND EXPLORING FIELDS

Point Values: Spot Heights, Benchmarks, and Bubble Plots

Spatially continuous fields can be mapped in various ways. The simplest
method is to plot actual data values at a number of points. The points chosen
could be significant ones on the surface, such as peaks and valleys, the result
of a random sampling, or values on a systematic grid. Topographic maps
often show spot heights as point symbols (usually a dot or small open circle),
with the value written alongside. Both location and value are displayed
accurately, but there is no entity on the ground as on the map. In contrast,
the benchmarks and triangulation points also shown on topographic maps
are also usually marked on the ground in some way. Such point height
information has the advantages of accuracy and honesty. Only those data
that are known are displayed, and the map user is not offered any additional
interpretation of them. The major disadvantage is that no impression of the
overall shape of the field—its spatial structure—is given, but such an overall
impression depends upon some form of interpolation of the data values to
create a complete surface model. That said, a clear advance on marked spot
heights using basic visualization as its strategy is their display using
symbols varying in size or color according to the field value located at
each data point location. These plots are called bubble plots and are very
useful as a first look at some surface data.

Contours and Isol ines

If we are prepared to use interpolation to create a model of the surface, then
numerous display options are available. The isoline, of which the familiar
relief contour is the most familiar example, is the standard way to represent
a continuous field of data. In isoline mapping, we make an imaginary
connection of all locations in the field that are of equal height (z) value to
form a three-dimensional curve. These curves are then projected onto a two-
dimensional surface, usually (but not always, see below) the x–y plane, to
produce an isoline or contour map. Isolines show the absolute value of the
field and, by their spacing, also provide information on its gradient. The
resulting map is a view from an infinite distance above the field, that is, a
perpendicular or orthogonal view with no perspective effects. The biggest
difficulty with isoline or contour mapping is that we need to know a great
deal about variation in the values of the underlying phenomenon and,
through themethod of interpolation used, we are departing from the honesty
of a simple map of spot heights. Numerous interpolation methods are
available, which we discuss in Chapters 9 and 10, and most GISs have an
isoline mapping capability.
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Usually isolines are depicted as fine, continuous lines of appropriate color,
broken in places to allow labeling. To aid interpretation, every fourth or fifth
line may be thickened to act as a marker. The most important factor
governing the appearance of the map is the number of isolines and hence
the interval used. A large number of isolines gives a detailed picture of the
field but may obscure other map details. A small number requires less data
and will not mask other detail but may give a poor sense of the spatial
structure. Deciding on the isoline interval is a problem similar to that of
choosing class intervals for choroplethmaps. However, if isolines are to show
surface slope by their proximity to each other, there must be a standard,
equal interval. The choice of the interval is not simple; it depends on the scale
and use of the map and also on the nature of the surface being mapped. For
example, the current Ordnance Survey of Great Britain 1:50,000 sheets have
an interval of 10m, which is verymuch a compromise. Inmountainous areas,
such as the Scottish Highlands, it produces a clear representation of the
relief and leads to excessive crowding of contours only on the steepest slopes.
The same 10-m interval applied to the flattest areas of the English lowlands
often fails to pick up significant features in the landscape. This is a general
problem, because it is possible for significant features to be ‘‘filtered out’’ by
being located entirely within a single isoline interval. Familiarity with
contour maps can lead us to forget this unfortunate property of isolines
and also to underestimate the difficulty of interpreting contour maps for the
less experienced user.

Enhancing the Isol ine

Spot heights and isolines are often supplemented by other methods to
improve the overall visual impression of variation across a field. In layer

coloring, the field value range is divided into a series of bands, and areas in
each band are shaded an appropriate color. In a raster GIS data structure,
where a field is recorded over a regular grid of values, layer coloring is easy to
apply. Topographic maps are often layer colored, using a sequence from

Looking at Contours

Look at an example of the topographic mapping provided by your national

mapping agency (NMA) at a scale of around 1:50,000. Do these maps have

contours and, if so, how are the contour lines represented? If your library

resources allow, it is instructive to compare this map with a product of a

different NMA.
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green (lowland) through yellow and brown to blues and whites (high moun-
tains). Similarly, many newspapers color temperature bands in weather
maps from blue (cold) to red (hot). The major drawback of this method is a
tendency to generate an impression of steps or sharp boundaries in field
values; it is imperative that the range of colors chosen show a gradation in
apparent intensity. Again, inspection of maps in the media and on the Web
shows that this is often not the case.

Another way to represent field data concentrates attention on the shape
deduced from gradients and introduces the idea of a vector field. A scalar is a
quantity characterized solely by itsmagnitude, which remains unchanged no
matter how we project the data. A vector quantity is specified by both a
magnitude and a direction, and so depends also on how the data are projected.
Examples of vectors include the wind, migration flows, the flow of water in a
river, and so on. Just as it is possible to examine scalar fields, so we can have
vector fields, that is, continuous fields of measurable vectors changing from
point to point in space. Every scalar field has a vector field associated with it

given by its gradient or slope. We can plot the magnitude and direction of the
gradient as a single downslope arrow. A map of a scalar field’s associated
vector field provides a reasonably good visualization of the structure of the
scalarfieldandwas theessenceofhachuresused inearly reliefmaps, but these
are rarely seen today.Nowadays, vector fieldsmay be displayed using arrows,
each with its head giving the direction and length of the magnitude, or using
two maps, one for the down-gradient magnitude, the other for its direction.

Another supplementary technique, often used on relief maps but rarely on
other isolinemaps, is hill shading. A continuous shading variation from light
to dark is used to indicate surface slope, with darker shades corresponding to
steeper slopes. In a GIS, the required intensity of shading can be calculated
from a grid of field values and may be stored as a new field, to be draped over
other displays (such as a contour map). Relief is presented as if seen under
illumination from a distant light source, the precise effect varying according
to the source position. If this position is vertically above the surface, no
shadows are created, but the amount of illumination varies in relation to the
slope. Many maps use an oblique source in the northwest, which gives light
northwest-facing and dark southeast-facing slopes, so that with the map
viewed with north ‘‘at the top,’’ the shadows run toward the viewer. This can
give a strong visual impression of relief but is not without problems. First,
whether or not a slope is in shadow depends as much on its aspect (direction)
as on its angle of slope. For example, a gentle southeast-facing slope may be
illuminated as if it were a steeper one facing in some other direction. Second,
for reasons that are poorly understood, viewing the map with the shadows
running away from the viewer produces a startling and potentially very
confusing relief inversion: valleys become hills and vice versa.
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Of our three visualization strategies, hill shading is effectively the
second option, transforming the field values in some way so as better to
reveal the shape of the surface rather than its height. In conventional hill
shading, we compute the first derivative of height in order to generate the
gradient data, which are then displayed. This approach can be taken
further by computing the curvature of the surface, which is the rate of
change of the gradient. In a series of papers, Wood and his collaborators
have used maps based on the local curvature of surfaces of relief for the
objective identification of landscape features such as peaks, passes, and
valleys (see, for example, Fisher et al., 2004). Wood et al. (1999) show that
such analysis can usefully be applied to socioeconomic data such as popula-
tion density.
Given technological developments that enable the creation of sophisti-

cated surface displays whose production could not be contemplated other-
wise, the distinction between what is clearly and unequivocally a map and
what is more properly thought of as a virtual reality display has become very
blurred.

Other Ways of Displaying Surfaces

A useful distinction that can be made when considering maps of surface data
is whether or not they are planimetrically correct. A planimetrically correct
representation is one where the viewpoint is from infinity, with the surface
relief projected onto a plane at right angles to the viewing direction. Such
vertical views preserve plan distance and do not hide parts of the surface
from view. Traditional isoline maps conform to this approach.
Many other methods of displaying relief are not planimetrically correct. In

fact, a planimetrically correct perspective is a highly artificial view, one that
humans never experience in reality. We look across landscapes, or down onto
them from a single point. It might be inferred that our ability to visualize the
relief of a surface would be improved if it were displayed using a more
natural viewpoint that incorporated perspective effects. Many GISs can plot
surfaces in three-dimensional projections. In its simplest form, two sets of
intersecting parallel lines trace out elevation or some other quantitative
attribute. Known as a fishnet, this form of rendering is closer to what we
might regard as a real view of topography. It does not suffer from the
quantization of elevation into bands, as happens with contours. Three-
dimensional projections can be enhanced by draping images of other attri-
bute values over the surface. The drape may take the form of the same
elevation information or additional related information, such as the surface
slope or average rainfall. Overlaying images with some degree of realism,
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such as shaded relief, or remotely sensed colour composites, exploits the
human tendency to make sense of visual images and provides a virtual
reality view of the land surface (Fisher and Unwin, 2002). However, the
information conveyed by such images can be difficult to control, and much
remains to be learned about design rules for these displays. Arguably, they
introduce yet more graphic variables for consideration, such as vertical
exaggeration, line frequency, sequencing, and viewing direction.

3.9. THE SPATIALIZATION OF NONSPATIAL DATA

In everyday life, we often use the wordsmap andmapping as a metaphor for
an organizational framework for some nongeographic objects of interest. We
talk, for example, of ‘‘maps’’ of the brain, of DNA sequences, of galaxies, and
even of the computer hard drive (see Hall, 1992). In this usage, the termmap

is often used to mean that the information is organized such that each object
of interest can be located by coordinates (x, y) in two dimensions. If these
happen to be spatial coordinates, the result is a geographic map, but clearly,
the same general approach can used with any other variables and the result
will be a map in some other space. The visualization gain is that we can
comprehend the relationships between objects by simple visual examination
of our map. Whether or not this is sensible, or leads to better understanding,
is a matter for the scientific discipline concerned, but we refer to this display
of data in two dimensions as the general process of spatialization of non-
spatial data.

Landserf for Surface Display

Most GISs have sophisticated surface display options, but Landserf is a public-

domain system designed specifically for the visualization and analysis of

surfaces by JoWood of London’s City University. Landserf can be accessed at

www.landserf.org.

The ‘‘image gallery’’ at thisWeb site has examples of numerous techniques

for the display of surface information, including three-dimensional perspec-

tive views, gradient and curvature mapping, ‘‘fly throughs’’ synthesized from

digital elevation data, and so on. Visit the site and examine each of the images

in this gallery.
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Without worrying about map projection issues, when we plot objects on a
geographic map, we use Cartesian coordinates with two axes, each of which
is a distance, north/south (northings) and east/west (eastings). These dis-
tances are real ones that we can measure.
The key to understanding spatialization is to retain the same notion of

locating objects by distances in a Cartesian system but to relax our definition
of distance. By far the best basic reference on these ideas is the book by
Gatrell (1983), which deals with numerous concepts of distance as an
example of a relation between elements of a defined set. We might, for
example, measure the distance between two places by the time taken to
travel between them or the total travel cost involved. Using these definitions
of distance greatly alters our view of the planet: it is much quicker (but
rather more expensive) for one of us to get from his home in England to
NewYork than it is to get to the Isle of Skye off the west coast of Scotland, but
the real-world distance to New York is much greater than it is to Skye. The
‘‘time-distance’’ is less, and the ‘‘cost-distance’’ is more, but which is analyti-
cally more useful?
We can push this analysis further by thinking of distance as similarity/

dissimilarity (see Fabrikant et al., 2004)—for example, between counts of
plant species in a series of ecological samples, the number of shared

Some Examples of Spatialization

The best way to understand spatialization is to examine some examples.

Doing aWeb search for spatialization will bring up a lot of examples, such as:

1. ‘‘Genomes as Geography.’’ This article by Dolan et al. (2006) uses the

mapping and search tools developed within a GIS to display genomes

spatially in a system called GenoSIS.

2. Indexing a book. In an interesting collaboration, Dykes, Fabrikant and

Wood (2005) have produced a surface map display based on spati-

alization of the papers in an edited volume on geovisualization

(Dykes, MacEachren, and Kraak, 2005); see www.soi.city.ac.uk/

�jwo/landserf/gallery/image4.html.

3. Organizing an information space such as your hard drive directory.

4. One of the most prolific researchers into the issues around spatial-

ization has been Sarah Fabrikant. Some of her work can be seen at

www.geog.ucsb.edu/�sara/html/research/diss/spatialization.html.
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keywords in some document, and even the number of times one player passes
the ball to another in a game of soccer (Gatrell and Gould, 1979). In a
multivariate data space, these similarities could also be the standard Pear-
sonian correlation coefficients between the variables. The relationship is
that of statistical correlation, and the distance is in correlation space.

The problem in spatialization is to take a matrix of observed similarities/
dissimilarities and display the information in a two- or three-dimensional
Cartesian space that can be represented by a standard map type. Space does
not allow us to go into detail on this issue but, as Skupin and Fabrikant
(2003) show, workers have experimented with virtually every standard data
reduction technique. Since we are projecting the data into Cartesian co-
ordinates, the two requirements are that the axes be at right angles to each
other (orthogonal) and that, for the resulting map to be useful, the data can
be reduced to just two dimensions. In his book, Gatrell (1983) used metric-
and nonmetric-multidimensional scaling to find the best configuration for
the distances in two dimensions. A simpler alternative that is sometimes
appropriate is to use standard principal components analysis employing
scores on the first two components as the locational coordinates. More
recently, use has been made of a variety of other data reduction techniques
such as ‘‘projection pursuit,’’ ‘‘spring modelling,’’ ‘‘pathfinder network scal-
ing,’’ ‘‘self-organizing maps,’’ ‘‘tree maps,’’ and so on (Skupin and Fabrikant,
2003). In practice, most workers in the field seem to use either the method
with which they are most familiar or the one that gives the clearest
arrangement on the output map.

3.10. CONCLUSION

This chapter has covered a lot of ground. Our aim has been to show how
allegedly simple mapping can help us understand spatial data and to place
this within amodern framework inwhich access to aGIS is assumed. The use
of a GIS to create maps easily and quickly from digital data means thatmuch
of the craft involved in drawing maps has been consigned to history, and the
temptation is to think thatGIS analysis no longer needs to concern itself with
ideas from traditional cartography. Our essential summary point is that
replacing a craft skill with a computer does not mean that the art of map
design and the science of map compilation are also dead. Rather, it is
important that everybody who produces maps or performs analysis with
GIS be aware of the complexities and difficulties involved. It may no longer
be important to follow all the rules of cartographic design all of the timewhen
using a map as a transient analysis tool rather than as a presentation
medium, but understanding some of those fundamentals is still useful.
Knowing when and why you are breaking the rules and how it can affect
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your understanding of the problem at hand is a valuable skill to develop.
Equally, understanding how to make good maps improves your ability to
use mapping as an essential tool for the exploration and understanding of
your data.

CHAPTER REVIEW

� Maps are a very old form of display that are used in many ways.
� Exploring spatial data by visualization isn’t new, but by providing
more data, making maps easier to draw, and allowing new display
methods, technological changes have made it a much more common
analysis strategy.

� Traditionally, mapmakers were restricted to the use of a few basic
graphic variables, such as the seven (location, value, hue, size, shape,
spacing, pattern) suggested by Bertin.

� New technologies have enabled this list to be extended to include, for
example, animation, linking, and brushing, but as yet, little is known
about the ways in which map readers interpret and use such devices.

� For each of the spatial entity types (point, line, area, field) recognized
in Chapter 1, there is a variety of possible mapping types, of which
most GISs implement only a small subset.

� Spatialization is the name given to the process of making maps of
nonspatial data.

� Finally, and despite all the technology, modern GIS users can learn a
great deal about how to create effective displays from traditional
cartography.
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Chapter 4

Fundamentals—Maps as Outcomes
of Processes

CHA P T E R O B J E C T I V E S

In this chapter, we:

� Introduce the concept of patterns as realizations of processes
� Describe a simple process model for point patterns–the independent

random process or complete spatial randomness
� Show how expected values for one measure of a point pattern can be
derived from this process model

� Introduce the ideas of stationarity and of first- and second-order effects
in spatial processes

� Differentiate between isotropic and anisotropic processes
� Briefly extend these ideas to the treatment of line and area objects and
to spatially continuous fields

After reading this chapter, you should be able to:

� Justify the so-called stochastic process approach to spatial statistical
analysis

� Describe and provide examples of deterministic and spatial stochastic
processes

� List the two basic assumptions of the independent random process
� Outline the logic behind the derivation of long-run expected outcomes
of this process using the quadrat counts as an example

� List and give examples of nonstationarity involving first- and second-
order effects

� Differentiate between isotropic and anisotropic processes
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� Outline how these ideas might also be applied to line, area, and field
objects

4.1. INTRODUCTION: MAPS AND PROCESSES

In Chapter 1 we highlighted the importance of spatial patterns and spatial
processes to the view of spatial analysis presented in this book. Patterns
provide clues to a possible causal process. The continued usefulness of maps
and other visualizations to analysts remains their ability to suggest patterns
in the phenomena they represent. In this chapter, we look at this idea more
closely and explain the view that maps can be understood as outcomes of
processes.

At the moment, your picture of processes and patterns, as described in this
book, may look something like that shown in Figure 4.1.

We would agree that this is not a very useful picture. In this chapter, we
plan to develop your ideas about processes in spatial analysis so that the left-
hand side of this picture becomes more complete. In the next chapter we
develop ideas about patterns—filling in the right-hand side of the picture—
and complete the picture by describing how processes and patterns may be
related statistically. However, by the end of this chapter, you should already
have a pretty good idea of where this discussion is going, because in practice,
it is difficult to separate entirely these related concepts. We develop this
discussion with particular reference to point pattern analysis, so by the time
you have read these two chapters, you will be well on the way to an under-
standing of both general concepts in spatial analysis and more particular
concepts relating to the analysis of point objects.

In Section 4.2 we define processes, starting with deterministic processes
and moving on to stochastic processes. We focus on the idea that processes
make patterns. In Section 4.3 we show how this idea can be made mathe-
matically exact and that certain properties of the patterns produced by the
independent random process can be predicted. This involves some mathe-
matical derivation, but it is done in easy steps so that it is easy to follow. It is
more important that you grasp the general principle that we can propose a
mathematical model for a spatial process and then use that model to
determine expected values for descriptive measures of the patterns that
might result from that process. This provides a basis for the statistical

Processes
?

Patterns
?

Figure 4.1 Our current view of spatial statistical analysis. In this chapter and

the next, we will be fleshing out this rather thin description.
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assessment of the various point pattern measures discussed in Chapter 5.
This chapter ends with a discussion of how this definition of a process can be
extended to line, area, and field objects.

4.2. PROCESSES AND THE PATTERNS THEY MAKE

We have already seen that there are a number of technical problems in
applying statistical analysis to spatial data—principally spatial auto-
correlation, MAUP, and scale and edge effects. There is another, perhaps
more troublesome problem, which seems to make the application of inferen-
tial statistics to geography at best questionable and at worst simply wrong:
geographic data are often not samples in the sense meant in standard
statistics. Frequently, geographic data represent the whole population.
Often, we are only interested in understanding the study region, and not
in making wider inferences about the whole world, so the data are the entire
population of interest. For example, census data are usually available for a
whole country. It would be perverse to study only the census data for the
Eastern Seaboard if our interest extended to all of the lower 48 states of the
United States, since data are available for all states. Therefore, we really
don’t need the whole apparatus of confidence intervals for the sample mean.
If we want to determine the infant mortality rate for the lower 48 states,
based on data for approximately 3000 counties, then we can simply calculate
it, because we have all the data we need.
One response to this problem is not to try to say anything statistical about

geographic data at all. Thus, we can describe and map geographic data
without commenting on their likelihood, or on the confidence that we have a
good estimate of their mean, or anything else. This is a perfectly reasonable
approach. It certainly avoids the contradictions inherent in statements like
‘‘The mean Pennsylvania county population is 150,000 � 15,000 with 95%
confidence’’ when we have access to the full data set.
The other possibility is to think in terms of spatial processes and their

possible realizations. In this view, an observed map pattern is one of the
possible patterns that might have been generated by a hypothesized process.
Statistical analysis, then, focuses on issues around the question ‘‘Could the
pattern we observe have been generated by this particular process?’’

Determinist ic Processes

Process is one of those words that is tricky to pin down. Dictionary definitions
tend to be unhelpful and a little banal: ‘‘something going on’’ is typical. Our
definition will not be very helpful either, but bear with us, and it will all start
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to make sense. A spatial process is a description of how a spatial pattern

might be generated. Often, the process description is mathematical and it
may also be deterministic. For example, if x and y are the two spatial
coordinates, the equation

z ¼ 2xþ 3y ð4:1Þ

describes a spatial process that produces a numerical value for z at every
location in the x–y plane. If we substitute any pair of location coordinates into
this equation, then a value for z is returned. For example, location (3, 4) has
x ¼ 3 and y ¼ 4, so that z ¼ (2� 3)þ (3� 4) ¼ 6þ 12 ¼ 18. The values of z at
a number of other locations are shown in Figure 4.2. In the terms introduced
in Chapters 1 and 2, the entity described by this equation is a spatially
continuous field. The contours in the figure show that the field z is a simple
inclined plane rising from southwest to northeast across the mapped area.

This spatial process is not very interesting because it always produces the
same outcome at each location, which is what is meant by the term determi-

nistic. The value of z at location (3, 4) will be 18 no matter how many times
this process is realized or ‘‘made real.’’

A Stochast ic Process and Its Real izat ions

Geographic data are rarely deterministic in this way. More often, they
appear to be the result of a chance process, whose outcome is subject to
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Figure 4.2 A realization of the deterministic spatial process z ¼ 2xþ 3y for

0 � x � 7, 0 � y � 7. Contours are shown as dashed lines. This is the only

possible realization because the process is deterministic.
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variation that cannot be given precisely by a mathematical function. This
apparently chance element seems inherent in processes involving the indi-
vidual or collective results of human decisions. It also appears in applications
such as meteorology, where, although the spatial patterns observed are the
result of deterministic physical laws, they are often analyzed as if they were
the results of chance processes. The physics of chaotic and complex systems
has made it clear that even deterministic processes can produce seemingly
random, unpredictable outcomes—see James Gleick’s excellent nontechnical
book Chaos for a thorough discussion (Gleick, 1987). Furthermore, the
impossibility of exact measurement may introduce random errors into
even uniquely determined spatial patterns. Whatever the reason for this
chance variation, the result is that the same process may generate many
different results.
If we introduce a random, or stochastic, element into a process description,

then it becomes unpredictable. For example, a process similar to the previous
one is z ¼ 2xþ 3yþ d, where d is a randomly chosen value at each location
(say) �1 or þ1. Now different outcomes are possible each time the process is
realized. Two realizations of

z ¼ 2xþ 3y� 1 ð4:2Þ

are shown in Figure 4.3. If you draw the same isolines, you will discover that,
although there is still a general rise from southwest to northeast, the lines
are no longer straight (try it). There is an effectively infinite number of
possible realizations of this process. If only the 64 locations shown here are of
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for 0 � x � 7, 0 � y � 7.
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interest, there are 264 or 18,446,744,073,709,551,616 possible realizations
that might be observed.

What would be the outcome if there were absolutely no geography to a
process—if it were completely random? If you think about it, the idea of no
geography is the ultimate null hypothesis for any geographer to suggest, and
we illustrate what it implies in the remainder of this section using as an
example the creation of a dot/pinmap created by a point process. Again, to fix
ideas, we suggest that you undertake the following thought exercise.

Thought Exercise to Fix Ideas

We concede that this is tedious, and if you understand things so far, then skip

it. However, it is a useful exercise to fix ideas.

Use the basic equation above, but instead of adding or subtracting 1 from

each value, randomly add or subtract an integer (whole number) in the range

0–9 and prepare an isoline map of the result you obtain. You can get random

numbers from a spreadsheet or from tables in most statistics textbooks.Take

two digits at a time. If the first digit is less than 5 (0–4), add the next digit to

your result; if it is 5 or more, subtract the next digit.

Notice that this map pattern isn’t random. The map still shows a general

drift in that values increase from southwest to northeast, but it has a local

chance component added to it. The word random refers to the way this

second component was produced—in other words, it refers to the process,

not to any resulting map.

All the Way: A Chance Map

The principles involved here can be demonstrated readily by the following

experiment. If you have a spreadsheet on your computer with the ability to

generate random numbers, it is easily done automatically. (Work out how for

yourself!). By hand, proceed as follows:

1. Draw a square map frame, with eastings and northings coordinates

from 0 to 99.

2. Use a spreadsheet program, random number tables, or the last two

digits in a column of numbers in your telephone directory to get two

random numbers each in the range 0–99.
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The result is a dot/pin map generated by the independent random process
(IRP), sometimes also called complete spatial randomness (CSR). Every time
you locate a point, called an event in the language of statistics, you are
randomly choosing a sample value from a fixed underlying probability
distribution in which every whole number value in the range 0–99 has an
equal chance of being selected. This is a uniform probability distribution. It
should be evident that, although the process is the same each time, very
different-looking maps can be produced. Each map is a realization of a

process involving random selection from a fixed, uniform probability distri-
bution. Strictly speaking, because in our exercise events can only occur at
100� 100 ¼ 10; 000 locations and not absolutely everywhere in the study,
the example isn’t fully IRP/CSR. This issue can be easily addressed in a
spreadsheet setting by generating real-valued random coordinates rather
than integers.
It is important to be clear on three issues:

� The word random is used to describe themethod by which the symbols
are located, not the patterns that result. It is the process that is
random, not the pattern. We can also generate maps of realizations
randomly using other underlying probability distributions—not just
uniform probabilities.

3. Using these random numbers as the eastings and northings coor-

dinates, mark a dot at the specified location.

4. Repeat steps 2 and 3 as many times as seems reasonable (50?) to get

your first map.

To get another map, repeat steps 1–4.

Different Distributions

If instead of selecting the two locational coordinates from a uniform proba-

bility distribution you had instead used a normal (Gaussian) distribution, how

might the resulting realizations differ from the one you obtained?

Notice that the very clear tendency to create a pattern in this experiment is

still a result of a random or stochastic process. It’s just that, in this case, we

chose different rules of the game.
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� The maps produced by the stochastic processes we are discussing each
display a spatial pattern. It often comes as a surprise to people doing
these exercises for the first time that random selection from a uniform
probability distribution can give marked clusters of events of the sort
often seen, for example, in dot/pin maps of disease incidence.

� In no sense is it asserted that spatial patterns are ultimately chance
affairs. In the real world, each point symbol on a map, whether it
represents the incidence of a crime, illness, factory, or oak tree, has a
good behavioral or environmental reason for its location. All we are
saying is that, in aggregate, the many individual histories and
circumstances might best be described by regarding the location
process as a chance one—albeit a chance process with well-defined
mechanisms.

4.3. PREDICTING THE PATTERN GENERATED
BY A PROCESS

Now we will use the example of the dot/pin map produced by a point
process to show how, with some basic assumptions and a little mathemat-
ics, we can deduce something about the patterns that result from a process.
Of the infinitely many processes that could generate point symbol maps,
the simplest is one where no spatial constraints operate, the IRP or CSR.
You will already have a good idea of how this works if you completed the
exercise in the previous section. Formally, the IRP postulates two
conditions:

Warning: Mathematics Ahead!

So far, you may be thinking, ‘‘This spatial statistical analysis is great—no

statistics or mathematics!’’ Well, all good things come to an end, and this

section is where we start to look at the patterns in maps in a more formal or

mathematical way. There is some possibly muddy mathematical ground

ahead. As when dealing with really muddy ground, we will do better and

not get stuck if we take our time and move slowly but surely ahead. The

objective is not to bog down in mathematics (don’t panic if you can’t follow it

completely), but rather to show that it is possible to suggest a process and

then to use some mathematics to deduce its long-run average outcomes.
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1. The condition of equal probability. This states that any event has
an equal probability of being in any position or, equivalently, that
each small subarea of the map has an equal chance of receiving an
event.

2. The condition of independence. This states that the positioning of
any event is independent of the positioning of any other event.

Such a process might be appropriate in real-world situations where the
locations of entities are not influenced either by the varying quality of the
environment or by the distances between entities.
It turns out to be easy to derive the long-run expected results for this

process, expressed in terms of the number of events we expect to find in a set
of equal-sized and nonoverlapping areas, called quadrats. Figure 4.4 shows
an area in which there are 10 events (points), distributed over eight hexago-
nal quadrats.
In the figure, a so-called quadrat count (see Chapter 5 for a more complete

discussion) reveals that we have two quadrats with no events, three quadrats
with one, two quadrats with two, and one quadrat with three events.
Our aim is to derive the expected frequency distribution of these numbers

for the IRP outlined above. With our study region divided into these eight
quadrats for quadrat counting, what is the probability that any one event
will be found in a particular quadrat? Or two events? Or three? Obviously,
this must depend on the number of events in the pattern. In our example
there are 10 events in the pattern, and we are interested in determining the
probabilities of 0, 1, 2 . . . up to 10 events being found in a particular
quadrat. It is obvious that, under our assumptions, the chance that all 10
events will be in the same quadrat is very low, whereas the chance of getting
just 1 event in a quadrat is relatively high.
To determine this expected frequency distribution, we need to build up the

mathematics in a series of steps. First, we need to know the probability that
any single event will occur in a particular quadrat. For each event in the
pattern, the probability that it occurs in the particular quadrat we are

A

Figure 4.4 Quadrat counting for the example explained in the text.
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looking at (say, the shaded one) is given by the fraction of the study area that
the quadrat represents. This probability is given by

P event A in shaded quadratð Þ ¼ 1

8
ð4:3Þ

since all quadrats are equal in size and all eight together fill up the study
region. This is a direct consequence of our assumption that an event has an
equal probability of occurring anywhere in the study region and amounts
to a declaration that there are no first-order effects in the imagined
process.

Now, to the second step. For a particular event A to be the only event
observed in the same particular quadrat, what must happen is that A is in
that quadrat (with probability 1/8) and nine other events B, C, . . . J are not
in the quadrat, which occurs with probability 7/8 for each of them. So, the
probability that A is the only event in the quadrat is given by

P(event A only) ¼ 1

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
ð4:4Þ

that is, 1/8, multiplied by 7/8 nine times—once for each of the events that we
are not interested in seeing in the quadrat. The multiplication of the
probabilities in the above equation is possible because of the second assump-
tion—that each event location is independent of all other event locations—
and is a declaration that there are no second-order effects in the imagined
process.. Step three is as follows: that if we observe one event in a particular
quadrat, it could be any of the 10 events in the pattern, not necessarily event
A, so there are 10 ways of getting just one event in that quadrat. Thus, we
have

P(one event only) ¼ 10� 1

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
� 7

8
ð4:5Þ

In fact, the general formula for the probability of observing k events in a
particular quadrat is

P(k events) ¼ (No: of possible combinations of k events) � 1

8

� �k

� 7

8

� �10�k

ð4:6Þ

The formula for ‘‘number of possible combinations of k events’’ from a set of
n events is well known and is given by
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Cn
k ¼ n!

k!(n� k)!
¼ n

k

� �
ð4:7Þ

where the exclamation symbol (!) represents the factorial operation and n! is
given by

n� (n� 1)� (n� 2) . . .� 1 ð4:8Þ

If we put this expression for the number of combinations of k events into
equation (4.6), we have

P(k events) ¼C10
k � 1

8

� �k

� 7

8

� �10�k

¼ 10!

k!(10� k)!
� 1

8

� �k

� 7

8

� �10�k
ð4:9Þ

We can now substitute each possible value of k from 0 to 10 into this
equation in turn and arrive at the probability distribution for the quadrat
counts based on eight quadrats for a point pattern of 10 events. The
probabilities that result are shown in Table 4.1.
This distribution is so commonplace in statistics that it has a name: the

binomial distribution, given by

Table 4.1 Probability Distribution Calculations for the Worked Example in the Text,
n ¼ 10

No. of events
in quadrant k

No. of possible
combinations of k

events Cn
k

1

8

� �k 7

8

� �10�k

P(k events)

0 1 1.00000000 0.26307558 0.26307558

1 10 0.12500000 0.30065780 0.37582225

2 45 0.01562500 0.34360892 0.24160002

3 120 0.00195313 0.39269590 0.09203810

4 210 0.00024412 0.44879532 0.02300953

5 252 0.00003052 0.51290894 0.00394449

6 210 0.00000381 0.58618164 0.00046958

7 120 0.00000048 0.66992188 0.00003833

8 45 0.00000006 0.76562500 0.00000205

9 10 0.00000001 0.87500000 0.00000007

10 1 0.00000000 1.00000000 0.00000000
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P(n; k) ¼ n
k

� �
pk(1� p)n�k ð4:10Þ

A little thought will show that the probability p in the quadrat counting
case is given by the size of each quadrat relative to the size of the study
region. That is,

p ¼ quadrat area

area of study region
¼ a=x

a
¼ 1

x
ð4:11Þ

where x is the number of quadrats into which the study area is divided. This
gives us the final expression for the probability distribution of the quadrat
counts for a point pattern generated by the IRP:

P(k;n; x) ¼ n
k

� �
1

x

� �k x� 1

x

� �n�k

ð4:12Þ

which is simply a binomial distribution with p = 1/x,where n is the number of
events in the pattern, x is the number of quadrats used, and k is the number
of events in a quadrat.

The importance of these results cannot be overstated. In effect, we have
specified a process—the IRP—and used some mathematics to predict the
frequency distribution of quadrat counts that, in the long run, its realizations
should yield. These probabilities may therefore be used as a standard by
which any observed real-world distribution can be judged. For example, the
small point pattern in Figure 4.4 has an observed quadrat count distribution
shown in column 2 of Table 4.2.

We can compare this observed distribution of quadrat counts to that
predicted by the binomial distribution calculations from Table 4.1. To
make comparison easier, these proportions have been added as the last
column in Table 4.2. The observed proportions appear very similar to those
we would expect if the point pattern in Figure 4.4 had been produced by the
IRP. This is confirmed by inspection of the two distributions plotted on the
same axes, as in Figure 4.5.

Since we also know the theoretical mean and standard deviation of the
binomial distribution, it is possible—as we shall see in the next chapter—to
make this observation more precise using the usual statistical reasoning
and tests.

In this section, we have seen that it is possible to describe a spatial process
mathematically. We have also seen, by way of example, that we can predict
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the outcome of a quadrat count description of a pattern generated by the IRP,
and use this to judge whether or not a particular observed point pattern is
unusual with respect to that process. In other words, we can form a null
hypothesis that the IRP is responsible for an observed spatial pattern and
judge whether or not the observed pattern is a likely realization of that
process. In the next chapter, we discuss some statistical tests, based on this
general approach, for various point pattern measures. This discussion
should make the rather abstract ideas presented here more concrete.
We should note at this point that the binomial expression derived above is

often not very practical. The calculation of the required factorials for even

Table 4.2 Quadrat Counts for the Example in Figure 4.4 Compared to the Calculated
Expected Frequency Distribution from the Binomial Distributions

k No. of quadrats Observed proportions Predicted proportions

0 2 0.250 0.2630755

1 3 0.375 0.3758222

2 2 0.250 0.2416000

3 1 0.125 0.0920381

4 0 0.000 0.0230095

5 0 0.000 0.0039445

6 0 0.000 0.0004696

7 0 0.000 0.0000383

8 0 0.000 0.0000021

9 0 0.000 0.0000001

10 0 0.000 0.0000000
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Figure 4.5 Comparison of the observed and predicted frequency distributions

for the pattern in Figure 4.4.
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medium-sized values of n and k is difficult. For example, 50! � 3:0414� 1064

and n ¼ 50 would represent a small point pattern—values of n of 1000 or
more are not uncommon. Fortunately, it turns out that even for modest
values of n the Poisson distribution is a very good approximation to the
binomial distribution. The Poisson distribution is given by

P(k) ¼ lke�l

k!
ð4:13Þ

where l is the total intensity of the pattern per quadrat and e � 2:7182818 is
the base of the natural logarithm system. To confirm that this is a good
approximation, for the example considered in Figure 4.4, if each hexagonal
quadrat has unit area (i.e., 1), then l ¼ 10/8 ¼ 1.25, and we obtain the
proportions given in Table 4.3.

For larger n the Poisson approximation is closer than this, so it is almost
always adequate—and it is always considerably easier to calculate.

4.4. MORE DEFINITIONS

The IRP is mathematically elegant and forms a useful starting point for
spatial analysis, but its use is often exceedingly naive and unrealistic. Many
applications of themodel are made in the expectation of being forced to reject
the null hypothesis of independence and randomness in favor of some
alternative hypothesis that postulates a spatially dependent process. If
real-world spatial patterns were indeed generated by unconstrained

Table 4.3 Comparison of the Binomial and Poisson
Distributions for Small n

k Binomial Poisson

0 0.26307558 0.28650480

1 0.37582225 0.35813100

2 0.24160002 0.22383187

3 0.09203810 0.09326328

4 0.02300953 0.02914478

5 0.00394449 0.00728619

6 0.00046958 0.00151796

7 0.00003833 0.00027106

8 0.00000205 0.00004235

9 0.00000007 0.00000588

10 0.00000000 0.00000074
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randomness, then geography as we understand it would have little meaning
or interest and most GIS operations would be pointless.
An examination of most point patterns suggests that some other process is

operating. In the real world, events at one place and time are seldom
independent of events at another, so as a general rule, we expect point
patterns to display spatial dependence, and hence to not match a hypothesis
of spatial randomness. There are two basic ways in which we expect real
processes to differ from IRP/CSR. First, variations in the receptiveness of the
study area mean that the assumption of an equal probability of each area
receiving an event cannot be sustained. For example, if events happen to be
plants of a certain species, then almost certainly they will have a preference
for patches of particular soil types, with the result that these plants would
probably cluster on the favored soils at the expense of those less favored.
Similarly, in a study of the geography of a disease, if our point objects
represent locations of cases of that disease, these will naturally tend to
cluster in more densely populated areas. Statisticians refer to this type of
influence on a spatial process as a first-order effect.
Second, the assumption that event placements are independent of each

other often cannot be sustained. Two deviations from independence are
possible. Consider, for example, the settlement of the Canadian prairies
in the latter half of the nineteenth century. As settlers spread, market towns
grew up in competition with one another. For various reasons, notably the
competitive advantage conferred by being near a railway lines, some towns
prospered while others declined, with a strong tendency for successful towns
to be located far from other successful towns as the market areas of each
expanded. The result was distinct spatial separation in the distribution of
towns, with a tendency toward uniform spacing of the sort predicted by
central place theory (see King, 1984). In this case, point objects tend to
suppress nearby events, reducing the probability of another point close by.
Other real-world processes involve aggregation or clustering mechanisms
where by the occurrence of one event at a particular location increases the
probability of other events nearby. Examples include the spread of conta-
gious diseases, such as foot and mouth disease in cattle and tuberculosis in
humans, or the diffusion of an innovation through an agricultural commu-
nity—where farmers are more likely to adopt new techniques that their
neighbors have already used with success. Statisticians refer to this second
type of influence as a second-order effect.
Both first- and second-order effects mean that the chances of an event

occurring change over space, and we say that the process is no longer
stationary. The concept of stationarity is not a simple one, but is essentially
the idea that the rules that govern a process and control the placement of
entities, although probabilistic, do not change, or drift over space. In a point
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process, the basic properties of the process are set by a single parameter—
the probability that any small area will receive a point—called, for obvious
reasons, the intensity of the process. Stationarity implies that the intensity
does not change over space. To complicate matters further, we can also think
in terms of first- and second-order stationarity. A spatial process isfirst-order
stationary if there is no variation in its intensity over space, and it is second-
order stationary if there is no interaction between events. The IRP is both

first- and second-order stationary. Another possible class of intensity varia-
tion is where a process varies with spatial direction. Such a process is called
anisotropic and may be contrasted with an isotropic process, where direc-
tional effects do not occur.

So, we have the possibility of both first- and second-order effects in any
spatial process, and both can lead to either uniformity or clustering in the
distribution of the point objects. Herein lies one important weakness of
spatial statistical analysis: observation of just a single realization of a
process—for example, a simple dot/pin map—is almost never sufficient to
enable us to decide which of these two effects is operating. In other words,
departures from an independent random model may be detected using the
tests we outline in Chapter 5, but it will almost always be impossible to say
whether they are due to variations in the environment or to interactions
between events.

4.5. STOCHASTIC PROCESSES IN LINES,
AREAS, AND FIELDS

So far, we have concentrated on IRP/CSR applied to spatial point processes.
At this stage, if you are primarily interested in analyzing point patterns, you
may want to read the next chapter. However, it is important to note that the
same idea of mathematically defining spatial processes has also been applied
to the generation of patterns of lines, areas, and the values in continuous
fields. In this section, we briefly survey these cases. Many of these ideas will
be taken further in later chapters.

Line Objects

Just as point objects have spatial pattern, line objects have length, direc-
tion, and, if they form part of a network, connection. It is theoretically
possible to apply similar ideas to those we have used above to determine
expected path lengths, directions, and connectivity for mathematically
defined processes that generate sets of lines. However, this approach
has not found much favor.
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What values would we expect, in the long run, from this IRP? Although the
general principles are the same, deducing the expected frequencies of path
lengths given an IRP is more difficult than it was for point patterns. There
are three reasons for this. First, recall that the frequency distribution of
quadrat counts is discrete; they need only be calculated for whole numbers
corresponding to cell counts with k ¼ 0; 1; 2; . . ., n points in them. Path
lengths can take on any value, so the distribution involved is a continuous

probability density function. This makes the mathematics a little more
difficult. Second, a moment’s doodling quickly shows that, because they
are constrained by the perimeter of the area, path lengths strongly depend on
the shape of the area they cross. Third, mathematical statisticians have paid
less attention to line-generating processes than they have to point-generat-
ing ones. One exception is the work of Horowitz (1965), described by Getis
and Boots (1978).
Starting from the independent random assumptions already outlined,

Horowitz derives the probabilities of lines of a given length for five basic
shapes: squares, rectangles, circles, cubes, and spheres. His results for a
rectangle are shown in Figure 4.6. The histogram in the plot is based on a
spreadsheet simulation of this situation, while the line shows the theoretical
probability density function derived by Horowitz.
There are several points to note: The probability associated with any exact

path length in a continuous probability distribution is very small. Thus, what
is plotted is the probability density, that is, the probability per unit change in
length. This probability density function is strongly influenced by the area’s
shape. There are a number of very practical situations in which the statistical
properties of straight-line paths across specific geometric shapes are required,

Random Lines

Consider a blank area such as an open park or plaza to be crossed by

pedestrians or shoppers and across which no fixed paths exist. An analogous

process to the independent random location of a point is to randomly select a

location on the perimeter of the area, allowing each point an equal and

independent chance of being selected, and then to draw a line in a random

direction from the selected point until it reaches the perimeter. As an alterna-

tive, and generating a different distribution,we could randomly select a second

point, also on the perimeter, and join the two points. Draw such an area and

one such line on a sheet of paper. Next, produce a series of random lines, so

that the pattern they make is one realization of this random process. What do

you think the frequency distribution of these line lengths would look like?
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but theseoccurmostly inphysics (gammaraysacrossa reactor, soundwaves in
a room, and so on) rather than in geography. A possible application, to
pedestrian paths across a circular shopping plaza, is given in Getis and Boots
(1978), but it is not very convincing. A major difficulty is that few geographic
problems of interest have the simple regular shapes that allow precise
mathematical derivation of the probabilities. Instead, it is likely to be neces-
sary to use computer simulation to establish the expected independent ran-
dom probabilities appropriate to more complex real-world shapes.

A related butmore complex problem,withmore applicability in geography,
is that of establishing the probabilities of all possible distances within

irregular shapes, rather than simply across the shape, as in the Horowitz
model. Practical applications might involve the lengths of journeys in cities
of various shapes, the distances between the original homes of marriage
partners, and so on. Given such data, the temptation is to test the observed
distribution of path lengths against some uniform or random standard
without taking into account the constraints imposed by the shape of the
study area. In fact, a pioneering paper by Taylor (1971) shows that the shape
strongly influences the frequency distribution of path lengths obtained, and
it is the constrained distribution that should be used to assess the observed
results. As suggested above, Taylor found it necessary to use computer
simulation rather than mathematical analysis.
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Figure 4.6 Theoretical probability density function (the line) and a single realization

of the distribution of line lengths across a rectangular area (the histogram).

Sitting Comfortably?

An illustration of the importance of considering the possibilities created by the

shapes of things is provided by the following example. Imagine a coffee shop
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The idea of an IRP has been usedmore successfully to study the property of
line direction. Geologists interested in sediments such as glacial tills, where
the orientations of the particles have process implications, have done most of
this work. In this case, we imagine lines to have a common origin at the
center of a circle and randomly select points on the perimeter, measuring the
line direction as the angle from north, as shown in Figure 4.8.
A comprehensive review of this field, which is required reading for anyone

with more than a passing interest, is the book by Mardia (1972) or its more
recent, substantially revised edition (Mardia and Jupp, 1999). In till fabric
analysis, any directional bias is indicative of the direction of a glacier flow. In

where all the tables are square, with one chair on each of the four sides. An

observational study finds that when pairs of customers sit at a table, those

who choose to sit across the corner of a table outnumber those who prefer to

sit opposite one another by a ratio of 2 to 1. Can we conclude that there is a

psychological preference for corner sitting? Think about this before reading

on.

In fact, we can draw no such conclusion. As Figure 4.7 clearly shows, there

are only two possible ways that two customers can sit opposite one another

across a table, but there are four ways—twice as many—that they may sit

across a table corner. It is perfectly possible that the observation described

tells us nothing at all about the seating preferences of customers, because it is

exactly what we would expect to find if people were making random choices

about where to sit.

The shape of the tables affects the number of possible arrangements, or the

configurational possibilities. In much the same way, the shape of an urban

area, and the structure of its transport networks, affect the possible journeys

and journey lengths that we might observe. Of course, the coffee shop

seating arrangement is a much easier example to do the calculations for than

is typical in a geographic application.

Figure 4.7 Possible ways of sitting at a coffee shop table.
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transport geography it could indicate a directional bias imparted by the
pattern of valleys along which the easiest routes were found, and so on.

Line data are often organized in networks. There is a large body of recent
work in numerous disciplines examining the statistical properties of how
networks that grow in a variety of ways are structured (see Watts, 2003, and
Barab�asi, 2002, for accessible introductions to this vast literature). The
properties of these networks are relevant to the structure of the Internet,
the brain, social networks, and epidemic spread (among many other things).
However, because the nodes in such networks are not necessarily spatially
embedded, such work is less relevant to situations where the nodes linked
into a network have well-defined geographic locations.

In the past, geographers usually took the structure of a network expressed
by its pattern of connections as a given, attempting to relate that structure to
flows along the various paths.However, there is also a literature exploring the
ideaofnetworkgenerationbyrandomjoiningof segments.This is in thefieldof
geomorphology, where attempts have beenmade, notably by Shreve (1966), to
relate the observed ‘‘tree’’ networks of rivers in a drainage basin to predictions
of possible models of their evolution. It turns out that natural tree networks
have patterns of connection that could be fairly probable realizations of a
random model. The geomorphologic consequences of this discovery, together
with further statistical tests and an in-depth review, are to be found in
Werritty (1972). For dissenting views, see Milton (1966) and Jones (1978).

In contrast, less attention has been paid to the statistical analysis of
spatially embedded networks that are not tree-like (in practice, most net-
works). Exceptions are the work of the statistician Ling (1973), summarized
in Getis and Boots (1978, p. 104) and Tinkler (1977). As before, we can
propose a randommodel as a starting point and compare its predictions with
those for any observed network with the same number of nodes and links.
This problem turns out to be mathematically very similar to the basic

N

Figure 4.8 Randomly generated line segments are produced and their

angle measured relative to north.
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binomial model used in describing the random allocation of point events to
quadrats. Here we assign links to nodes, but with an important difference.
Although the assignment of each link between nodes may be done randomly,
so that at each step all nodes have an equal probability of being linked, each
placement reduces the number of available possible links; hence, the proba-
bility of a specific link will change. The process is still random, but it now
involves dependence between placements. If there are n nodes with q paths
distributed among them, it can be shown (see Tinkler, 1977, p. 32) that the
appropriate probability distribution taking this dependence into account is
the hypergeometric distribution.
Another area of related work is the statistics of random walks. A random

walk is a process that produces a sequence of point locations either in
continuous space or on a lattice or grid. Random walk theory has important
application in physics, where it is closely related to real-world physical
processes such as Brownian motion and the diffusion of gases. A fairly
accessible introduction to the theory of random walks can be found in
Berg (1993), where the examples are from biology. In recent years, this
work has become more relevant to the study of topics such as the movement
patterns of animals, and those of people in crowded buildings and streets, as
our ability to record movement tracks has increased through the miniatur-
ization of GPS devices. As GPS becomes more commonplace in everyday life,
most obviously in cellular phones, so that such tracking data are more
readily available for analysis, it is likely that the basic ideas of random
walk theory will become relevant in geographic applications. As with the
other work mentioned here, a critical challenge will be applying highly
abstract models of pure random walks to more constrained situations
such as journeys on road networks.

Area Objects

Maps based on area data are probably the most common in the geographic
literature. However, in many ways, they are the most complex cases to map
and analyze. Just as with points and lines, we can postulate a process and
then examine how likely a particular observed pattern of area objects and the
values assigned to them is as a realization of that process. Imagine a pattern
of areas. The equivalent of the IRP/CSR process would be either to ‘‘color’’
areas randomly to create a chorochromatic map or to assign values to areas,
as in a choropleth map. In both cases, it is possible to think of this process as
independent random (IRP/CSR) and to treat observed maps as potential
realizations of that process.

Fundamentals—Maps as Outcomes of Processes 113



In fact, as we will find in Chapter 7, in the real world, randomly shaded
maps are rare as a direct consequence of the ‘‘first law of geography.’’ This is
occasionally also called Tobler’s Law and states that ‘‘[e]verything is related
to everything else, but near things are more related than distant things’’
(Tobler, 1970, p. 234). Properly speaking, the first law of geography is an
observational law, derived from the fact that much of what we see around us
is spatially autocorrelated. To say that observed data are spatially autocor-
related is equivalent to saying that we do not think that they were generated
by IRP/CSR.

A further complication that arises in trying to apply IRP/CSR to areal data
is that the pattern of adjacency between areas is involved in the calculation
of descriptive measures of the pattern. This means that information about
the overall frequency distribution of values or colors on amap is insufficient to
allowcalculationof theexpected rangeofmapoutcomes. In fact, anyparticular
spatialarrangementofarealunitsmustbeconsideredseparately inpredicting
the likely arrangements of values. This introduces formidable extra complex-
ity—even for mathematicians—so it is common to use computer simulation
rather than mathematical analysis to predict likely patterns.

Fie lds

An IRP may also be used as a starting point for the analysis of continuous
spatial fields. First, consider the following thought exercise.

Well, Do It!

On squared paper, set out an 8 by 8 ‘‘chessboard’’ of area objects. Now, visit

the squares one after another and flip a coin for each one. If it lands heads,

color the square black; if it lands tails, color it white. The resulting board is a

realization of IRP/CSR in the sameway as point placement. You can see that a

perfect alternation of black and white squares, as on a real chessboard, is

unlikely to result from this process. We consider the analysis of this type of

setting in more detail in Chapter 7.

Random Spatial Fields

There are two clear differences between a point process and the same basic

idea applied to spatial fields. First, a field is by definition continuous, so that

every place has a value assigned to it and there are no abrupt jumps in value as
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As with area objects, it should be clear that, although it is used in many
other sciences, this simple random field model is just the beginning as far as
geography is concerned. The branch of statistical theory that deals with
continuous field variables is called geostatistics (see Isaaks and Srivastava,
1989; Cressie, 1991) and develops from IRP/CSR to models of field variables
that have three elements:

� A deterministic, large-scale spatial trend or ‘‘drift.’’
� Superimposed on this is a ‘‘regionalized variable’’ whose values de-
pend on the autocorrelation and that is partially predictable from
knowledge of the spatial autocorrelation.

� A truly random error component or ‘‘noise’’ that cannot be predicted.

For example, if our field variable consisted of the rainfall over a maritime
region such as Great Britain, then wemight identify a broad regional decline
in average values (the drift) as we go inland, superimposed onwhich are local
values dependent on the height of the immediate area (the values for the
regionalized variable), on top of which is a truly random component that
represents very local effects and inherent uncertainty in measurement (see,
for example, Bastin et al., 1984). In Chapter 10, we discuss how the geo-
statistical approach can be used to create optimum isoline maps.

one moves across the study region, whereas a point process produces a

discontinuous pattern of dots. Second, the values of a scalar field aren’t

simply 0/1, present/absent; instead, they are ratio or interval-scaled num-

bers. So, a ‘‘random’’ field model will consist of random sampling at every

point in the plane from a continuous probability distribution.

It is possible to construct such a random field using randomly chosen values

sampled from the standard normal distribution, and you are invited to try to

do this. Set out a grid of size (say) 20 by 20, and at each grid intersection,

write in a value taken from the standard normal distribution. Now produce an

isoline map of the resulting field.

Even without actually doing this exercise, you should realize that it won’t

be easy, since the random selection and independence assumption means

that any value from �1 to þ1 can occur anywhere across the surface,

including right next to each other! In fact, with this type of model, from time

to time you will get distributions that can be isolined and look vaguely real. As

a bad joke, one of us used to introduce a laboratory class on isolining by

asking students to isoline random data without revealing that the data were

random. Often students produced plausible-looking spatial patterns.

Fundamentals—Maps as Outcomes of Processes 115



4.6. CONCLUSIONS

In this chapter, we have taken an important step down the road to spatial
statistical analysis by giving you a clearer picture of the meaning of a spatial
process. Our developing picture of spatial statistical analysis is shown
in Figure 4.9. We have seen that we can think of a spatial process as a
description of a method for generating a set of spatial objects. We have
concentrated on the idea of a mathematical description of a process, partly
because it is the easiest type of process to analyze and partly because
mathematical descriptions or models of processes are common in spatial
analysis.

Another possibility, which we have not examined at in any detail, is
mentioned in Figure 4.9 and is of increasing importance in spatial analysis,
as we shall see in the coming chapters. A computer simulation ormodelmay
also represent a spatial process. It is easy to imagine automating the rather
arduous process of obtaining random numbers from a phone book in order to

Processes

MATHEMATICAL DESCRIPTION

or

COMPUTER SIMULATION

EXPECTED VALUES

and/or

DISTRIBUTIONS

Patterns
?

Figure 4.9 The developing framework for spatial statistical analysis. We now

have a clearer picture of the meaning of a spatial process. Patterns will be

tackled in the next chapter.
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generate a set of points according to the IRP/CSR. A few minutes with the
randomnumber generation functions and scatterplot facilities of any spread-
sheet program should convince you of this. In fact, it is also possible to
represent much more complex processes using computer programs. The
simulations used in weather prediction are the classic example of a complex
spatial process represented in a computer simulation.
Whatever waywe describe a spatial process, the important thing is that we

can use the description to determine the expected spatial patterns thatmight
be produced by that process. In this chapter, we have done this mathemati-
cally for IRP/CSR. As we shall see, this is important because it allows us to
make comparisons between the predicted outcomes of a process and the
observed patterns of distribution of phenomena we are interested in. This is
essential to the task of making statistical statements about spatial phe-
nomena. In the next chapter, we will take amuch closer look at the concept of
pattern so that we can fill in the blank on the right-hand side of our diagram.
This chapter has covered a lot of ground and introduced some possibly

unfamiliar concepts. Many of these are taken up in succeeding chapters as
we look in detail at how spatial analysis is applied to point objects, area
objects, and fields. For the moment, there are four key ideas that you should
remember. First is the idea that any map, or its equivalent in spatial data,
can be regarded as the outcome of a spatial process. Second, although spatial
processes can be deterministic in the sense that they permit only one
outcome, most of the time we think in terms of stochastic processes where
random elements are included in the process description. Stochastic pro-
cesses may yield many different patterns, and we think of a particular
observed map as an individual outcome, or realization, of that process.
Third, we can apply the basic idea of the IRP in various ways to all of the
entity types (point, line, area, and field) discussed in Chapter 1. Finally, as
illustrated using the case of point patterns and IRP/CSR, this approach
enables us to use mathematics to make precise statements about the
expected long-run average outcomes of spatial processes.

CHAPTER REVIEW

� In spatial analysis, we regard maps as outcomes of processes that can
be deterministic or stochastic.

� Typically, we view spatial patterns as potential realizations of sto-
chastic processes.

� The classic stochastic process is complete spatial randomness (CSR),
also called the independent random process (IRP).
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� When dealing with a pattern of point objects, under CSR the points are
randomly placed, so that every location has an equal probability of
receiving a point, and points have no effects on each other—so that
there are no first- or second-order effects.

� The expected quadrat count distribution for CSR conforms to the
binomial distribution,with p given by the area of the quadrats relative
to the area of the study region and n by the number of events in the
pattern. This can be approximated by the Poisson distribution, with
the intensity given by the average number of events per quadrat.

� These ideas can also be applied, with modification as appropriate, to
properties of other types of spatial objects—for example, to line object
length and direction, to networks, to autocorrelation in area objects,
and, finally, to spatially continuous fields.

� Tobler’s first law of geography tells us that real-world geography
almost never conforms to IRP/CSR since ‘‘Everything is related to
everything else, but near things aremore related than distant things.’’

� Sometimes this is a result of variation in the underlying geography
that makes the assumption of equal probability (first-order stationar-
ity) untenable. At other times, what has gone before affects what
happens next, and so makes the assumption of independence between
events (second-order stationarity) untenable. In practice, it is very
hard to disentangle these effectsmerely by the analysis of spatial data.
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Chapter 5

Point Pattern Analysis

C H A P T E R O B J E C T I V E S

In this chapter, we attempt to:

� Define the meaning of a pattern in spatial analysis
� Come to a better understanding of the concept of pattern generally
� Introduce and define a number of descriptive measures for point
patterns

� Show how we can use the idea of the IRP/CSR as a standard against
which to judge observed real-world patterns for a variety of possible
measures

After reading this chapter, you should be able to:

� Define what is meant by point pattern analysis and list conditions that
are necessary for it to make sense to undertake it

� Suggest measures of pattern based on first- and second-order propert-
ies such as the mean center and standard distance, quadrat counts,
nearest-neighbour distance, and the more modern G, F, and K
functions

� Describe how IRP/CSR may be used to evaluate various point pattern
measures, and hence to make statistical statements about point
patterns and outline the basic process involved

5.1. INTRODUCTION

Point patterns, where the only data are the locations of a set of point objects,
represent the simplest possible spatial data. Nevertheless, this does notmean
that they are especially simple to analyze. In applied geography using GIS,
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pure point patterns occur fairly frequently. We might, for example, be
interested in so-called hot spot analysis, where the point events studied
are the locations of crimes or of deaths from some disease. The locations of
plants of various species, or of archaeological finds, are other commonly
investigated point patterns. In these applications, it is vital to be able to
describe thepatternsmadeby thepoint eventsand to testwhether ornot there
is either some concentration of events, or clustering, in particular areas or,
alternatively, some evidence that the objects are evenly spread in space. In
this chapter, we outline what is meant by a point pattern and what we mean
when we talk about describing examples of such patterns. We then show how
we can relate observed real-world patterns to the IRPdescribed inSection 4.3.

We need at the outset to present some terminology. A point pattern

consists of a set of events in a study region. Each event represents the
existence of a point object of the type we are interested in at a particular
location in the study region, but there may be more than one such event at
any given location. In the sections that follow, a point pattern of n events is a
set of locations S ¼ s1; s2; . . . si; . . . ; snf g in which each event (or point) si has
locational coordinates xi; yið Þ. The pattern occurs in a study regionA that has
area a. Note that we use the term event tomean the occurrence of an object of
interest at a particular location. This is useful because we can distinguish
between events in the point pattern and any other arbitrary locations in the
study region. In the simple case, each event is simply the occurrence of the
object, but it can also have additional information attached to it, in which
case the set of events is called amarked point pattern. In ecology the ‘‘marks’’
might consist of other information about a plant, such as its age or health; in
spatial epidemiology it might be the date of onset of a disease. Note also that
the location of each event is represented mathematically by a vector, written
in boldface roman type: s.

There are a number of requirements for such a set of events to constitute a
point pattern:

� The pattern should be mapped on the plane. Latitude/longitude data
should therefore be projected appropriately, preferably to preserve
distances between points. Generally, it is inappropriate to perform
point pattern analysis on events scattered over a very wide geographic
area unless the methods used take account of the distortions intro-
duced by the map projection used.

� The study area should be objectively determined. Ideally, this should
be independent of the pattern of events and is a consequence of the
MAUP discussed in Section 2.2. It is important because a different
study area might give us different analytical results leading to
different conclusions. In practice, such independence is hard, often
impossible, to achieve. It might be given by the borders of a country,
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shoreline of an island, or edge of a forest, but often no such natural
boundary to the study region exists. In this circumstance, we need to
consider carefully the rationale behind the study area’s definition and
think about applying edge corrections that attempt to correct for at
least some of the consequences.

� The pattern should be an enumeration, or census, of the entities of
interest, not a sample; that is, all relevant entities in the study region
should be included. The relevance of this issue depends greatly on the
choiceof statistic and theavailabilityofdata. It canbe ignored instudies
that use a formal sampling procedure, such as quadrat sampling in
ecology, discussed in thenext section.Similarly, in ecology, themeasure
knownas themeandistance to the nearest neighbor can be estimated by
sampling the events that make up a pattern. However, in most studies
in geography, the point event locations will be given in advance of the
study, with no possibility of being able to sample the pattern.

� There should be a one-to-one correspondence between objects in the
study area and events in the pattern.

� Event locations must be proper. They should not be, for example, the
centroids of areal units chosen as ‘‘representative’’, nor should they be
arbitrary points on line objects. They should represent the point
locations of entities that can sensibly be considered points at the scale
of the study.

This is a restrictive set of requirements that is only rarely met. In this
chapter, we will present what is therefore an idealized picture of spatial
point pattern analysis as it might be applied to a very ‘‘clean’’ problem. In the
real world such problems are rare, so why do we spend time on them? Our
view is that it is only by working through the approaches and assumptions
made in the analysis of a clean problem that one can understand the
complications that arise in analysis using real-world data to address real-
world problems. In Chapter 6, we extend the discussion to examine some of
the better-understood complexities.

5.2. DESCRIBING A POINT PATTERN

Revision

One of the most important ways of describing a point pattern is to visualize it

as a map. We suggest that at this point you revisit Section 3.6 to review the

(continues)
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With point objects, the pattern that we see on a map of the events is really
all that there is. So, how do we describe a pattern quantitatively? This is
surprisingly difficult. In general, there are two interrelated approaches
based on point density and point separation. These are related, in turn, to
the two distinct aspects of spatial patterns that we have already mentioned:
first- and second-order effects. Recall that first-order effects are manifest as
variations in the intensity of the process across space, which we estimate as
the observed spatial density of events. When first-order effects are marked,
the absolute location is an important determinant of observations. In a point
pattern, clear variations across space in the number of events per unit area
are observed that arise because of variations in some factor that makes
locations more or less ‘‘attractive’’ for events to occur at them. When second-
order effects are strong, there is interaction between locations, depending on
the distance between them, and relative location is important. In point
patterns, such effects are manifest as reduced or increased distances be-
tween neighboring or nearby events.

This first-order/second-order distinction is important but, again, it is
necessary to emphasize that it is usually impossible to distinguish the effects
in practice simply by observing spatial variations in the density of events.

This difficulty is illustrated in Figure 5.1. In the first panel, we would
generally say that there is a first-order variation in the point pattern whose
observed density increases from northeast to the southwest corner, where

(box continued)

ways in which a point pattern can be mapped. A pin or dot map is the basic
method employed, but increasingly, analysts prefer to use the output from a
kernel density estimation to transform the pattern into an isoline (contour-
type) map of estimated spatial densities. If the point pattern is marked in some
way by an interval- or ratio-scaled variable, the most appropriate display is a
located proportional symbol map.

Figure 5.1 The difficulty of distinguishing first- and second-order effects.
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it is highest. In the second panel, second-order effects are strong, with
events grouped in distinct clusters. Obviously, this distribution could just
as well be described in terms of first-order intensity variations, but it
makes more sense to think of it in terms of grouping of events near one
another. The third panel shows the difficulty of distinguishing the two
effects in a more complex case. There is still a northeast-southwest trend,
as in the first panel, but there is also a suggestion of clusters, as in the
second panel. No simple description of this pattern in terms of separate
first- and second-order effects is possible.

Centrography

Before considering more complex approaches, note that we can apply simple
descriptive statistics to provide summary descriptions of point patterns. For
example, the mean center of a point pattern S is given by

�s ¼ mx;my

� � ¼
Pn

i¼1 xi
n

;

Pn
i¼1 yi
n

� �
ð5:1Þ

That is, �s is the point whose coordinates are the average (or mean) of the
corresponding coordinates of all the events in the pattern. We can also
calculate a standard distance for the pattern:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi � mxð Þ2 þ yi � my

� �2
n

s
ð5:2Þ

Recalling basic statistics, this quantity is obviously closely related to the
usual definition of the standard deviation of a data set, and it provides a
measure of how dispersed the events are around their mean center. Taken
together, these measurements can be used to plot a summary circle for the
point pattern, centered at mx;my

� �
with radius d, as shown in the first panel

of Figure 5.2.
More complex manipulation of the event location coordinates, in which the

standard distance is computed separately for each axis, produces standard
distance ellipses, as shown in the second panel of Figure 5.2. Summary
ellipses gives some indication of the overall shape of the point pattern as well
as its location. The calculation in this case is done for two orthogonal
directions separately, and the results are resolved by trigonometry to get
the correct orientation for the long and short axes of the ellipse.
These approaches, for obvious reasons called centrography in the litera-

ture, are sometimes useful for comparing point patterns or for tracking
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change in a pattern over time, but they don’t provide much information
about the pattern itself and they are extremely sensitive to the borders of
the study region chosen. Description of the pattern itself has more to do
with variations from place to place within the pattern and with the
relationships between events in the pattern study region. More complex
measures are therefore required to fully characterize a pattern, as dis-
cussed in the next sections.

Density-Based Point Pattern Measures

Density-based approaches to the description of a point pattern characterize
the pattern in terms of its first-order properties. In doing this, we must be
careful to maintain a distinction between the intensity of the spatial process
itself, l, and the observed density of events in the study region, which is
frequently taken as an estimate of this real intensity. We can readily
determine the crude density, or estimate of the overall intensity, of a point
pattern. This is given by

l̂ ¼ n

a
¼ # S 2 Að Þ

a
ð5:3Þ

where l̂ is the estimated intensity and # S 2 Að Þ is the number of events in
pattern S found in study region A of area a in appropriate squared distance
units such m2 or km2. One serious difficulty with density as a measure is its
sensitivity to the definition of the study area. This is a difficulty with all
densitymeasures and is especially problematic when we attempt to calculate
a ‘‘local’’ density. In Figure 5.3 the total number of events in successively

Figure 5.2 Summary circles and mean ellipses for two point patterns (open circles

and crosses). The black outlined circle and ellipse summarize the open circle events,

while the gray-shaded circle and ellipse summarize the crosses.
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larger regions with areas a, 4a, 16a, and 64a is 2, 2, 5, and 10, respectively. If
a is a unit area (say, 1 km2), then this gives us densities of 2.0, 0.5, 0.31, and
0.15, and the density around the central point changes depending on the
study area. Without resorting to the calculus, there is no easy way to deal
with this problem, and such methods are beyond the scope of this book.
Kernel density methods (see Section 3.6) are one possible approach to this
issue. In the next section, we discuss another.

Quadrat Count Methods

We lose a lot of informationwhenwe calculate a single summary statistic like
overall density, and we have just seen that there is strong dependence on the
definition of the study area. One way of getting around this problem is to
record the number of events in the pattern that occur in a set of cells, or
quadrats, of some fixed size. You will recall that this approach was discussed
in Section 4.3 (see Figure 4.4). This can be done either by taking an
exhaustive census of quadrats that completely fill the study region, with
no overlaps, or by randomly placing quadrats across the study region and
counting the number of events that occur in them (see Rogers, 1974; Thomas,
1977). The two approaches are illustrated in Figure 5.4.
The random sampling approach is more frequently applied in field work—

for example, in surveying vegetation in plant ecology (see Greig-Smith,
1964). Much of the statistical theory of quadrat measures relates to the
sampling approach, which also has the merit of allowing shapes that do not
tessellate the plane (such as circles) to be used. With random sampling, it is

a
4a

16a

64a

Figure 5.3 The difficulty with density. Calculating a local density measure

for study areas defined in different ways.
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also possible to increase the sample size simply by adding more quadrats.
This may be advantageous for relatively sparse patterns where a larger
quadrat is required to ‘‘catch’’ any events, but it would rapidly exhaust a
study region with only a small number of quadrats. The sampling approach
also makes it possible to describe a point pattern without having complete
data on the whole pattern. This is a distinct advantage for work in the field,
provided that care is taken to remove any biases concerning where quadrats
are placed; otherwise, a very misleading impression might be obtained. It is
worth noting that the sampling approach can miss events in the pattern.
Several events in the pattern in Figure 5.4 are not counted by the quadrats
indicated, and some are double counted. The important thing is that all the
events in any quadrat are counted. The sampling approach is really an
attempt to estimate the likely number of events in a quadrat-shaped region
by random sampling.

The exhaustive census-based method is used more commonly in geo-
graphic applications such as spatial epidemiology or criminology, where
the measured event data are all that we have and there is no opportunity
to sample the pattern. The choice of origin and quadrat orientation affects
the observed frequency distribution, and the chosen size of quadrats also
has an effect. Large quadrats produce a very coarse description of the
pattern, but as quadrat size is reduced, many will contain no events and
only a few will contain more than one, so the set of counts is not useful as a
description of pattern variability. Note that, although rare in practice,
exhaustive quadrats could also be hexagonal or triangular, as shown in
Figure 5.5.

Figure5.4 The twoquadrat countmethods: anexhaustive census (left) and random

sampling (right). Quadrats containing events are shaded.
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Whichever approach we adopt, the outcome is a list of quadrat counts

recording the number of events that occur in each quadrat. These are
compiled into a frequency distribution listing how many quadrats contain
zero events, how many contain one event, how many contain two, and so on.
As an example, we look at the distribution of the coffee shops of a particular

company in central London (in late 2000). This distribution is mapped in
Figure 5.6 and has n ¼ 47 coffee shops. Using x ¼ 40 quadrats to compile the

Figure 5.5 Alternative quadrat shapes used in a quadrat census.

Thought Exercise

Why do you think it is usual to use a regular grid of quadrats? Of the three

shapes we have illustrated (squares, hexagons, and triangles), which would

allow you to create the same shape at both larger and smaller scales by

combining quadrats or subdividing them?What other shapes are possible, and

what properties might they have? Do circular quadrats tessellate the plane?

Would it surprise you to learn that whole books have beenwritten on the topic

of ‘‘tiling’’? (see Gr€unbaum and Shephard, 1987).
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count, we have a mean quadrat count m ¼ 47/40 ¼ 1.175. Counts for each
quadrat are indicated in the diagram.

These quadrat counts are compiled in Table 5.1, from which we calculate
the observed variance s2 to be 85.775/(40 � 1) ¼ 2.19936. A useful summary
measure of these counts is the ratio of their variance to their mean, the
variance-mean ratio (VMR), which, as the table shows, is observed to be
2.19936/1.175 ¼ 1.87180. A property of the Poisson distribution that we
introduced in Section 4.3 as resulting from the IPR/CSR process is that its
mean and variance are equal, so that if the quadrat counts describe such a
distribution, their VMR should be 1.0. Clearly it isn’t: the observed VMR is
almost double the Poisson distribution value. Because it indicates high
variability among the quadrat counts, implying that more quadrats contain
very few or very many events than would be expected by chance, a moment’s
thought will suggest that this is indicative of clustering. In this case, three
quadrats contain five coffee shops, and this finding contributes heavily to the
result. In general, a VMR greater than 1.0 indicates a tendency toward
clustering in the pattern, and a VMR less than 1.0 is indicates an evenly
spaced arrangement.

Distance-Based Point Pattern Measures

The alternative to using density-based methods is to look at the distances
between events in a point pattern. This provides a more direct description of
the second-order properties of the pattern. In this section, we describe the
more frequently used distance-based methods.

The nearest-neighbor distance for an event in a point pattern is the
distance from that event to the nearest event also in the point pattern.
The distance d(si, sj) between events at locations si and sj may be calculated

Table 5.1 Quadrat Counts and Calculation of the Variance for the Coffee Shop
Pattern

No. of events, K No. of quadrats, X K � m (K � m)2 X(K � m)2

0 18 �1.175 1.380625 24.851250

1 9 �0.175 0.030625 0.275625

2 8 0.825 0.680625 5.445000

3 1 1.825 3.330625 3.330625

4 1 2.825 7.980625 7.980625

5 3 3.825 14.630625 43.891875

Totals 40 85.775000
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using Pythagoras’s theorem:

d si; sj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2q
ð5:4Þ

The nearest event in the pattern to each event can therefore be easily
found. If we denote this value for event si by dmin(si), then a frequently used
measure is themean nearest-neighbor distance originally proposed by Clark
and Evans (1954):

�dmin ¼
Pn

i¼1 dmin sið Þ
n

ð5:5Þ

Calculations for the point pattern in Figure 5.7 are shown in Table 5.2.
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Figure 5.7 Distances to the nearest neighbor for a small point pattern. The nearest

neighbor to each event lies in the direction of the arrow pointing away from it.

Table 5.2 Calculations for the Nearest-Neighbor Distances for the Point Pattern
Shown in Figure 5.7

Point X Y Nearest neighbor Dmin

1 66.22 32.54 10 25.59

2 22.52 22.39 4 15.64

3 31.01 81.21 5 21.11

4 9.47 31.02 8 9.00

5 30.78 60.10 3 21.14

6 75.21 58.93 10 21.94

7 79.26 7.68 12 24.81

8 8.23 39.93 4 9.00

9 98.73 77.17 6 29.76

10 89.78 42.53 6 21.94

11 65.19 92.08 6 34.63

12 54.46 8.48 7 24.81
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Note that it is not unusual for points to have the same nearest neighbor
(9:10:11, 2:8, and 1:6) or to be nearest neighbors of each other (3:5, 7:12, and
4:8). In this case, Sdmin ¼ 259.40, so the mean nearest-neighbor distance is
21.62.

In some problems—for example, when dealing with trees in a forest area—
it might be possible to obtain the mean nearest-neighbor distance by sam-
pling a population of events, and for each event in the sample, finding its
nearest neighbor and the relevant distance. No matter how we find it, a
drawback of the mean nearest-neighbor distance is that it throws away a lot
of information about the pattern. Summarizing all the nearest-neighbor
distances in Table 5.2 by a single mean value is convenient, but it seems
almost too concise to be really useful. This drawback of the method is
addressed in more recently developed approaches.

A number of extensions to the nearest-neighbor approach have been
developed. These go by the unexciting names of the G and F functions. Of
these, the G function, sometimes called the refined nearest neighbor, is the
simplest. It uses exactly the same information contained in Table 5.2, but
instead of summarizing it using the mean, we examine the cumulative

frequency distribution of the nearest-neighbor distances. Formally, this is
defined as

G dð Þ ¼ # dmin sið Þ < dð Þ
n

ð5:6Þ

so the value ofG for any particular distance, d, tells us what fraction of all the
nearest-neighbor distances in the pattern is less than d. Figure 5.8 shows the
G function for the example in Figure 5.7.

G d( )

Distance, d

0

0.25

0.5

0.75

1.0

0 10 20 30 40

Figure 5.8 The G function for the point pattern of Figure 5.7 and Table 5.2.
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Refer back to Table 5.2. The shortest nearest-neighbor distance is 9.00
between events 4 and 8. Thus, 9.00 is the nearest-neighbor distance for two
events in the pattern. Since 2 out of 12 is a proportion of 2/12¼ 0.167,G(d) at
distance d ¼ 9.00 has the value 0.167. The next nearest-neighbor distance is
15.64, for event 2, and three events have nearest neighbors at this distance or
less. Since 3 out of 12 is a proportion of 0.25, the next point plotted in G(d) is
0.25 at d ¼ 15.64. As d increases, the fraction of all nearest-neighbor
distances that are less than d increases. This process continues until we
have accounted for all 12 events and their nearest-neighbor distances.
The shape of this function can tell us a lot about the way events are spaced

in a point pattern. If events are closely clustered together, then G increases
rapidly at short distances. If events tend to be evenly spaced, then G

increases slowly up to the range of distances at which most events are
spaced, and only then increases rapidly. In our example, G increases most
quickly in the 20< d< 25 range, reflecting the fact that many of the nearest-
neighbor distances in this pattern are in that distance range. This example
has a very ‘‘bumpy’’ plot because it is based on only a small number of
nearest-neighbor distances (n ¼ 12). Usually, nwill be greater than this and
smoother changes in G are observed.
The F function is closely related to G but may reveal other aspects of the

pattern. Instead of accumulating the fraction of nearest-neighbor distances
between events in the pattern, point locations anywhere in the study region
are selected at random, and the minimum distance from these locations to
any event in the pattern is determined. The F function is the cumulative
frequency distribution for this new set of distances. If {p1 . . . pi . . . pm} is
a set ofm randomly selected locations used to determine the F function, then
formally

F dð Þ ¼ # dmin pi;Sð Þ < d½ �
m

ð5:7Þ

where dmin pi;Sð Þ is the minimum distance from location pi in the randomly
selected set to any event in the point pattern S. Figure 5.9 shows a set of
randomly selected locations in the study region for the same point pattern as
before, together with the resulting F function. This has the advantage overG
that we can increase the sample size m to get a smoother cumulative
frequency curve that should give a better impression of the point pattern’s
properties. In practice, in software F(d) is computed using an appropriate
regular grid of locations rather than the random ones shown here.
It is important to note the difference between the F andG functions, as it is

easy to get them mixed up and also because they behave differently for
clustered and evenly spread patterns. This happens because while G shows
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how close together events in the pattern are, F relates to how far events are
from arbitrary locations in the study area. So, if events are clustered in a
corner of the study region, G rises sharply at short distances because many
events have a very close nearest neighbor. The F function, on the other hand,
is likely to rise slowly at first, but more rapidly at longer distances, because a
good proportion of the study area is fairly empty, so that many locations are
at quite long distances from the nearest event in the pattern. For evenly
spaced patterns, the opposite is true. Most locations in P are relatively close
to an event, so that F rises quickly at low d. However, events are relatively
far from each other, so that G initially increases slowly and rises more
quickly at longer distances.

It is possible to examine the relationship between G and F to take
advantage of this different information. The likely relationships are demon-
strated by the examples in Figure 5.10. The upper example is clearly
clustered. As a result, most events (around 80% of them) have close near
neighbors, so that the G function rises rapidly at short distances up to about
0.05. In contrast, the F function rises steadily across a range of distances.
The lower example is evenly spaced, so that G does not rise at all until the
critical spacing of about 0.05, after which it rises quickly, reaching almost
100% by a distance of 0.1. The F function again rises smoothly in this case.
Note that the horizontal scale has been kept the same in these graphs. The
important difference between the two cases is the relationship between the
functions, which is reversed.

One failing of all the distance-based measures discussed so far, the
nearest-neighbor distance and the G and F functions, is that they only
make use of the nearest neighbor for each event or location in a pattern.
This can be a major drawback, especially with clustered patterns where

F d( )
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Figure 5.9 Random points (shown as crosses) for the same point pattern as before

and the resulting F function.
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nearest-neighbor distances are very short relative to other distances in the
pattern, and can ‘‘mask’’ other structures in the pattern. A relatively simple
way around this problem, which was suggested many years ago (Thompson,
1956; see also Davis et al., 2000), is to find the mean distances to the first,
second, third, and so on nearest neighbors; however, in practice, a more
common approach is to use K functions (Ripley, 1976) based on all the
distances between events in S.
The easiest way to understand the calculation of a K function at a series of

distances d is to imagine placing circles, of each radius d, centered on each of
the events in turn as shown in Figure 5.11. The numbers of other events
inside each circle of radius d is counted, and the mean count for all events is
calculated. This mean count is divided by the overall study area event
density to give K(d). This process is repeated for a range of values of d.
So, we have

K(d)¼
Pn

i¼1 # S 2 C si;dð Þ½ �
nl

¼ a

n
� 1
n

Xn
i¼1

# S 2 C si;dð Þ½ �
ð5:8Þ

Remember that C si;dð Þ is a circle of radius d centered at si. The K function
for clustered and evenly spaced patterns is shown in Figure 5.12.
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d = 1

d = 2

d = 3

Figure 5.11 Determining the K function for a pattern. The measure is based

on counting events within a series of distances of each event. Note

how higher values of d result in more of the circular region around many

events lying outside the study region.
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Figure 5.12 The K function for clustered and evenly spaced events.
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Because all distances between events are used, this function provides
more information about a pattern than either G or F. For the small patterns
shown, it is easily interpreted. For example, the level portion of the curve for
the clustered pattern in Figure 5.12 extends over a range of distances that
does not match the separation between any pair of events. The lower end of
this range (� 0.2) corresponds to the size of the clusters in the pattern, and
the top end of this range (� 0.6) corresponds to the cluster separation. In
practice, because there will usually be event separations across the whole
range of distances, interpretation of K is usually less obvious than this. We
will consider interpretation of the K function in more detail when we discuss
how it is compared to expected functions for IRP/CSR.
Recent years have seen a variation on Ripley’s K(d) function being used,

which has been variously called the O-ring statistic (Wiegand and Moloney,
2004) and the pair correlation function (or neighborhood density function,

NDF) (see Perry et al., 2006), and for some patterns it may be more
informative. As Figure 5.12 shows, the original K(d) function is cumulative,
with the proportion of events from each circle plotted as a function of the
radius, d. All that the pair correlation function does is to plot the actual
proportion in a series of annuli centered on each event. This somewhat
reduces the ability to choose to measure pairs at any arbitrary separation
distance, a problem avoided in the standard K(d) by use of the cumulative
distribution. Probability density estimation methods are used to convert the
counts of pairs in various separation distance bins into a continuous func-
tion. The pair correlation function approach enables an analyst to get a
clearer picture of any particular separation distances at which there are
many or few pairs of events.

Edge Effects

A problem with all the distance functions we have discussed is that edge
effectsmay be pronounced, especially if the number of events in the pattern is
small. Edge effects arise from the fact that events (or point locations) near
the edge of the study area tend to have higher nearest-neighbor distances
even though theymight have neighbors outside the study area that are closer
than any inside it. Inspection of Figure 5.11 highlights how the problem
becomes more severe at higher values of d when the circular region around
many of the events extends outside the study area.
The easiest way to counter edge effects is to incorporate a guard zone

around the edge of the study area. This is shown in Figure 5.13. Filled black
dots in the study region are considered part of the point pattern for all
purposes. Unfilled circles in the guard zone are considered in the determi-
nation of interevent distances for the G and K functions, or of point–event
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distances for the F function, but are not considered part of the pattern.
Three examples are shown where an event’s nearest neighbor is in the
guard zone.

Using Simulation to ShowWhy Edge Effects Matter

We can show the likely magnitude of this edge effect by a simple simulation

exercise. Table 5.3 shows the results for the mean value of the Clark and

Evans (1954) R-index from 100 simulated realizations of IRP/CSR using

different numbers of events in the pattern.

Mathematical theory that we discuss in Section 5.3 tells us that the mean

value for R in IRP/CSR should be 1.0 precisely. So, why do the simulation

results not give this value?

Well, first, these are results from a simulation, so we would expect some

differences between the values obtained from a relatively small number of

realizations and the very-long-run results that theory predicts.

However, looking at the change in R more closely, as we increase the

number of events in the pattern, what the table really shows is the bias due to

edge effects. If you look back to Figure 5.7, you will see that events close to

the study region border, such as 9, 10, and 11, are ‘‘forced’’ to find nearest

neighbors inside the regionwhen in all probability their true nearest neighbors

would be outside it. In turn, this introduces into estimation of the mean some

longer distances than an unbounded region would have given. Thus, instead

of being 1.000, the random expectation produced by simulation is slightly

higher. This effect tends to be greatest when the number of events is low, so

that a large fraction of the events are on the edge of the pattern. As you can

see, with only 10 or 12 events the effect is quite marked—a result 16%higher

than theory predicts. As we increase the number of events, the relative effect

of events near the border is reduced, so that at n¼ 100 we are pretty close to

theoretical values. Even so, the result is still on the high side.

Table 5.3 Simulation Results for the Clark
and Evans R Statistic

No. of events, n Mean R value

10 1.1628

12 1.1651

25 1.1055

50 1.0717

100 1.0440
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Using a guard zone has the disadvantage of involving collection of data
that are not used in subsequent analysis. To use all the available data, Ripley
(1977) suggested a weighted edge correction in which the distance between a
pair of events is given a weight based on properties of the circle centered on
the first point and passing through the second. If the circle is wholly within
the study region, the weight is simply 1, but it is scaled by either the length of
its circumference or the proportion of its area contained in the study region.
A third approach uses the toroidal ‘‘wrap,’’ which joins the top and left parts
of the study region to the bottom and right, respectively, and then proceeds in
the usual way to compute distances. Yamada and Rogerson (2003) provide an
empirical study of the effect on the K function of these various corrections.
They conclude that if the analysis is largely descriptive, to detect and
characterize an observed pattern rather than to estimate parameters of a
specific hypothesized point process, there is little point in using any of these
corrections.

5.3. ASSESSING POINT PATTERNS STATISTICALLY

So far, we have presented a number of measures or descriptive statistics for
point patterns. In principle, these are calculated and each may shed some
light on the structure of the pattern. In practice, it is likely that different
measures will reveal similar, but not necessarily the same, things about the
pattern (see Perry et al., 2006), and especially whether it tends to be
clustered or evenly spaced. When mapped, a clustered pattern is likely to
have a ‘‘peaky’’ density pattern, which will be evident either in the quadrat
counts or in strong peaks on a kernel-density estimated surface. It will also

Study region

Guard zone

Figure 5.13 The use of a guard zone in a distance-based point pattern measure.
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have short nearest-neighborhood distances, which will show up in the
distance functions we have considered. An evenly distributed pattern exhib-
its the opposite: an even distribution of quadrat counts or a ‘‘flat’’ kernel-
density estimated surface and relatively long nearest-neighbor distances.
Such description may be quantitative, but it remains informal. In spatial
statistical analysis the key questions are: How clustered? How evenly
spaced? Against what benchmark are we to assess these measures of
pattern?

The framework for spatial analysis that we have been working toward is
now almost complete, and it enables us to ask such questions about spatial
data and answer them statistically. Within this framework, we ask whether
or not a particular set of observations could be a realization of some
hypothesized process.

In statistical terms, our null hypothesis is that the pattern we are
observing has been produced by a particular spatial process. A set of spatial
data, a pattern or a map, is then regarded as a sample from the set of all
possible realizations of the hypothesized process, and we use statistics to ask
how unusual the observed pattern would be if the hypothesized spatial
process were operating. The complete framework is illustrated schematically
in Figure 5.14.

Thus far, we have progressed separately down both branches of this
framework. Chapter 4 focused on the left-hand branch of the framework.
In it we saw how we could suggest a process, such as the IRP/CSR, and then
use some relatively straightforward mathematics to say something about its
outcomes. We will see later that computer simulation is now often used to do
the same thing, but the outcome is the same: a description of the likely
outcomes of the process in terms of the expected values of one of our
measures of pattern.

In the first half of this chapter, we showed how we can follow the right-
hand branch, taking a point pattern of events and deriving some measure
such as quadrat counts, nearest-neighbor distances, or any of theF,G,K, and
pair correlation functions. In the remainder of the chapter we consider the
final step, which, as indicated in Figure 5.14, is to bring these two views
together and compare them statistically to infer what we can about the
underlying spatial process based on our observations of the pattern.

As we discuss in Section 6.2, there are actually a variety of approaches to
making a statistical assessment. For now, because it relates directly to our
discussion of the null hypothesis of IRP/CSR, we focus in this section on a
hypothesis-testing approach from classical statistics. This approach asks the
fundamental question: If IRP/CSR were the process operating, how probable
would the observed pattern be? The probability value we arrive at, known as
the p-value, is the probability that the observed pattern would have occurred
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as a realization of IRP/CSR. If the p-value is low (p¼ 0.05 is a commonly used
threshold value), then we reject the null hypothesis and conclude that the
observed pattern is unlikely to have been produced by IRP/CSR. A higher
p-value leaves us unable to reject the null hypothesis, and we must acknowl-
edge that the observed pattern might well be a realization of IRP/CSR.
This approach relies on having a good knowledge of the sampling distri-

bution of expected values of our pattern measures for IRP/CSR. We have
already seen that, in some cases, statisticians have developed theory that

Quadrat counts
Density surfaces

Nearest neighbor
, andG F K

e.g.
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MATHEMATICAL DESCRIPTION

or

COMPUTER SIMULATION
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STATISTICS

STATISTICAL
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What can we infer about the process
from the statistics?

OBSERVATIONAL DATA

Figure 5.14 The conceptual framework for the statistical approach to

spatial analysis.
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enables the sampling distribution to be predicted exactly for simple pro-
cesses like IRP/CSR. In other cases, where analytic results are not known,
computer simulation is often used to generate synthetic sampling distribu-
tions. This approach is becoming increasingly common, and we examine it in
connection with the K function in Section 5.4.

Quadrat Counts

We saw in Section 4.3 that the expected probability distribution for a quadrat
count description of a point pattern under the assumptions in IRP/CSR is
given by the binomial distribution or, more practically, by a Poisson distri-
bution approximation:

P(k) ¼ lke�l

k!
ð5:9Þ

where l is the average intensity of the pattern per quadrat and e is the base of
the natural logarithm system. Therefore, to assess how well a null hypothe-
sis of complete spatial randomness explains an observed point pattern, we
may compile a quadrat count distribution and compare it to the Poisson
distribution with l estimated from the point pattern. We have already seen
that a simple measure for how well an observed distribution of quadrat
counts fits a Poisson prediction is based on the property that its mean and
variance are equal (m ¼ s), so the variance-mean ratio (VMR) is expected to
be 1.0 if the distribution is Poisson. It is one thing to create an index such as
this, but it is quite another to generate a significance test that answers the
basic question posed at the bottom of Figure 5.14.

The most commonly suggested approach treats the problem as a goodness-
of-fit test using the chi-square distribution as its standard. Table 5.4 sum-
marizes this approach using the quadrat counts from Figure 5.6 and Table
5.1 for the London coffee shops example.

With six nonzero bins, we have 6� 1¼ 5 degrees of freedom. The resulting
chi-square value, at 32.261 (p < 0.00001!), is well above that required for
significance at the 95% level, andwemight be fairly confident in rejecting the
null hypothesis that the underlying process is IRP/CSR. There are serious
difficulties with this approach, however. The approximation of the chi-
square statistic by the theoretical distribution is not good for a table such
as this. The major part of the total obtained comes from the three quadrats
that contain five ormore coffee shops, which is consistent with our conclusion
that the pattern is clustered. In addition, three of the bins contain expected
frequencies that are less than 5, which is generally recommended for this
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test; this issue will always arise when we look at the higher-frequency
quadrats that actually contain the clusters. To follow this recommendation,
we can group these three bins into one, representing quadrats with three or
more coffee shops; the result is to make the pattern indistinguishable from a
random one.
An equivalent test is to assess the calculated VMR of the quadrat counts

statistically. The expected VMR value for a Poisson distribution is 1.0, and
the product (n� 1)VMRwhere n is the number of quadrats is chi-square with
(n � 1) degrees of freedom. In this case, we get a chi-square test statistic of
1.8718 � 39 ¼ 73.0. This value has an associated p-value of 0.0007, meaning
that we would expect to observe such an extreme result in less than 1 case in
1,000, if the pattern were to have been generated by IRP/CSR. Again, this
would lead us to reject the null hypothesis of IRP/CSR in this case. However,
like the chi-square goodness-of-fit test, this approach is generally considered
unreliable unless the mean number of events per quadrat is 10 or more. This
requires us to use very large quadrats in most cases.
We can only conclude that while hypothesis testing is possible for quadrat

count data, it is not reliable unless we are dealing with very large point data
sets with a high mean intensity of events per quadrat.

Nearest-Neighbor Distances

If, instead of quadrat counts, we use mean nearest-neighbor distance to
describe a point pattern, then we can use Clark and Evans’sR statistic to test
for conformance with IRP/CSR. Clark and Evans (1954) show that the
expected value for the mean nearest-neighbor distance is

Table 5.4 Chi-Square Analysis for the London Coffee Shops Data from Figure 5.6
and Table 5.1

K, number of
events in
quadrat

Observed number
of quadrats, O

Poisson
probability

Expected
number, E

Chi-square
(O � E)2/E

0 18 0.308819 12.35276 2.5817

1 9 0.362862 14.51448 2.0951

2 8 0.213182 8.52728 0.0326

3 1 0.083496 3.33984 1.6393

4 1 0.024527 0.98108 0.0004

5 or more 3 0.007114 0.28456 25.9123

Totals 40 1.000000 40.00000 32.2614
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E dð Þ ¼ 1

2
ffiffiffi
l

p ð5:10Þ

and they suggest that the ratio R of the observed mean nearest-neighbor
distance to this value be used in assessing a pattern relative to IRP/CSR.
Thus:

R ¼ �dmin

�
1

2
ffiffiffi
l

p� � ð5:11Þ

AnR value of less than 1 indicates of a tendency toward clustering, since it
shows that observed nearest neighbor distances are shorter than expected.
An R value of more than 1 indicatives of a tendency toward evenly spaced
events. It is also possible to make this comparison more precise and to offer a
significance test, this time based on the familiar normal distribution (see
Bailey and Gatrell, 1995, pp. 98–101).

A Cautionary Tale: Are Drumlins Randomly Distributed?

The word drumlin is Irish and describes a long, low, streamlined hill. Drumlins

occur in swarms, or drumlin fields, giving what geologists call basket of eggs

landscapes. Although it is generally agreed that drumlins are a result of

glaciation by an ice sheet, no one theory of their formation has been

accepted. A theory proposed by Smalley and Unwin (1968) suggested

that within drumlin fields the spatial distribution would conform to IRP/

CSR. With data derived from map analysis, they used the nearest-neighbor

statistic to show that this seemed to be true and provided strong evidence

supporting their theory. The theory was tested more carefully in later papers

by Trenhaile (1971, 1975) and Crozier (1976).

With the benefit of many years of hindsight, it is clear that the point

pattern analysis methods used were incapable of providing a satisfactory

test of the theory. First, there are obvious difficulties in considering drumlins

as point objects and in using topographic maps to locate them (see Rose and

Letzer, 1976). Second, use of just the mean nearest-neighbor distance

means that any patterns examined are only those at short ranges. It may

well be that at a larger scale, nonrandom patterns would have been

detected. Finally, it is clear that the nearest-neighbor tests used by all these

early workers show major dependence on the boundaries of the study

region chosen for analysis. If you examine how R is calculated, you will see

that by varying the area A used to estimate the intensity, it is possible to get
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There are a number of complications with this approach, of which, as the
cautionary tale above shows, the definition of area A used in all the
computations is one. Another is that the expected values are strictly correct
only for an unbounded study area with no edge effects.

The G and F Funct ions

Expected values of the G and F functions under IRP/CSR have also been
determined. These both have the same well-defined functional form
given by

E G dð Þð Þ ¼ 1� e�lpd2

E F dð Þð Þ ¼ 1� e�lpd2 ð5:12Þ

It is instructive to note why the two functions have the same expected form
for a random point pattern. This is because, for a pattern generated by IRP/
CSR, the events used in theG function, and the random point set used in the
F function, are effectively equivalent—since they are both random. In either
case, the predicted function may be plotted on the same axes as the observed
G and F functions. Comparison of the expected and observed functions
provides information on how unusual the observed pattern is. For the
examples of clustered and evenly spaced arrangements considered previ-
ously (see Figure 5.10), this is plotted as Figure 5.15. In each plot, the
expected function is the smooth curve between the two observed empirical
curves.
In each case, the G and F functions lie on opposite sides of the expected

curve. For a clustered pattern, the G function reveals that events in the
pattern are closer together than expected under IRP/CSR, whereas the F
function shows that typical locations in the study region are farther from any
event in the pattern than would be expected (because they are empty). For
the evenly spaced pattern, the opposite is the case. The G function clearly
shows that an evenly spaced pattern has much greater nearest-neighbor
distances than would be expected from a realization of IRP/CSR, while for
the F function, because of the even spacing, typical locations in the empty

almost any value for the index! Drumlins may well be distributed randomly,

but the original papers neither proved nor disproved this. Better evidence

about their distribution might be obtained by, for example, use of plots of

the G, F, and K functions.
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space are nearer to an event in the pattern than would be expected under
IRP/CSR.

Again, these results can bemademore precise by being given statements of
probability or significance but it should be noted that all distance-based
methods are subject to the same considerable problem: they are sensitive to
changes in the study region. This affects estimation of l, which must be used
to determine the expected functions. Although the mathematics required is
rather involved, it is possible to correct for edge effects. In practice, it is often
more fruitful to use computer simulation to develop a ‘‘synthetic’’ prediction
for the expected value of the descriptive measure of interest. This is dis-
cussed in more detail in connection with the K function.

The K Funct ion

The expected value of the K function under IRP/CSR is easily determined.
Since K(d) describes the average number of events inside a circle of radius d
centered on an event, for an IRP/CSR pattern we expect this to be directly
dependent on d. Since pd2 is the area of each circle and l is the mean density
of events per unit area, the expected value of K(d) is

E K dð Þð Þ ¼ lpd2

l

¼ pd2

ð5:13Þ

We can plot this curve on the same axes as an observedK function in much
the same way as for the G and F functions. However, because the expected
function depends on distance squared, both the expected and observed K(d)
functions become large as d increases. As a result, it is difficult to see small

Clustered Evenly spaced

GF

Distance, d
0 0.05 0.10 0.15 0.20

0

0.2

0.4

0.6

0.8

1

F
d

G
d

(
),

(
)

F

G

Distance, d
0 0.05 0.10 0.15 0.20

0

0.2

0.4

0.6

0.8

1
F

d
G

d
(

),
(

)

Figure 5.15 Comparison of the G and F functions for the patterns in

Figure 5.10 against IRP/CSR. The middle curve in each plot is the

expected value for both functions.
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differences between expected and observed values when they are plotted on
appropriately scaled axes.
One way around this problem is to calculate functions derived from K that

have zero value if K is well matched to the expected value. For example, to
convert the expected value ofK(d) to zero, we can divide by p, take the square
root, and subtract d. If the pattern conforms to IRP/CSR, and if we perform
the same operation on the observed values ofK(d), we should get values near
zero. Perhaps unsurprisingly, this function is excitingly termed the L
function

L(d) ¼
ffiffiffiffiffiffiffiffiffiffiffi
K(d)

p

r
� d ð5:14Þ

and is plotted in Figure 5.16 for two well-known spatial data sets: Numa-
ta’s Japanese pines data (Numata, 1961; Diggle, 2003) and Ripley’s subset
(1977) of Strauss’s redwood seedlings data (Strauss, 1975). The former data
set is indistinguishable from a random pattern, while the latter is
clustered.
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Figure 5.16 L functions, naive and corrected for two data sets.

Point Pattern Analysis 147



Where L(d) is above zero, there are more events at the corresponding
spacing than would be expected under IRP/CSR; where it is below zero, there
are fewer events than expected. In the case of the redwoods data, L(d)> 0 for
d values across the whole range of plotted values, indicating that there are
more events at these spacings than expected under IRP/CSR. For the
Japanese pine, L(d) is close to zero, until around d ¼ 0.1 and then begins
to fall continuously.

However, interpretation of the naive L functions is often made difficult by
edge effects. In the two cases shown above, where d � 0.1, L(d) falls
continuously. This suggests that there are fewer events at these separations
than expected. However, this is simply because many of the circles used in
determining the K function at such distances extend outside the study region

(which is a square of unit size). It is possible to correct calculation of the K
and L functions to account for such edge effects, although the mathematics
required is complex. In Figure 5.16, the corrected functions have been
calculated using Ripley’s isotropic correction (see Ripley, 1988). We may
also consider using a guard zone, as illustrated in Figure 5.13, or any of the
edge correction methods discussed in Section 5.2.

5.4. MONTE CARLO TESTING

While the above plots give us an idea of whether or not, and over what ranges
of distances, a pattern is clustered or not, they are still not a statistical
assessment of the data, because it remains unclear how far the L functions
should depart from zero before we judge them to be unusually high or low
values.While analytical results for the range of expected values are available
in some cases, it is generally considered more straightforward to use com-
puter simulation to estimate appropriate values First, read the simple
example presented in the following box.

Nearest-Neighbor Distances for 12 Events

Figure 5.7 and Table 5.2 presented a simple pattern of 12 events in a 100 by

100 region. Our measured mean nearest-neighbor distance turned out to be

21.62. If we hypothesize that these events are the result of IRP/CSR, what

values of �dmin do we expect?

One way to answer this question would be to do an experiment where

we place 12 events in the same region, using random numbers to locate

each event, and calculate the value of �dmin for that pattern. This gives just

one value, but what if we do it again? Given the random process we are

using, won’t we get a different answer? So, why not do the experiment
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In exactly the same way that we can simulate a point pattern to determine
the distribution of a simple statistic such as the mean nearest-neighbor
distance, we can simulate to determine the distribution of much more
complex measures such as K(d) or its associated L functions. The procedure
is exactly the same: use a computer to generate patterns and measure the

over and over again? The result will be a frequency distribution, called the

sampling distribution, of �dmin. The more times we repeat the experiment,

the more values we get and more we can refine the simulated sampling

distribution.

Relax, we are not going to ask you to do this (although it could be done as

a class experiment with a large enough class). Instead, we’ve done it for

you. Because the computer feels no pain when asked to do this sort of

thing, we’ve repeated the experiment 1,000 times. The resulting frequency

distribution of outcomes for the mean nearest-neighbor distance is shown

in Figure 5.17.

The simulated sampling distribution is roughly normal with mean �dmin ¼
16:50 and with a standard deviation 2.93. The observed value given for the

pattern, at 21.62, lies some way above this mean and so can be seen to be a

moderately uncommon realization, albeit within 2 standard deviations of the

mean. Note that in 1000 simulations, the range of values for �dmin was

considerable, from 7.04 to 27.50, and that the theoretical value for an

unbounded study area is actually 14.43.
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Figure 5.17 Results of a simulation of IRP/CSR for 12 events

(compare Table 5.2).
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quantity of interest each time, generating an expected distribution of values.
This approach also allows us to neatly take care of problems like edge effects
simply by using the same study region in the simulations as in our observed
data. Since each simulation is subject to the same edge effects as the
observed data, the sampling distribution we obtain automatically accounts
for edge effects without complex adjustments to the calculation. Such a
simulation approach is known as aMonte Carlo procedure and is widely used
in modern statistics.

Typically, aMonteCarloprocedure isusedrandomly to locatenevents in the
studyareaA, perhaps100or500or,aswedidtocreateFigure5.17,1,000times.
Each randomly generated point pattern is then analyzed using the same
methods applied to the pattern under investigation. Results for the randomly
generated patterns can then be used to construct an envelope of results, inside
which a pattern generated by IRP/CSRwould be expected to sit. Depending on
howmany simulated patterns are generated, reasonably accurate confidence
intervals can be placed on the envelope, so we can determine how unusual the
observed pattern iswith reasonable accuracy.One of themost frequently used
freeware computer programs for point pattern analysis, CrimeStat III (Levine
and Associates, 2007), has such a simulation facility built in. Similarly, theR
statisticspackage,anditsspatstat libraryforpointpatternanalysis(Baddeley
andTurner,2005), cangeneratesimulationenvelopesforanyof themanypoint
patternmeasures it can calculate. Given the analytical difficulties involved in
dealingwithmanypoint patternmeasures, this approach is becoming increas-
ingly common.

Results for a simulation analysis using 99 simulations for the point data
sets from Figure 5.16 are shown in Figure 5.18. In these diagrams, inter-
pretation is much clearer. For the redwood data, it is apparent that over a
distance range from around 0.02 to 0.2, the observed pattern is more
clustered than we would expect it to be were it generated by IRP/CSR.
Even more clearly, in the second panel, we can see that at all distances, the
observed L function for the Japanese pine data set lies inside the simulation
envelope generated by IRP/CSR, so we must conclude that in terms of the L

function at least, this pattern is entirely typical of what wewould expect for a
pattern produced by IRP/CSR.

The Monte Carlo simulation approach has a number of clear advantages:

� There is no need for complex corrections for edge and study region area
effects (although note that, as long as the same calculation is applied
to the measurement of both the observed data and the simulated data,
any desired correction can be incorporated).

� Although the procedure works by using the same number of events n
as in the original pattern, it is not so sensitively dependent on this
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choice as are approaches based on an equation that includes l. It is
also easy to gauge the importance of this assumption by varying n in
the simulated patterns.

� Perhaps the most important advantage of the approach is that spatial
processmodels other than IRP/CSRmay be conveniently investigated;
indeed, any process that fits any theory we might have about the data
can be simulated and an assessment made of the observed pattern
against the theory. This allows us tomove beyond investigation of only
analytically simple process models. Statistical assessment of mea-
sures such as the pair correlation function depends heavily on simu-
lation approaches (see Perry et al., 2006).

A disadvantage of simulation is that it may be computationally intensive.
For example, if there are 100 events in the original point pattern and (say) a p
¼ 0.01 confidence level is required, it is necessary to run at least 99
simulations. Each simulation requires 100 events to be generated. For the
K function, distances between all 100 events in each simulationmust then be
calculated. This involves approximately 100 � 99 � 99/2 � 500 000 basic
calculations. Each distance determination involves two subtraction opera-
tions (the difference in the coordinates), two multiplications (squaring the
coordinate differences), an addition, and a square root operation—six in
total—and the square root operation is not simple. That’s a total of 3 million
mathematical operations, followed by further sorting operations to build the
upper and lower bounds of the envelope.
Nevertheless, this sort of calculation is well within the capacity of any

modern desktop computer. The graphs in Figure 5.18 took only a few seconds
to produce on a standard 2008-vintage laptop. Even so, just because it is
possible does not mean that it is always necessary to proceed in this way. It is
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Figure 5.18 L functions plotted with simulation envelopes produced

by 99 simulation runs.
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important to be sure that it is worthwhile to apply statistics to the problem at
all before embarking on such complex analysis. Perhaps using the point
pattern measures in a descriptive manner is adequate for the task at hand.
On the other hand, if it is important that your analysis is right—for example,
in the detection of disease hot spots—then leaving a machine running for an
hour or two (on a large problem) may be a small price to pay for the gain in
knowledge obtained from the simulations.

5.5. CONCLUSIONS

A lot of detailed material has been presented in this chapter, but the basic
messages are readily apparent. We have been concerned with developing a
clearer idea of the concept of pattern and how it can be related to process. In
principle, any pattern can be described using a variety of measures based on
its first- and second-order properties—or, put another way, by looking for
departures from first- and second-order stationarity.

In a point pattern, first- and second-order variation can be directly
related to two distinct classes of pattern measure: density-based measures
and distance-based measures. Among density-based measures, quadrat
counts and kernel-density estimation provide alternative solutions to the
problem of the sensitivity of any density measurement to variation in the
study area. Numerous distance-based measures are also available, from
the very simple mean nearest-neighbor distance, through G and F func-
tions, to the full complexity of the K and pair correlation functions, which
use information about all the interevent distances in a pattern. Perhaps
the most important point to absorb is that as a minimum, some preliminary
exploration, description, and analysis using these or other measures is
likely to be useful. For example, a kernel-density estimated surface derived
from a point pattern is helpful in identifying the regions of greatest
concentration of a phenomenon of interest, while the G, F, and K functions
together may help identify characteristic distances in a pattern—particu-
larly intra- and intercluster distances. In many cases, such information is
useful in itself.

However, if we wish, we can go further and determine how well a pattern
matches what we would expect if the pattern were a realization of a
particular spatial process that interests us. This involves determining
for the process in question the sampling distribution for the pattern
measure we wish to use. The sampling distribution may be determined
either analytically (as in Chapter 4) or by simulation (as in this chapter).
Having done this, we can set up and test a null hypothesis that the
observed pattern is a realization of the process in question. Our conclusion
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is either that the pattern is very unlikely to have been produced by the
hypothesized process or that there is no strong evidence to suggest that the
pattern was not produced by the hypothesized process. Either way, we
cannot be sure—that’s statistics for you—but we can assign some proba-
bilities to our conclusions, which may represent a useful advance over
simple description.
So, what to make of all this? We’ve come a long way in a short time: has it

been worth it? Does comparing a pattern to some spatial processmodel really
help us understand the geography better? This is the core of spatial statisti-
cal analysis, and the question we have asked is a very pure one: whether or
not an observed point pattern is or is not an unusual realization of IRP/CSR.
Most of the time when dealing with point patterns, this isn’t the only
hypothesis we want to test. Does being able to make the comparison
statistical really help? Is it useful to know that ‘‘there is only a 5% chance
that this pattern arose from this process by chance’’? The answer is, ‘‘it
depends’’, but experience suggests that practical problems of the type you
may be asked to address using a GIS are rarely capable of being solved using
pure spatial pattern analysis methods.
The statistical approach becomes important if we want to use spatial

patterns as evidence in making important decisions. In the world we live in,
important usually means decisions that affect large numbers of people or
large numbers of dollars—frequently in opposition to one another. A classic
example is the conflict of interest between a residential community that
suspects that the polluting activities of a large corporation are responsible
for apparently high local rates of occurrence of a fatal disease. IRP/CSR is a
process model of only limited usefulness in this context. We know that a
disease is unlikely to be completely random spatially, because the population
is not distributed evenly, and we expect to observe more cases of a disease in
cities than in rural areas. In epidemiology, the jargon is that the ‘‘at-risk’’
population is not evenly distributed. Therefore, to apply statistical tests, we
have to compare the observed distribution to the at-risk population distri-
bution. A good example of what can be done in these circumstances is
provided by the case studies in the paper by Gatrell et al. (1996). Using
the simulation approach discussed above, we can create a set of simulated
point patterns for cases of the disease based on the at-risk population
density, and thenmake comparisons between the observed disease incidence
point pattern and the simulation results using one ormore of themethods we
have discussed.
In short, even the complex ideas we have discussed in detail in this chapter

and the previous one are not the whole story. Some other, more practical
issues that might be encountered in this example or other real-world cases
are discussed in the next chapter.
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CHAPTER REVIEW

� A point pattern consists of a set of events at a set of locations in the
study region, where each event represents a single instance of the
phenomenon of interest.

� We describe a point pattern using various measures or statistics. The
simplest measure is the mean location and standard distance, which
can be used to draw a summary circle or ellipse. However, thismeasure
discards most of the information about the pattern, so it is useful only
for an initial comparison of different patterns or for recording change in
a pattern over time.

� Measures of pattern are broadly of two types: density measures, which
are first-order measures, and distance measures, which are second-

order measures.
� Simple density is not very useful. Quadrat counts based on either a
census or a sample of quadrats provide a good, simple summary of a
point pattern’s distribution.

� The simplest distance measure is the nearest-neighbor distance,
which records for each event the distance to its nearest neighbor
also in the pattern.

� Other distance functions are theG,F,K, and pair-correlation functions,
which use more of the interevent distances in the pattern to enhance
their descriptive power, although interpretation may be difficult.

� If we feel it is necessary to conduct a formal statistical analysis, the
general strategy is to compare what is observed with the distribution
predicted by a hypothesized spatial process, of which the IRP/CSR is
by far the most often used. Tests are available for all the pattern
measures discussed.

� In practice, edge effects, and their sensitivity to the estimated inten-
sity of the process, mean that many of these tests are difficult to apply,
so computer simulation is often preferred.
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Chapter 6

Practical Point Pattern Analysis

C H A P T E R O B J E C T I V E S

In this chapter, we:

� Review briefly two of the most cogent geographic critiques of this
approach to spatial statistical analysis

� Point out that, because of the unrealistic nature of the assumptions
made in its derivation, the basic homogeneous Poisson process that we
have outlined so far is not often useful in practice

� Describe point process models used as alternatives to IRP/CSR
� Outline the controversy over childhood cancer linked to a nuclear
reprocessing plant in northwest England, a classic example of spatial
point pattern analysis in action; in turn, this problem illustrates a series
of issues that almost invariably arise in practical point pattern analysis

� Examine methods that tackle the first of these, the presence of in-
homogeneity or heterogeneity, which makes the homogeneous Poisson
process, our standard IRP/CSR model, inappropriate for most analyses

� Review approaches to problems involving some hypothesized source,
or sources, around which the events might cluster, necessitating what
is called a focused test

� Note that we are frequently concerned not with a general test that
declares a pattern to be clustered or more regular than random, but
with detecting and locating significant clusters

� Discuss the Geographical Analysis Machine (GAM) developed by
Openshaw and his colleagues, an example of a system that attempted
to address all of these issues simultaneously

� Suggest that the use of proximity polygons, a standard GIS geometric
transformation of the type suggested in Section 2.3, might enable
better characterization of point patterns for analysis
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� Note that many of the operations we discuss can be accomplished
using simple interevent distance matrices.

After reading this chapter, you should be able to:

� Outline the basis of classic critiques of spatial statistical analysis in
the context of point pattern analysis and articulate your own views on
the issues raised

� Explain why IRP/CSR is usually an unrealistic starting point in
spatial point pattern analysis

� Distinguish between general, focused, and scan approaches to spatial
point pattern analysis

� Discuss the merits of point pattern analysis in cluster detection and
outline the issues involved in real-world applications of these methods

� Outline how proximity polygons could be used in point pattern
analysis

� Assemble a simple interevent distance matrix and show how it could
be used in point pattern analysis

6.1. INTRODUCTION: PROBLEMS OF SPATIAL
STATISTICAL ANALYSIS

In our account of classical spatial statistical analysis in Chapters 4 and 5,
we avoided considering its limitations in any extended way. Nevertheless,
there are difficulties with the approach, both in aspects of the mode of
statistical inference used and in the details of its application to real-world
questions and problems. In this chapter, we consider these issues more
closely. Much of our treatment focuses on a particular application: identi-
fying clusters of a rare disease. However, before considering the partic-
ulars of that application, it is instructive to review effective critiques of
spatial analysis from two eminent geographers. Although their views were
presented 40 or so years ago, they remain highly relevant and provide a
useful introduction to our development of concepts behind contemporary
spatial analysis.

Peter Gould’s Cr i t ique

In a paper entitled ‘‘Is statistix inferens the geographical name for a wild
goose?’’ Peter Gould (1970) made a number of important criticisms of the
use of inferential statistics in geography, and it is good to be aware of them.
In summary, Gould suggests the following:
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� Geographic data sets are not samples.
� Geographic data are almost never random.
� Because of autocorrelation, geographic data are not independent
random.

� Because n is always large, we will almost always find that our results
are statistically significant.

� What matters is scientific significance, not statistical significance.

Now that you have read our account, we hope that you will answer these
criticisms more or less as follows:

� The process-realization approach enables us to view geographic data
as samples in a particular way.

� There is no answer to this criticism; geographic data are not
random. The real question is whether or not it is scientifically
useful to analyze geographic data as if they were the result of a
stochastic (random) process; the answer to this question must be
‘‘yes.’’

� Even though data are not independent random, this does not prevent
us from using statistics if we can develop better models than IRP/CSR.
This is discussed further in Section 6.3.

� Often n is large, but not always, so this point is not convincing,
particularly if a commonsense approach to the interpretation of
statistical significance is used.

� Gould is right. Scientific significance is the important thing. This
requires that we have a theory about what is going on and test that
theory appropriately, not just use whatever statistics come to hand.

Perhaps the most important point implied by Gould’s criticisms is that
IRP/CSR is a rather strange hypothesis for geographers to test against. After
all, it suggests that the geography makes no difference, something that we
don’t believe from the outset! The whole point of IRP/CSR is that it exhibits

no first- or second-order effects, and these are precisely the types of effects
that make geography worth studying. In other words, we’d be disappointed if
our null hypothesis (IRP/CSR) were ever confirmed, and it turns out that for
large n it almost never is. Furthermore, rejecting IRP/CSR tells us virtually,
nothing about the process that actually is operating. This is a difficulty with
inferential statistics applied to spatial processes: whereas a null hypothesis
like ‘‘Mean tree height is greater than 50 m’’ has an obvious and meaningful
alternative hypothesis (‘‘Mean tree height is less than or equal to 50m’’), IRP/
CSR as a null hypothesis admits any other process. Thus, rejecting the null
hypothesis is arguably not very useful.
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David Harvey’s Cr i t ique

In two papers published many years ago, David Harvey (1966, 1968) also
discussed some of these issues. His major point is irrefutable and simple
but very important: there are inherent contradictions and circularities in
the classical statistical approach we have outlined. Typically, in testing
against some process model, we estimate key parameters from our data
(often, for point pattern analysis, the intensity l). The estimated parame-
ters turn out to have strong effects on our conclusions, so much so that we
can often conclude anything we like by altering the parameter estimates—
which can usually be done by altering the study region. Modern simulation
approaches are less prone to this problem, but the choice of the study region
remains crucial.

Harvey’s disillusionment and frustration with spatial analytic app-
roaches to the understanding of geographic phenomena has to be taken
seriously and not dismissed as a failure to understand the approach. On the
contrary, it is important to acknowledge that, ultimately, spatial analysis
methods are limited in their ability to prove anything. This is a point in
the philosophy of science that deals with how we assess evidence in devel-
oping and establishing scientific theories. Harvey’s critique points to the
importance of theories for explaining our observations. We hope that we
have made it clear that spatial analysis has an important role to play
in establishing how well any particular theory about geographic processes
fits the evidence of observational data. Both theory and appropriate
methods are necessary for advancing understanding. The limitations
Harvey notes can be addressed by appropriate and thoughtful use of spatial
statistical analysis.

Impl icat ions

Gould’s critiques point to two important weaknesses in the classical
approach we have outlined. First, a hypothesis-testing approach in which
we reject the null hypothesis of IRP/CSR tells us nothing we didn’t
already know; it also fails to tell us anything about the processes that
are operating. This is a failure associated with the particular approach to
statistical reasoning that we have presented. Alternative approaches are
available and are becoming increasingly widely used; they are discussed
in Section 6.2. The second weakness Gould’s critique emphasized is
how poor a process model IRP/CSR is. As we hinted in Section 5.4 in
considering simulation approaches, it is becoming increasingly common to
consider alternative models. We briefly discuss some of these models in
Section 6.3.
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6.2. ALTERNATIVES TO CLASSICAL
STATISTICAL INFERENCE

Some of Gould’s and Harvey’s concerns are partly addressed by more recent
developments in the application of statistical analysis to point patterns.
Many of these developments relate to other approaches to statistical infer-
ence other than the classical approach that we focused on in earlier chapters.
In any case, as you explore spatial analysis further, you will almost certainly
encounter these other approaches to statistical inference. It is therefore
worthwhile to outline them (very briefly) here.
In Chapters 4 and 5, we presented a perspective based on classical

statistical inference, sometimes referred to as frequentism. This approach
is the one covered in almost any standard introduction to statistics. For a
null statistical process (such as IRP/CSR) it asks, ‘‘How probable would the
observed pattern be if the hypothesized null process were operating?’’ The
outcome of such a hypothesis test is a p-value that leads us to either:

� Reject the null hypothesis if the p-value is low. We can then go on to
conclude that our pattern is unlikely to have been produced by the
hypothesized process; or

� Fail to reject the null hypothesis if the p-value is high. In this case, we
conclude that there is insufficient evidence to believe that the observed
pattern is not the outcome of the hypothesized process.

Potentially, we could apply this approach sequentially to a series of alter-
native process models, that is, not just to the independent random process.
Thus, wemight reject IRP/CSR, and then present a different possible process
model and determine if we can reject it as a candidate generating process for
our data. Quite apart from the evident difficulty (where do we stop?), this is
rarely done. The net result is that classical inference often doesn’t allow us
to conclude much more than ‘‘The data are more clustered than random’’ or,
worse, ‘‘The data aren’t obviously nonrandom.’’ Neither conclusion is much
use beyond the very earliest stages of an investigation.
An approach that is becoming more widely used, and that can allow us to

makemore progress, is likelihood-based inference (see Edwards, 1992). Here,
the idea is to use statistical analysis of point pattern measures to assess
which of a number of alternative process models is the most likely to have
produced the observed pattern. Roughly speaking, this involves assessing,
for an observed pattern, which of several alternative process models it most
typifies.Whereas classical inference assigns probability to the data in light of
a hypothesized process, likelihood statistics assign likelihood to each of a
number of possible processes given the observed data. For many scientists,
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this is a more satisfying way to pose the problem of assessing theories based
on evidence.

The technical details of likelihood statistics are rather complex and
beyond the scope of this book. In outline, the procedure involves first
estimating parameters of the alternative process models of the chosen types
(based on the observed patterns) and then determining how likely each fitted
process model is to have produced the observed pattern. Computer simula-
tion is invariably used. The attraction of the likelihood approach is that it
allows us to do more than simply reject IRP/CSR. Potentially, we can draw
conclusions about which of several models is most likely to be operating. In
the next section, we describe some alternative process models beyond IRP/
CSR that may be considered.

Considerable care is required in applying the likelihood approach. Careful
specification of the alternative models for consideration is important. It is
also important to realize that just because one model is the most likely, this
does not preclude the possibility either that none of the alternative models is
much good or that the differences between the alternatives are not suffi-
ciently marked to justify a strong preference for one model over others.
Judicious use of visualizations can be very important in this context to avoid
getting carried away with the numerical statistical outputs and placing
undue emphasis on the mechanical choice of the ‘‘best’’ model.

Finally, in situations where previous research or prior knowledge strongly
suggests that a particular spatial process is in operation,manywould advocate
aBayesian approach (see Bolstad, 2007). Here, the idea is to use observational
data to refine a preexisting statistical model of the process. Although the
philosophical underpinnings of the Bayesian approach are attractive to many
(not all!) scientists, the statistical analysis of point patterns is not an area
where such methods have been widely developed or adopted to date.

Either or both likelihood and Bayesian approaches, in combination with
careful use of visualization and (yes) classical hypothesis testing, can allow
us to advance far beyond the rather mindless rejection of implausible null
hypotheses (rightly) decried by Gould and Harvey. You will almost certainly
find yourself using such tools in more advanced work on point pattern
analysis.

6.3. ALTERNATIVES TO IRP/CSR

By now, you are probably impatient to know more about the alternatives
to IRP/CSR we keep mentioning. Before describing some of these alter-
natives, it is useful to consider their essential characteristics. As we
have mentioned, IRP/CSR is an ideal null process, exhibiting no first- or
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second-order effects. Alternative processes, then, are simply ones that
introduce either or both. We have already noted that it is difficult to
distinguish first- and second-order effects in data, but it is possible to
devise process models in which the distinction is very clear. First-order
effects involve allowing the probability of events to vary from place to place
across the study region, while second-order effects involve introducing
interactions of some kind between events.

Two example applications that are generally easily appreciated are to be
found in spatial epidemiology and in the study of distributions of plant
species in plant ecology.
In either case, we may expect first-order variations. Home addresses of

individual cases of a disease can be expected to vary with the spatial density
of the at-risk population. Where more about the risk factors associated with
a disease is known, we may be able to introduce further inhomogeneity into
our first-order model based on the presence of different population sub-
groups, housing types, and so on. There will be more cases where there are
more people at risk. Similarly, varying suitability either in the physical
landscape (land elevation, slope, etc.), climatic conditions (precipitation,
solar radiation, etc.), or soil (acidity, chemistry, granularity, etc.) can be
expected to produce first-order variation in the observed spatial distribution
of a particular species. If you think about it, you will see that these cases
are not as different as they may at first appear.

Pause for Thought

Before reading any further, can you think of some distributions of point

events where we would expect either first-order intensity variations or

second-order interaction effects? For each of the following point object

types, suggest what actual mechanisms might introduce such effects into

the patterns we observe:

� Trees in a wood
� Cases of asthma among children
� Recorded burglaries in a city
� Rain gauges in a hydrological observation network
� Houses of the customers of a large store
� Domestic fire incidents
� Automobile accidents across a county
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Similarly, both disease and plant distributions might be expected to
exhibit second-order interaction effects. To the extent that a disease is
infectious, then, given one case in a neighborhood, we might expect further
cases to be more common in the same neighborhood rather than in others.
Plant distributions provide an even more clear-cut case here. Seed disper-
sal and vegetative spread (i.e., via root systems) are generally highly
localized processes, so that, on average, anywhere we find an individual
member of a species, we can expect to find more of the same. So, how are
these effects incorporated into process models? A few simple examples are
considered below.

The inhomogeneous Poisson distribution is a simple extension of the
homogeneous Poisson process (which we have been calling IRP/CSR).
Instead of assuming a spatially uniform intensity l, we allow the intensity
to vary from place to place. This is illustrated in Figure 6.1, where three
realizations are shown. This first of these is a homogeneous case with l ¼
100 across the whole study area. The second and third cases introduce
spatial variation in l indicated by the shading and contours of the variation
of intensity. In both cases, the range of values is from 100 to 200, with
contours from 110 to 190 at intervals of 10. It is noteworthy that, in spite of
a twofold variation in intensity across the region, neither realization is
very evidently different from the homogeneous case. There is some im-
pression of an absence of events in the northwest quadrant of the third
pattern, but there is little to suggest to the human eye that there is a higher
probability of events falling in the center of this pattern. Unless there are
strongly marked variations in intensity, this is quite typical of more
complex process models.

A process that introduces second-order effects is the Thomas process or
Poisson clustering process. Here, a simple Poisson process (which may be
inhomogeneous) produces ‘‘parent’’ events. Each parent then produces a
random number of ‘‘children’’ placed around the parent at random.
The parent events are then removed to leave the final pattern. Three

Figure 6.1 Three Poisson process realizations. See text for details.
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realizations are shown in Figure 6.2. Three parameters are required to
specify this process, namely, the intensity of the original distribution of the
parents (l), the number of children of each parent (m, itself the mean
intensity of a Poisson distribution), and the characteristics of the dispersal
of children from the parent locations. Usually the last step proceeds
according to a Gaussian kernel, so it is unlikely that children will be
very far from the parent locations and the standard deviation of the kernel
must be specified. Again, it is noteworthy that one of these patterns (in
Figure 6.2i) is not obviously distinguishable from IRP/CSR, at least by eye.
With appropriate choice of parameters, the Thomas process produces

patterns that are quite markedly clustered—even by eye. Other process
models use packing constraints or inhibition to make it unlikely that events
will occur closer together than some minimum threshold distance, and these
produce evenly spaced or dispersed patterns.
From an analysis perspective, themost troublesome feature of any of these

process models is that they introduce (perhaps many) more parameters that
must be estimated from the observed data before statistical analysis can
proceed. Thus, in the same way that we use a simple estimate of a pattern’s
intensity to condition subsequent statistical analysis for IRP/CSR, with
these more complex processes it is necessary to estimate additional parame-
ters from the data before we can apply any statistical procedure. For
inhomogeneous processes, a common procedure is to use a kernel density
estimate for the spatially varying process intensity. Estimation of other
parameters may involve complex statistical fitting procedures. Once a
number of estimated best-fit process models have been derived, statistical
testing using likelihood methods may allow some assessment of which of a
number of models appears to account best for the observed data. Perry et al.
(2008) is an example of such a study, which gives a good sense of just how
much work is involved in systematically pursuing this approach.

(i) (ii) (iii)

Figure 6.2 Three realizations of the Thomas process in a unit square.

Parameters settings are (i) l ¼ 10, m ¼ 10, s ¼ 0.3, (ii) l ¼ 10,

m ¼ 10, s ¼ 0.1, and (iii) l ¼ 20, m ¼ 5, s ¼ 0.1.
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6.4. POINT PATTERN ANALYSIS IN THE REAL WORLD

In practice, such comprehensive analysis and statistical testing of observa-
tional data with respect to empirically derived best-fit point process models
remains unusual, even in the research literature.

While we can agree that in many cases a more complex process model than
IRP/CSR is clearly required, it is time to take a step back again. Assuming
that we have adopted some more or less complex model as the most plausible
for our data, whether on theoretical grounds or based on model-fitting, we
can, as before, develop some expectation of the values of various pattern
metrics. But what would we conclude from a study comparing observed
disease cases to an inhomogeneous Poisson clustering process (or some other
model)? We might infer either that the pattern of incidents matched the
process well or not. In the latter case, we would be able to say that observed
events were more—or less—clustered than we expected. While this knowl-
edge may be useful, it is still limited in many practical situations. The
approach is a general technique, concernedwith the overall characteristics of
a pattern (Besag and Newell, 1991).

There are at least two other geographic questions wemight wish to ask of a
point pattern. First, wemight have a hypothesis that relates the clustering to
either a single center or multiple centers. The classic example is the 1854
study by Dr. John Snow of the Soho (London) cholera outbreak, where an
obvious pattern of deaths was hypothesized to cluster around a single source
of infected water (see Johnson, 2006). Modern versions of this same problem
are reviewed by Hills and Alexander (1989) and elsewhere (Diggle, 1990).
This is a focused rather than a general problem.

Second, in their standard forms, neither general nor focused approaches
say much about where the pattern deviates from expectations. All the
concepts introduced in Chapters 4 and 5 omit this important aspect of point
pattern analysis entirely. Today, the problem of cluster detection is usually
addressed by some form of scan statistic.

Thus, we have three related further sets of issues: correcting for in-
homogeneity, testing for clustering relative to some assumed focal point,
and detecting clusters.

Background: Cancer Clusters Around
Nuclear Insta l lat ions

In the remaining sections of this chapter, we illustrate practical issues in
point pattern analysis using the example provided by a cluster of children’s
deaths from the cancer leukemia around the town of Seascale in northern
England. According to Gardner (1989), Seascale saw four cases of childhood
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leukemia in the 1968–1982 period, whereas just 0.25 might have been
expected in this small town. The hypothesis was that this apparent cluster
of cases was related to the nearby Sellafield, Britain’s oldest nuclear reactor
and fuel reprocessing plant. Local family doctors had already expressed
concern about higher than expected levels of leukemia, but in November
1983, a TV program Windscale: The Nuclear Laundry dramatized the
possible link (Sellafield was previously named Windscale). The program
was based on evidence assembled byUrquhart et al. (1984) and led to amajor
public and scientific controversy, a variety of detailed academic and medical
studies, and a detailed official report (Black, 1984). The report concluded
that the cluster was real, not mere chance, but that evidence linking the
cluster to the plant was circumstantial.
Furthermore, there were reasons to doubt a direct link between leukemia

deaths and ionizing radiation from the Sellafield plant:

� Measured levels of radiation in the area did not seem high enough to
cause genetic damage.

� Apparent clusters occur naturally in many diseases for unexplained
reasons. Meningitis is a good example of such a clustering disease.

� The actual number of cases in the cluster (four) was much too small to
infer that it was unusual.

� If radiation were the cause, then one would expect some correlation in
time between the operation of the plant and the occurrence of the
cases. No such time correlation was found.

� Similar clusters of cancers have been found around nonnuclear plants
and even at places where plants had been planned but were never
built.

� Finally, many industries use a number of chemicals whose leukemo-
genic potential is poorly understood but which may be equally, or even
more culpable.

The Black Report led to establishment of the Committee on Medical
Aspects of Radiation in the Environment (COMARE), which studied an-
other nuclear plant, at Dounreay in the far north of Scotland. COMARE
found that there had been six cases of childhood leukemia around the
Dounreay plant when only one would have been expected due to chance
spatial variation. In 1987 a report in the British Medical Journal sug-
gested that there was another cluster around the British Atomic Energy
Research establishment at Aldermaston in southern England. All this
research activity led to the publication of a special volume of the Journal
of the Royal Statistical Society, Series A (1989, vol. 152), which provides a
good perspective on many of the issues involved. The debate has rumbled

Practical Point Pattern Analysis 167



on more or less continuously ever since in the epidemiology literature, with
numerous alternative tests suggested (see, for example, Bithell and Stone,
1989; Bithell, 1990; Bithell et al., 2008). Whatever the cause, most studies
conclude that there was a cluster of cancer cases at Seascale, but that there
is no direct evidence of a causal link between leukemia and any excess
ionizing radiation in the area.

If you are skeptical about that conclusion, it is useful to note that other
hypotheses might also account for the cluster. Kinlen (1988) argued his
rural newcomer hypothesis, stating that the cause was an unidentified
infectious agent brought by construction workers and scientists moving
into previously isolated areas such as those around Sellafield and Doun-
reay. The infectious agent, he suggested, triggered leukemia in a vulnera-
ble host population that had not built up any resistance to it. Two years
later, Gardner et al. (1990) completed a major study examining the family
histories of those involved. They suggested that men who received cumu-
lative lifetime doses of radiation greater than 100 mSv, especially if they
had been exposed to radiation in the six months prior to conception, had six
to eight times the chance of fathering a child who developed leukemia
because of mutations to the sperm. However, they were unable to find any
direct medical evidence in support of this hypothesis, and the theory seems
counter to the results of trials involving the victims at Hiroshima and
Nagasaki, which found no pronounced genetic transmission. However,
geneticists have pointed out that common acute lymphatic leukemia is a
cancer that is possibly transmitted in this way.

Whatever the underlying causes, the search for cancer clusters around
Sellafield, Dounreay, and other nuclear installations illustrates well the
three issues noted above: inhomogeneity, focused testing, and cluster detec-
tion. We consider each in more detail below.

6.5. DEALING WITH INHOMOGENEITY

The first issue that any analysis of this problem has to deal with is
inhomogeneity. None of the classical tests outlined in Chapter 5 is appro-
priate if the background is spatially inhomogeneous. If we want to study
possible clustering in a pattern of events such as childhood deaths from
leukemia where we know that the at-risk population is not evenly distrib-
uted over the study region, what is required is a test for clustering against a
Poisson process that allows for this variation. Numerous tests have been
proposed, and several modifications of standard pure point pattern statistics
have been suggested and used (Cuzick and Edwards, 1990). An excellent
introduction to the issues in testing for clustering in the presence of
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inhomogeneity is the one by Gatrell et al., 1996). A recent review paper by
Kulldorff (2006) lists over 100 tests of spatial randomness adjusted for
inhomogeneity and cites over 150 references.

Approaches Based on Rates

The simplest approach, used by the first people to explore the problem
around Sellafield, is to express the counts of events as some rate of
incidence in the at-risk population. At first sight, this seems straightfor-
ward. All we need to do is determine the ratio of the observed events to the
at-risk population. Of course, this is not so simple. The notion of an at-risk
population implies that we have aggregate information for both the cases
and the at-risk population over some appropriate spatial units. Almost
certainly our base population figures will come from an official census of
population, and typically these will be in regions delineated for the
convenience of the census agency. They are unlikely to bear any relation-
ship to the problem at hand, and often they may also refer to a particular
‘‘snapshot’’ of the population at a date some time before or after the disease
incidents. Any rates we estimate will obviously be conditional on the units
chosen, and the MAUP examined in Section 2.2 is an obvious and very
unwelcome consequence.
The severity of the problem is illustrated by some of the early letters to

the editor of The Lancet concerning the Seascale cluster. Commenting on
claims made in the television program, Craft and Birch (1983) used case
and at-risk population data for all cancers and leukemia in children under
15 years of age in a series of date bands from 1968 to 1982 for five fairly
large arbitrary regions spanning the entire northwest of England. They
concluded that at this scale of examination there was no evidence of
elevated rates, as claimed by the program, and they pointed out the
well-known property of a Poisson distribution, that apparent clusters of
events often occur by chance. On the other hand, using data on death rates
from leukemia in people under 25, together with population data from the
1961 and 1971 U.K. Census of Population, Gardner and Winter (1984)
computed observed and expected rates across 14 smaller Local Authority
Areas in Cumbria for 1959–1967 and 1968–1978, showing that the esti-
mated rate for the second time period for one rural district next to the
Sellafield plant was around 9.5 times what would have been expected by
chance. This appears to confirm the suspicion of a cancer cluster. In
another letter to the editor of The Lancet’, the originators of the study
featured in the TV program suggested that clusters would appear at a finer
level of spatial aggregation than Craft and Birch used. They also stated

Practical Point Pattern Analysis 169



that the contention that some clusters would occur by chance ‘‘fails to meet’’
the point that a cluster of cases may also be a sign that some specific cause
is at work’’ (Urquhart et al., 1984). This echoes Lloyd et al.’s (1984) com-
ment that epidemiologists may be too prone to translate ‘‘cause unknown’’
as meaning ‘‘by chance.’’ These criticisms led Craft et al. (1984) to re-
compute rates using the smallest available spatial regions, which in 1981
were the 675 Census Wards. The result was that Seascale, the village
closest to the Sellafield field plant, came out with the highest ranked
Poisson probability (p ¼ 0.0001). However, as the authors pointed out,
using these data, many small areas of the region studied could be claimed
to have an excess of childhood cancer. They argued that ’’these variations
are almost inevitable for a group of diseases with an average incidence of
106 per million of total population.’’

What is happening here is just as logic would suggest: the finer the
spatial resolution of the units chosen, the more apparent clusters of cases
appear. A secondary issue appears at finer spatial resolutions: the numbers
of cases used in the numerator of any ratio gets smaller and smaller, so that
decisions about which cases to include and which to omit become increas-
ingly important. In response to Craft et al. (1984), Urquhart and Cutler
(1985) updated the study period and ‘‘found’’ six or seven additional cases.
Given the low numerators involved, addition of these cases seemed to them
to change the area ratios, but both Craft et al. (1985) and Gardner (1985)
challenged these additions. The detail is unimportant to us here. What
matters is that simply changing the categories of cancer used and/or the
time period over which the case data are aggregated can change the picture
that emerges dramatically, particularly at high spatial resolutions.

So, attempting to correct for inhomogeneity by estimating rates based on
arbitrary spatial regions may not be as good (or as simple) an idea as it
appears, since it introduces problems associated with the modifiability of
the areal units, the choice of an appropriate spatial scale/resolution at
which to operate, the time periods over which the data are aggregated, and
in many cases, instabilities due to the small numbers involved. From a
geographical perspective an even greater problem is that the approach
discards most, if not all, of the locational information available in the
distribution of the cases/events.

Approaches Based on KDE

In Section 3.6 we outlined kernel density estimation (KDE), which for a given
bandwidth and kernel shape produces an estimate of the local intensity of a
process. An obvious question is whether we can use this method to correct for
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variations in an underlying population at risk. Clearly, for the diseases
cases, which are represented by point objects, we can use standard KDE to
estimate the spatial intensity of cases. It is harder to estimate this for the
underlying at-risk population, where we usually only have area-aggregated
totals. A possibility discussed by Bailey and Gatrell (1995, pp. 126–128) is to
‘‘locate’’ each area total at a summary point in the area, such as its centroid,
and use KDE to estimate the at-risk population intensity. Using this
approach, the validity of the assumption that the population can be centered
on a single point is, of course, critical. Even so, the ratio of kernel estimates
for the events and the population density provides a relatively easily
calculated estimate of the population-corrected disease intensity.
In the case of cancer clusters around Sellafield, Bithell (1990) used KDE on

both the cases and the at-risk population data, taking the ratio of the two
surfaces, for cases and background, as an estimate of the relative risk.
Taking the ratio of two areal density estimates cancels out the ‘‘per unit
of area’’ term in both, but it does not cancel out any influences that the choice
of bandwidth has on both sets of density estimates. Although it might seem
desirable to use the same kernel (form and bandwidth) for both estimates,
Bailey andGatrell (1995, p.127) recommend oversmoothing the denominator
using a larger bandwidth and Bithell (1990) displays a series of possible
relative risk maps based on different bandwidths. There are numerous other
possible approaches to this problem, many of them readily implemented in a
GIS environment where the distribution of the variable that creates the
inhomogeneity can be established (see, for example, Baddeley et al., 2000;
Schabenberger and Gotway, 2005; Perry et al., 2006; Bivand et al., 2008).

Approaches Based on Cases/Controls

Where the underlying at-risk population is available as a second set of pure
point events, the use of ratios of density estimates is greatly simplified. The
archetype example is where we have a set of n1 ‘‘cases’’ making up the first
point pattern and n2 randomly selected ‘‘controls’’ making up the second. If
there is no clustering of the cases relative to the controls, we can argue that
the cases are indistinguishable from a random sample of the cases and
controls. Here the null hypothesis is that all of the individuals, n1 + n2, are
randomly assigned as a case or a control. If this is so, their K functions (see
Section 5.2, especially Figures 5.11 and 5.12) should be identical, giving:

K11 dð Þ ¼ K22 dð Þ ¼ K12 dð Þ ð6:1Þ

We can only estimate these functions from the data, but a plot of the
difference between the estimated functions, D(d) ¼ K11(d) � K22(d), should
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show peaks and troughs where the cases are more and less clustered than the
controls. An empirical significance test is straightforward: all that is neces-
sary is to label cases and controls randomly and repeat the test as many times
as necessary to establish upper and lower simulation envelopes ofD(d). For a
case control study of the Sellafield problem, see Gardner et al. (1990). In their
study of childhood leukemia in west-central Lancashire, which studiously
avoided looking at the Sellafield issue, Gatrell et al. (1996) used this approach
to show that, although the pattern appears clustered on a simple pin/dot map,
there is no statistically significant clustering relative to the controls.

6.6. FOCUSED APPROACHES

A second problem in practical point pattern analysis occurs where we are
looking for clustering around some specific point, line, or area source (or
sources if there are more than one). In our example, the hypothesized source
is clearly the relevant nuclear installation and the interest is in the increased
incidence of the cancer around it, with or without any correction for in-
homogeneity, as discussed above.

The original method used by Heasman et al. (1986) in evidence given
during the public inquiry into the Dounreay cluster used a focused

test. Circles were centered on the plant, and for each distance band (e.g.,
<12.5 km, 12.5 � 25 km, and ‘‘rest of Scotland’’) and for three time periods—
1968–1973, 1974–1978, and 1979–1984—the number of events was counted.
The at-risk population was estimated using the two nearest dated census
records for 1971 and 1981, with individual census areas classified into the
same distance bands. The idea is illustrated in Figure 6.3.

Nuclear plant

Disease event

At-risk population

0 1 2 3 4 5 km

Figure 6.3 Schematic illustration of a focused cluster technique, as

used in the Dounreay public inquiry.
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The results for the observed cases and the expected numbers are shown in
Table 6.1. The table shows that the only evidence of any clustering close to
the plant occurred in the 1979–1984 period, with almost 10 times the
expected rate of incidence of the disease.
Although this seems reasonable at first sight, from both a geographic and a

statistical point of view it is unsatisfactory, a fact that the original research-
ers were well aware of. First, geographically, the boundaries given by the
distance bands are arbitrary and, because they can be varied, are subject to
the MAUP, like any other boundaries drawn on a map. Second, quantitative
geographers will recognize that rather than assuming an equal risk as one
moves away from the focal point, some form of distance decay in the effect
will be expected and should be allowed for explicitly (Diggle, 1990). Third, a
more serious problem is that the test is post hoc. We already have the data,
and in using these data to select the focal location, the investigator is being
unfair. What would happen if we chose some other center? In an ideal world,
the only way around this problem is to postulate the location before collecting
the data, but this is almost always unrealistic.

6.7. CLUSTER DETECTION: SCAN STATISTICS

Our third issue in practical point pattern analysis is that often the main
interest is not in a general, global test for clustering, or even in relating a
pattern to a specific focus, but in detecting where there is significantly
greater clustering than expected. This process known as cluster detection.

Table 6.1 Observed and Expected Leukemia Cases in Distance Bands around the
Dounreay Reprocessing Plant (After Heasman et al., 1986)

Time
period

Area and
period

Observed
leukemia
cases

Expected
cases

1968–1973 <12.5 km 0 0.17

12.5–25 km 0 0.17

Other mainland 2 0.41

1974–1978 <12.5 km 0 0.50

12.5–25 km 0 0.44

Other mainland 0 1.12

1979–1984 <12.5 km 5 0.51

12.5–25 km 1 0.45

Other mainland 1 1.15
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The Geographical Analys is Machine

To detect significant clusters in a point pattern, several prerequisites must
be in place. First, there has to be somemechanism by which properties of the
point pattern can be assessed to determine whether clustering occurs and, if
so, at what spatial scale. Second, a mechanism by which a correction can be
made for first-order background inhomogeneity is required. Third, there has
to be someway of evaluating the statistical significance of the results relative
to some null hypothesis.

The Geographical Analysis Machine (GAM) of Openshaw et al. (1987,
1988) was an attempt to address these desiderata that drew heavily on GIS
technology and data and was applied to the distribution of childhood leuke-
mia over the whole of northern England. At the time of its proposal, the
approach caused considerable controversy––much of it unnecessary with the
benefit of hindsight. The GAM approach was primarily computational,
rooted in the developing GIS technology of the time rather than in pure
approaches to statistical hypothesis testing. Nowadays, this type of compu-
tational approach is used more often, and the objections raised seem less
pertinent than they did at the time. The use of computation to address spatial
analytical problems is a topic we return to in Chapter 12.

In its basic form, GAM was an automated cluster detector for point
patterns that included elements of geovisualization (Section 3.2), naive
kernel density mapping with varying bandwidths (Section 3.6), and Monte
Carlo significance testing (Section 5.4). Importantly, it also explicitly re-
jected the notion of a focused test. The basic GAM conducts an exhaustive
search using an approximation to all possible centers of all possible clusters
over the entire study region. The basic procedure is as follows:

1. Lay out a two-dimensional grid over the study region, in this case
the whole north of England. This provides an approximation to the
idea of all possible cluster foci.

2. Treat each grid point as the center of a series of search circles.
3. Generate circles of a defined sequence of radii (e.g., 1.0, 2.0, . . . ,

20 km), giving an approximation to the idea of all possible band-
widths and therefore all scales of potential clustering. (In total,
some 704,703 circles were tested.)

4. For each circle, count the number of events falling within it, for
example, 0 to 15 year-old deaths from leukemia, 1968–1985, geo-
located to 100 m spatial resolution by unit post codes. This is a
standard naive KDE of the type discussed in Section 3.6.

5. Determine whether or not this exceeds a specified density threshold
using some population covariate. The published study used the 1981
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U.K. Census of Population Small Area Statistics at the Enumera-
tion District level. These aggregated data were treated as if they
were located at the centroid of each enumeration district and so
could be used to form a count of the at-risk population of children
inside each circle. In the region studied, there were 1,544,963
children in 2,855,248 households, spread among 16,237 Enumera-
tion Districts, and the centroids of these districts were geolocated to
100 m resolution by an Ordnance Survey Grid Reference. This
provides a correction for inhomogeneity.

6. If the incidence rate in a circle exceeds some threshold, draw that
circle on a map. The appropriate threshold was determined by
generating 199 sets of synthetic data in which 853 children in
the total at-risk population in 1981 of 1.54 million were randomly
assigned to have leukemia, and expected values under this null
hypothesis were computed. At the 99% confidence level, 3602 circles
(0.5%) were isolated as having a higher incidence than expected and
were drawn using a pen plotter.

Circle size and grid resolution were linked such that the grid size was 0.2
times the circle radius, so that adjacent circles overlapped. The result is
a dense sampling of circles in a range of sizes across the study region.
The general arrangement of a set of circles (of one size only) is shown in
Figure 6.4. Note that to keep the diagram (almost) readable, these circles
are only half as densely packed as in an actual GAM run.
The end result of this procedure is a map of ‘‘significant circles,’’ as

indicated in Figure 6.4, where six circles with high disease incidence rates

Figure6.4 ThepatternofcirclesusedbyGAM.Sixcircleswithhigh ratesof incidence

of the disease are highlighted. Note that this diagram is illustrative only.
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are drawn with a heavier line. In the original GAM investigation there were
many significant circles, as shown in Table 6.2.

The results at themore rigorous 99.8% level test (which requires five times
asmany simulated patterns to be generated) confirmed the suspected cluster
at Sellafield but also identified a much larger cluster in Tyneside, centered
on the town of Gateshead, where there is no known source of ionizing
radiation. In fact, very few significant circles were drawn outside of these
two clusters.

There are some major statistical problems with the GAM approach. The
most important one relates to the difficulty of carrying out numerous inter-
related significance tests. It is a simple fact, rooted in the logic of significance
testing, that at the 99% significance level, we would expect 1% of all circles
drawn to be significant if they were nonoverlapping.With 510,000 circles, we
would therefore expect 5000 or so to be labeled significant, regardless of the
pattern of occurrence of the disease. Thus, the GAManalysis actually detects
fewer suspicious clusters than expected at small scales but many more when
larger scales are considered. The reasons for this are not entirely clear,
although the overlapping of the circles used by GAM complicates matters
and may account for the very large number of significant circles listed in
Table 6.2 for larger radii. Significance tests using overlapping circles are not
independent of one another, so the GAM may give an exaggerated impres-
sion of the severity of a cluster. One response to this is, of course, not to treat
the significance level as statistically valid per se (which it is not), but instead
to think of it as a sensible way of setting a variable threshold across the study
region relative to the simulated results. This view encourages us to think of
the results from GAM as exploratory and indicative only.

It should also be noted that the approach is computationally intensive. The
original GAM, running on a 1987 supercomputer (an Amdahl 5860), took
over 6.5 hours for the cancer study, and using very small circle radius
increments with large overlap, it could run for as long as 26 hours. Since

Table 6.2 Summary Results from GAM: Childhood Leukemia in
Northern England

Circle
radius (km)

No. of circles
drawn

No. of significant
at level:

99% 99.8%

1 510,367 549 164

5 20,428 298 116

10 5,112 142 30

15 2,269 88 27

20 1,280 74 31
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that time, computers have increased in speed and flexibility, so that what
seemed extraordinary a couple of decades ago is now commonplace. Using
this increase in computer power has led to a series of approaches that in
spirit, if not in detail, mirror the GAM approach and go under the general
name of scan statistics (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997).
Rushton’s DMAP takes a similar approach, but keeps the circle size constant
to enable the investigator to specify a scale for the clustering (Rushton and
Lolonis, 1996).
More recent work at the Centre for Computational Geography at Leeds

University has pursued the geocomputational angle using genetic algo-
rithms (see Section 12.3) to generalize the GAM idea in devices called the
MAP Explorer (MAPEX) and the STAC (Space Time Attribute Creature).
Instead of blindly testing all options, MAPEX and STAC are vaguely
‘‘intelligent’’ in that, if they find evidence of a cluster, they adapt their
behavior to zero in on it. However, the basic operation is much the same as
that of the original GAM, using cheap computer power to test all possible
options.
In conclusion, we would argue that a typical GIS that features a toolkit of

functions for point pattern analysis is not very useful for serious analysis,
except for the simplest and purest problems. As the Seascale/Sellafield
example shows, detecting clustering and locating clusters in data when
spatial variation is expected anyway is a very difficult problem. Doing the
science properly will almost invariably require use of specialist software
designed by spatial statisticians such as that available in theR programming
environment (Bivand et al., 2008), which includes Baddeley’s SpatStat

system (Baddeley and Turner, 2005). Levine’s CrimeStat III offers a less
flexible but more approachable alternative to R (Levine, 2004).

6.8. USING DENSITY AND DISTANCE:
PROXIMITY POLYGONS

Many of the issues that we have been discussing revolve around the fact that
geographic space is nonuniform, so different criteria must be applied to
identify clusters at different locations in the study region. For example, this
is the reason for the adoption of a variable ‘‘significance level’’ threshold in
theGAMapproach. In this context, it is worthwhile to briefly discuss a recent
development in the analysis of point patterns that has considerable potential
for addressing this problem.
The approach in question is the use of proximity polygons and the Delau-

nay triangulation in point pattern analysis. This idea is most easily
explained starting with the construction of the proximity polygons of a point
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pattern. Recall from Section 2.3 that the proximity polygon of any entity is
that region of space closer to the entity than to any other entity in the space.
This idea is readily applied to the events in a point pattern and is shown in
Figure 6.5 for the point pattern of Figure 5.7. Also shown is the Delaunay
triangulation derived from the proximity polygons by joining pairs of events
whose proximity polygons share a common edge.

The idea of using these constructions for point pattern analysis is that the
proximity polygons and the Delaunay triangulation have measurable prop-
erties that may be of interest. For example, the distribution of areas of the
proximity polygons provides an indication of how evenly spaced (or not) the
events are. If the polygons are all of similar sizes, then the pattern is evenly
spaced. If there is wide variation in polygon sizes, then points with small
polygons are likely to be in closely packed clusters, and those in large
polygons are likely to be more remote from their nearest neighbors. The
number of neighbors that an event has in the Delaunay triangulation may
also be of interest. Similarly, the lengths of edges in the triangulation give an
indication of how evenly spaced (or not) the pattern is. Similar measures can
also be made on the proximity polygons themselves. These approaches are
detailed in Okabe et al. (2000), and there is a geographic example in Vincent
et al. (1976).

There are two other constructions derived from the Delaunay triangula-
tion whose properties can also be of interest in point pattern analysis. These
are shown in Figure 6.6. In the left-hand panel, the Gabriel graph has been
constructed. This is a reduced version of the Delaunay triangulation, where
any link that does not intersect the corresponding proximity polygon edge is
removed. The proximity polygons have been retained in the diagram, and by
comparison with Figure 6.5, you should be able to see how this works.

In the right-hand panel, theminimum spanning tree of this set of points is
shown. This is the set of links from the Delaunay triangulation, with
minimum total length that together joins all the events in the pattern.
This construction includes all the links between nearest-neighbor pairs.

Figure 6.5 Proximity polygons and the Delaunay triangulation for a point pattern.
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The minimum spanning tree is much more commonly seen than the Gabriel
graph. Its total length may be a useful summary property of a pattern and
may provide more information than the simple mean nearest-neighbor
distance. You can see this by thinking about what happens to each measure
if the clusters of connected events in Figure 5.7 are moved farther apart, as
shown in Figure 6.7. This change does not affect the mean nearest-neighbor
distance, since each event’s nearest neighbor is the same, as indicated by the
solid lines. However, the minimum spanning tree is changed, as indicated by
the dotted lines now linking together the clusters of near neighbors, because
it must still join together all the events in the pattern. You will find it
instructive to think about how this type of change in a pattern affects the
other point pattern measures we have discussed.

Figure 6.6 The Gabriel graph (left) and the minimum spanning tree (right)

of a point pattern.
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Figure6.7 The effect of ‘‘exploding’’ a clusteredpoint pattern. Thepoint pattern on

the left (from Figure 5.7) is changed by moving its constituent clusters only.
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In contrast with the point patternmeasures we have reviewed, where local
inhomogeneity creates major problems, neighborhood relations determined
from proximity polygons are defined with respect to local patterns and not
using fixed criteria like ‘‘nearest neighbor’’ or ‘‘within 50 m.’’ It seems likely
that this property of proximity polygons and related constructions may
allow the development of cluster detection techniques that have a ‘‘natural’’
mechanism for determining locally high concentrations. This idea has not
yet been developed into a working geographic cluster detection method
(although machine vision researchers have been interested in the technique
formany years; see Ahuja, 1982). The key question thatmust be addressed in
any development of this idea will be how the background or the at-risk
population is linked to locally varying properties of the proximity polygon
tessellation.

6.9. A NOTE ON DISTANCE MATRICES AND
POINT PATTERN ANALYSIS

In this short section, we consider how the distance-based methods in point
pattern analysis can be calculated using a distance matrix, as introduced in
Section 2.3. First, assume that we have a distance matrix D(S) for our point
pattern S. Each entry in this matrix records the distance between the
corresponding pair of events in the point pattern. The distance matrix for
the simple point pattern of Figure 5.7 is

D Sð Þ ¼

0 44:9 59:6 56:8 44:9 27:9 28:1 58:5 55:2 25:6 59:6 26:8
44:9 0 59:6 15:6 38:6 64:1 58:6 22:6 93:9 70:2 81:7 34:8
59:6 59:6 0 55:0 21:1 48:7 87:5 47:6 67:0 69:6 35:0 76:2
56:8 15:6 55:0 0 36:1 71:4 73:6 9:0 100:5 81:1 82:7 50:3
44:9 38:6 21:1 36:1 0 44:4 71:4 30:3 70:1 61:6 47:0 56:8
27:9 64:1 48:7 71:4 44:4 0 51:4 69:6 29:8 21:9 34:6 54:6
28:1 58:6 87:5 73:6 71:4 51:4 0 78:0 72:2 36:4 85:6 24:8
58:5 22:6 47:6 9:0 30:3 69:6 78:0 0 97:9 81:6 77:2 55:9
55:2 93:9 67:0 100:5 70:1 29:8 72:2 97:9 0 35:8 36:7 81:7
25:6 70:2 69:6 81:1 61:6 21:9 36:4 81:6 35:8 0 55:3 49:1
59:6 81:7 35:0 82:7 47:0 34:6 85:6 77:2 36:7 55:3 0 84:3
26:8 34:8 76:2 50:3 56:8 54:6 24:8 55:9 81:7 49:1 84:3 0

2
6666666666666666664

3
7777777777777777775

ð6:2Þ

Even this small pattern generates a large amount of data––although you
will note that the matrix is symmetrical about its main diagonal. This is
because the distance between two events is the same regardless of the
direction in which we measure it.
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In each row of the matrix we have underlined the shortest, or nearest-
neighbor, distance. Thus, the nearest-neighbor distance for event 1 (row 1) is
25.6. You may wish to compare these values to those in Table 5.2. Aside from
rounding, they are the same. Therefore, the 12 underlined values in the
distance matrix may be used to determine both the mean nearest-neighbor
distance for this point pattern and its G function.
Note that in practice, if we were only interested in nearest-neighbor-based

measures, we would not calculate all the distances, as has been done here. It
is generally better for a larger data set to make use of efficient spatial data
structures that allow the nearest neighbor of a point to be rapidly deter-
mined. The need for such efficient data structures should be clear if you
imagine the distance matrix for a 100-event pattern––there are 4950 inter-
event distances––or for a 1000-event pattern, with 499,500 distinct dis-
tances. The types of data structure required are discussed in GIS texts (see,
for example, Worboys, 1995, pp. 261–267).
Of course, some pattern measures, such as the K function, require that all

interevent distances be calculated anyway. In this case, we can think of the
determination ofK(d) as being equivalent to convertingD(S) to an adjacency
matrix Ad(S), where the adjacency rule is that any pair of events less than
the distance d apart are regarded as adjacent. For the above matrix, at
distance d ¼ 50, we would obtain the adjacency matrix

Ad¼50 Sð Þ ¼

0 1 0 0 1 1 1 0 0 1 0 1
1 0 0 1 1 0 0 1 0 0 0 1
0 0 0 0 1 1 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 0
1 1 1 1 0 1 0 1 0 0 1 0
1 0 1 0 1 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0 1 0 1
0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 0 0 1
0 0 1 0 1 1 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0 1 0 0

2
6666666666666666664

3
7777777777777777775

ð6:3Þ

Now, if we sum the rows of this matrix, we get the number of events within
a distance of 50 m of the corresponding event. Thus, event 1 has six events
within 50 m, event 2 has five events within 50 m, and so on. This is precisely
the information required to determine K(d), so we can see the usefulness of
the distance matrix summary of the point pattern.
Variations on this general idea may be required for determination of other

pattern measures.
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For example, the pair correlation function requires that the standard
distance matrix be analysed in a different way, while the F function requires
a distance matrix where rows represent the random set of points in the
empty space, and columns represent the events in the point pattern.

One important fact to note here is that the matrix representation is
not convenient for humans (all those horrible rows of numbers!), but it is
very conveniently handled by computers, which perform the required
calculations.

CHAPTER REVIEW

� In academic geography, there has been significant and sensible criti-
cism of classical point pattern analysis approaches. Some of these
criticisms are partly addressed by considering alternative approaches
to statistical inference such as likelihood.

� Another important set of innovations relates to alternative point
processes, such as the inhomogeneous Poisson process or Poisson

clustering.
� None of the point pattern measurement techniques discussed in
previous chapters indicate where there is clustering in a pattern.
This is a significant omission in practical applications where the
identification and explanation of clusters is of the utmost importance.

� The incidence of childhood leukemia close to nuclear installations in
theUnitedKingdomprovides a very practical example of some of these
real-world problems.

� We can distinguish general, focused, and scan approaches to cluster
detection.General tests detect global clustering in a point patternwith
or without a background at-risk population. Focused tests are those
in which proximity to some assumed source is relevant, whereas scan
statistics attempt to locate significant clusters of cases.

� The difficulty in identifying clusters in real data is that clusters must
be found against a background of expected variations due to the
uneven distribution of the at-risk population, which means that the
null model often involves an inhomogeneous Poisson process.

� A simple way to correct for inhomogeneity is to compute areal rates
of incidence, but this introduces the MAUP. Alternatives that use
KDE and a variation of Ripley’s K offer a partial solution to this
problem.

� The Geographical Analysis Machine (GAM) was developed to address
many of the complex issues involved in cluster detection. It works by
exhaustively sampling the study area in an attempt to find ‘‘significant
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circles’’ where more cases of a disease have occurred than might be
expected as indicated by simulation.

� The original GAM method was relatively ‘‘dumb’’ and required enor-
mous computing power by the standards of the time. It is now possible
to run it on a standard desktop PC or remotely over the Internet. More
recent versions of the GAM idea attempt to apply more intelligent
search procedures.

� A family of measurement methods based on the geometric properties
of proximity polygons, the Delaunay triangulation, and related
constructions such as the Gabriel graph and theminimum spanning
tree of a point pattern, can be developed. These methods are not often
used at present, but they hold out the possibility of developing
cluster detection methods that are sensitive to local variations in
pattern intensity.

� The minimum spanning tree demonstrates an important limitation
of nearest-neighbor-based measures when a clustered pattern is
‘‘exploded.’’

� The distance and adjacencymatrices discussed in Chapter 2 can often
be used in calculating distance-based point pattern measures.
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Chapter 7

Area Objects and Spatial Autocorrelation

CHA P T E R O B J E C T I V E S

In this chapter, we:

� Outline the types of area object of interest
� Show how area objects can be recorded and stored
� Show how area can be calculated from digital data
� Define some of the properties of area objects, such as their shape,
centroid, and skeleton

� Introduce a range of measures of spatial pattern
� Return to the concept of a spatial weights matrix and describe alter-
native approaches to building one

� Describe the most widely used measure of spatial autocorrelation,

Moran’s I
� Briefly present some alternative measures

After reading this chapter, you should be able to:

� List the general types of area object
� Explain how these can be recorded in digital form
� Outline what is meant by the term planar enforcement
� Suggest and illustrate a method for finding polygonal areas using the
coordinates of their vertices

� Summarize basic measures of the geometry of areas
� Compute Moran’s I for a study area and explain how statistical
significance can be ascribed to the computed value

� Outline some alternatives to Moran’s I

187

GEOGRAPHIC INFORMATION ANALYSIS 
David O'Sullivan and David J. Unwin 

Copyright 0 2010 by John Wiley & Sons, Inc. All rights reserved. 



7.1. INTRODUCTION: AREA OBJECTS REVISITED

7.2. TYPES OF AREA OBJECT

Areas are some of the more complex object types commonly analyzed. Before
starting, we must distinguish natural areas—entities modeled using bound-
aries defined by natural phenomena such as the shoreline of a lake, the edge
of a forest stand, or the outcrop of a particular rock type—from those areas
imposed by human beings. Natural areas are self-defining insofar as their
boundaries are defined by the phenomena themselves. Sometimes, as in the
case of a lake, the boundary of an object is crisp and its ‘‘inside’’ (the water) is
homogeneous. Frequently, however, natural areas are the result of subjec-
tive, interpretative mapping by a field surveyor and, as discussed in Chapter
1, may be open to disagreement and uncertainty.

Contrast such natural areas with those imposed by human beings, such as
countries, provinces, states, counties, or census tracts. These have been called
fiat, or command, regions as distinct from bona fide regions (see Smith and
Varzi, 2000). Here, boundaries are defined independently of any phenomenon,
and attribute values are enumerated by surveys or censuses. Imposed areas
are common inGISwork that involvesdataabouthumanbeings.Such imposed
areas are a form of sampling of the underlying social reality and can be
misleading in several ways. First, the imposed areas might bear little rela-
tionship to the underlying patterns. In two now classic accounts, Coppock
(1955, 1960) showed that imposed civil parish boundaries are totally un-
suitable for reporting U.K. Agricultural Census data, which are collected at
the farm level. Individual farms can stretch over more than one parish, and
parish boundaries frequently include dissimilar agricultural areas and vary
widely in size. Second, imposed areas are arbitrary or modifiable, and some

Revision

You can increase your understanding of the materials in this chapter if you

take a few minutes to revisit relevant sections of Chapters 1–3 and revise the

following:

� How area objects fit into the entity-attribute typology introduced in

Chapter 1 and summarized in Figure 1.2
� Autocorrelation, the MAUP, and the ecological fallacy, all discussed in

Chapter 2
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care is required to demonstrate that any analysis is not an artifact of the
particular boundaries used. This is theMAUP (see Section 2.2). Third, because
data for area objects are often aggregations of individual-level information,
the danger of ecological fallacies, where we assume that a relationship at a
macrolevel of aggregation also exists at the microlevel, is very real.
A third type of area object arises where space is divided into small, regular

grid cells called a raster. Unlike natural and imposed areas, which are
usually irregularly shaped, with different spatial extents, in a raster the
area objects are identical and together cover, or tessellate, the region of
interest. Because grids are often used to record pictorial information, they
are also called pixels (from ‘‘picture elements’’). In GIS, the term refers to a
data structure that divides a study area into a regular pattern of cells in a
particular sequence and records an attribute for the part of the Earth’s
surface represented by each cell. Each cell is therefore an area object, but the
major concept is that of a continuous field of information. In any given
database there might be many raster layers of information, each represent-
ing an individual field. Typically, a raster data structure makes use of
square, or nearly square, pixels, but there is nothing sacrosanct about
this. Square cells have the advantage that they may be nested at different
resolution levels, but, against this, they do not have uniform adjacency. The
distance from the center of each cell to its neighbors is greater for diagonally
adjacent cells than for those in the same row or column. At the cost of losing
the ability to nest pixels, hexagons have uniform adjacency, and triangular
meshes also have some attractive properties. Relative to the complexities of
storing polygon areas, the advantage of a raster data structure is that once
the raster is registered to real-world coordinates, further georeferencing at
the individual pixel level is unnecessary. The real-world (x, y) coordinates are
implicit in the (row, column) position of each pixel within the raster.
Finally, area objects are often created in a GIS analysis using polygonal

Voronoi/Thiessen regions around every event in a pattern of point objects (see
Section 2.3). These regions are defined such that each contains all locations
closer to the generating object than to any other object in the pattern.
Thus, there are several types of area object. Four of these, two natural and

two imposed, are shown in Figure 7.1. Area objects have a range of geometric
and topological characteristics that can make them difficult to analyze. It
may be that the entities are isolated from one another or perhaps over-
lapping. If the latter is true, then any location can be inside any number of
entities, and the areas do not fill or exhaust the space. The pattern of areas in
successive forest fire burns is an example of this (see Figure 7.1i). Areas may
sometimes have holes or areas of different attributes wholly enclosed within
them. Some systems allow area entities to have islands. An alternative is
that all regions that share the same attribute are defined to be one single

Area Objects and Spatial Autocorrelation 189



area so that each area object is potentially a collection of areas—like an
archipelago. This is perfectly usual when dealing with attributes such as
geology or land use and may require special attention. Different from either
of these is the case where area objects all mesh neatly together and exhaust
the study region, so that there are no holes and every location is inside just a
single area. Such a pattern of areas is termed planar enforced, and this
concept is a fundamental assumption of the data models used in many GISs.
Figures 7.1(ii)–(iv) show planar enforced regions.

Early GISs and some simple computer mapping programs store area
objects as complete polygons, with one polygon representing each object.
The polygon approximates the outline of the area and is recorded as a series
of coordinates. If the areas don’t touch and if, like forest fire burns, they can
overlap, this is a simple and sensible way to record them. However, for many
distributions of interest, most obviously census tracts, areas are planar
enforced by definition, so using polygon storage will mean that, although
nearly all the boundaries are shared between adjacent areas, they are all
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zone
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Figure 7.1 Types of area objects: (i) a pattern of forest burns over natural areas that

overlap and are not planar enforced; (ii) natural area objects resulting from an

interpreted mapping, in this case soil type; (iii) imposed areas, in this case three civil

parishes; and (iv) an imposed raster recording three types of soil.
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input and coded twice, once for each adjacent polygon. With two different
versions of each internal boundary line stored, errors are likely; it can also be
difficult to dissolve boundaries and merge adjacent areas stored this way.
The alternative is to store every boundary segment just once, as a sequence of
coordinates, and to build areas by linking boundary segments either implic-
itly or explicitly. Variations on this approach are used inmany current vector
GISs (see Worboys and Duckham, 2004, pp. 177–185, for a description of
common data structures). These more complex data structures can make
transferring data between systems problematic. However, GIS analysis
benefits from the ready availability of the adjacency information, and the
advantages generally outweigh the disadvantages.

7.3. GEOMETRIC PROPERTIES OF AREAS

No matter how they arise, area objects have a number of properties that we
may need to measure. These include their two-dimensional area, centroid
and skeleton, shape, spatial pattern, and fragmentation. There are a number
of geometric properties and analyses provided in GISs that we describe in the
sections that follow.

Area

In a GIS, we might wish to estimate the area of a single specified class of
object (for example, woodland on a land-use map) or the average area of each

Thought Exercise

Obtain a 1:50,000 or similar scale topographic map. If you don’t have access

to a paper map, then visit your National Mapping Agency’s Web site (for

example, in Great Britain this is http://leisure.ordnancesurvey.co.uk). For

each of the following area objects represented, decide whether they are

natural or imposed and show how they might be recorded in a data model

that assumes planar enforcement:

1. The map grid

2. The woodland areas

3. Any parklands

4. National, county, or district boundaries.
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parcel of land. It is often necessary to find areas as a basis for density
calculations. Measuring area is superficially obvious but more difficult in
practice (see Gierhart, 1954;Wood, 1954; Frolov andMaling, 1969). In a GIS,
the most frequently used algorithm finds the area of a number of trapezoids
bounded by a line segment from the polygon, two vertical lines dropped to the
x-axis, and the x-axis itself, as shown in Figure 7.2.

For example, the area of the trapezoidABB0A0is given by the difference in x
coordinates multiplied by the average of the y coordinates:

Area of ABB0A0 ¼ xB � xAð Þ yB þ yAð Þ=2 ð7:1Þ

Since xB is greater than xA, this area will be a positive number. Moving to
the next two vertices, B and C, we use the same approach to get the areas of
BCC0B0 and CDD0C0, both also positive numbers. Now, consider what hap-
pens as we continue around the polygon and calculate the area ofDD0E0E. In
this case, the x coordinate of E is less than that of D, and the computed area
value is a negative number. The same is true for all three trapezoids formed
by the lower portion of the polygon. If, as we work around the polygon vertex
by vertex, we keep a running total of the area, first we add three positive
areas (ABB0A0, BCC0B0, and CDD0C0), obtaining a larger area than required.
As we calculate the areas of the three lower trapezoids,DD0E0E, EE0F0F, and
FF0A0A, these are negative and are subtracted from the grand total. Inspec-
tion of the diagram shows that the result is the area of the polygonABCDEF,

y axis

x axis

A

A'

B

B'

C

C'

D

D'

E

E'

F

F'

“positive” area

“negative” area

Figure 7.2 Finding the area of a polygon from the coordinates of its vertices.
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that is, the area of the gray-shaded area with the hatched part subtracted.
Provided we work clockwise around the polygon andmake sure to come back
to the starting vertex, the general formula is simply

Polygon area;A ¼
Xn
i¼1

xiþ1 � xið Þ yiþ1 þ yi
� �

=2 ð7:2Þ

where (xnþ1, ynþ1) is understood to bring us back to the first vertex (x1, y1).
This is the trapezoidal rule for numerical integration and is widely used in
science when it is necessary to find the area enclosed by a graph. The
algorithm works when the polygon has holes, but not for all polygons, since
it cannot handle polygons whose boundaries self-cross. Note also that if the
polygon coordinates are stored in a counterclockwise sequence, the area
will be negative, so the method relies on a particular sort of data structure.

How Big Is Mainland Australia?

This exercise can be done using a semiautomatic digitizer or on-screen using

standard graphics software, but it is useful to do it by hand. Alternatively, you

can, of course, also do it in a GIS, using a high-resolution map as a back-

ground to work from.

Trace the shoreline of Australia from a map of the continent, taking care to

ensure that the source is drawn on an equal-area map projection.

Record the shoreline as a series of (x, y) coordinates. Howmany vertices do

you need to represent the shape of Australia so that it is instantly recogniz-

able? What is the minimum number you can get away with? How many do

you think you need to ensure that you get a reasonable estimate of the total

area of the continent?

Use the method outlined above to compute its area. This is easily done

using any spreadsheet program. Enter your coordinates into the first two

columns and copy these from row 2 on into the next two columns, displacing

them upward by one row as you do so. Copy the first coordinate pair into the

last row of the copied columns. The next column can then be used to enter

and calculate the trapezoid formula. The sum of this column then gives your

estimate of the continent’s area. You will have to scale the numbers from

coordinate units into real distances and areas on the ground. Compare your

(continues)
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Calculation of the area of a given polygon is therefore straightforward.
However, this approach can only determine the area defined by the stored
polygon vertices. Strictly, the result is only an estimate of the true area, its
accuracydependentonhowrepresentative the storedvertex coordinatesare of
thereal outlineand,hence, on theresolutionof the inputdata.Whathappens if
even the real boundaries are in some way uncertain? Likewise, if we are
computing the area of a fuzzy object, or one that isn’t internally homogeneous,
howcanwe take account of this in theareameasureweobtain?Again,wehave
an estimate of the true area, but there are circumstances where the ‘‘error
bars’’ around this estimatemightbevery large indeed. It canbevery important
to recognize the uncertainty. An example might be where we are finding the
area of a particular soil type or of a forest stand as a basic input in some
resource evaluation. Similarly, controversy surrounding the rate at which
the Amazon rain forest is being cut down is ultimately an argument about
area estimates and has important implications for the debates over climate
change (see Nepstad et al., 1999; and Houghton et al., 2000).

Finally, suppose that we want to calculate the total area of many polygons,
such as the total area of a scattered land use type across a geographic region.
The details of how this is done depend on how the data are structured, but
anymethod is effectively the repeated application of the trapezoid procedure.
In a raster structure, areas may be determined more simply, by counting
pixels and multiplying by the pixel area. For a fragmented set of area objects
such as a land cover map, it may therefore be more efficient to use raster
coding to estimate areas.

result with the ‘‘official’’ value, which is 7,617,930 km2, according to a fact

sheet produced by the Australian government (see http://www.dfat.gov.au/

geo/fs/aust.pdf).

We think that the minimum number of coordinate pairs needed to

make the result recognizably Australia is nine. Using a 1:30,000,000

map as a source, we recorded just 45 coordinates for the shoreline. We

got an area of 7,594,352 km2, which is about 1.3% too low. Mind you,

almost 100,000 km2 is a lot of land—almost as much as Iceland, South

Korea, or the state of Kentucky. In fact, the closeness of this result is likely to

be a happy accident.

What conclusions do you draw from this exercise? In Section 1.3 we

pointed out that most superficially exact geometric calculations on spatial

data yield quantities that are really estimates of some true but unknown

value, and area is no exception.

(box continued)
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Skeleton and Centroid

The skeleton of a polygon is a network of lines inside a polygon constructed so
that each point on the network is equidistant from the nearest two edges in
the polygon boundary. Figure 7.3 shows the idea.
The skeleton is constructed by shrinking the polygon outline inward, with

each boundarymoving inward at the same rate. As this proceeds, vectors and
arcs merge, forming a tree-like structure, and, as the polygon gets smaller, it
may form two or more isolated ‘‘islands.’’ Ultimately, the polygon is reduced
to a possible central point that is farthest from the original boundary and is
also the center of the largest circle that could be drawn inside the polygon.
This center point may be preferable to possible polygon centers calculated by
other means. For example, the more easily calculated mean center of the
polygon vertices sometimes lies outside the polygon area and may therefore
be unsuitable for some purposes. In contrast, a center point on the skeleton is
guaranteed to lie inside the polygon.
The polygon skeleton is useful in computer cartography and provides

potential locations for label placement on maps. The skeleton center point
also has potential uses in analysis when we want a representative point
object location for an area object. As noted in Table 1.1, the center point also
offers a possible way of transforming between two of the basic geometric
object types, from an area to a point object.

Shape

Areal units all have a two-dimensional shape, that is, a set of relationships
of relative position between points on their perimeters, which is unchanged
by changes in scale. Shape is a property of many objects of interest in

possible central
point for polygon

possible lines
for labeling

Figure 7.3 The skeleton and resultant central point of a polygon.
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geography, such as drumlins, parks or reserves, coral atolls, and central
business districts. Some shapes, notably the hexagonal market areas of
central place theory, are the outcomes of postulated generating processes.
Shape may also have important implications for processes. In ecology, the
shapes of patches of a specified habitat are thought to have significant effects
on what happens in and around them. In urban studies, the traditional
monocentric city form is considered very different in character from the
polycentric sprawl of Los Angeles or the edge cities of the contemporary
world (Garreau, 1992).

In the past, shapewas described verbally, using analogies such as ‘‘stream-
lined’’ (drumlins), ‘‘ox-bow’’ and ‘‘shoestring’’ (lakes), ‘‘armchair’’ (cirques),
and so on, although there was often little agreement on what terms to use
(see Clark and Gaile, 1975; Frolov, 1975; Wentz, 2000). While quantifying
the idea of shape therefore seems worthwhile, in practice, attempts to do this
have been less than satisfactory. The most obvious quantitative approach is
to devise indices that relate the given shape to a regular geometric figure of a
well-known shape, such as a circle, hexagon, or square. Most attempts to
date use the circle.

Figure 7.4 shows an irregular shape together with a number of possible
shape-related measurements that could be taken from it, such as the
perimeter P, the area a, the longest axis L1, the second axis L2, the radius
of the largest internal circleR1, and the radius of the smallest enclosing circle
R2. In principle, we are free to combine these values in any reasonable way,
although not all combinations will produce a good index. A good index should
have a known value if the shape is circular, and to avoid dependence on the
measurement unit adopted, it should also be dimensionless.

R2R2

R1R1

L1L1L2L2

PP

Figure 7.4 Measurements used in shape analysis.
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One such index is the compactness ratio, defined as

compactness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=a2ð Þ

p
ð7:3Þ

where a2 is the area of the circle having the same perimeter (P) as the object.
The compactness is 1.0 if the shape is exactly circular and it is also
dimensionless. Other potentially useful and dimensionless ratios are the
elongation ratio or eccentricity, L1/L2, and the form ratio, a/L1

2.
Boyce and Clark (1964) proposed a more complicated measure of shape.

Their radial line index compares the observed lengths of a series of regularly
spaced radials from a node at the center of the shape with those that a circle
would have and that would obviously be a fixed value equal to the circle
radius. Although this index has been used in a number of studies, reviewed
in Cerny (1975), it suffers from three sources of ambiguity. First, no guidance
is given on where to place the central point, although most investigators use
the shape’s center of gravity. Second, the choice of the number of radii is
important. Too few make the index open to strong influence from extreme
points on the perimeter; with too many, the work of calculation may become
excessive. Third, it is apparent that a great many visually different shapes
could give the same index value. Alternatives have been developed by Lee
and Sallee (1970), Medda et al. (1998), and Wentz (2000)
The area of shape analysis is currently seeing rapid development as a

result of content-based image retrieval applications, which aim to auto-
mate the task of searching large image databases for items of interest. A
wide range of techniques have been developed, many of which are reviewed
by Zhang and Lu (2004). In general, shape analysis remains a challenging
area, and multiple measures prove useful in characterizing even relatively
simple shapes.

Spat ia l Pattern and Fragmentat ion

So far, we have concentrated solely on the measurable properties of areas as
individual units of study without reference to the overall pattern that they
create. Sometimes, as in geomorphology and biogeography, the patterns
made by areas are of interest in their own right, irrespective of the values
that might be assigned to them. Such patterns can be as regular as a
chessboard, honeycomb, or contraction cracks in basalt lavas or as irregular
as the counties of England and the states of the United States. A simple
approach to this problem is to assemble the frequency distribution of contact
numbers, that is, the number of areas that share a common boundary with
each area (Boots, 1977). An example is given in Table 7.1, which shows the
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frequency distribution of contact numbers for the contiguous states of the
United States and the counties of England.

It is evident that very regular patterns, like honeycombs, will have
frequency distributions with a pronounced peak at a single value, while
more complex patterns will show spreads around a central modal value. The
independent random process introduced in Section 4.2 can be used to
generate polygonal areas and, in the long run, produces the expected
distribution given in the last column of the table. The modal value is for
areas with six neighbors. It is apparent that these administrative areas have
lower contact numbers than expected, implying a more regular than random
patterning. Note, however, that random expected values cannot be compared
directly with the observed case for two reasons. First, the method of defining
the random process areas ensures that the minimum contact number must
be three. Second, the procedure does not have edge constraints, whereas
both the United States and England have edges. Furthermore, as with
point pattern analysis, the usefulness of this finding is open to debate,
since we know to begin with that the null hypothesis of randomness is
unlikely to hold.

Perhapsmore useful aremeasures of fragmentation, or the extent to which
the spatial pattern of a set of areas is broken up. Fragmentation indices and
other measures of the spatial pattern or configuration of a set of areas, or

Table 7.1 Contact Numbers for the Counties of England and the Lower 48 States of
the United States

Contact
number, m

Percentage of
lower 48 U.S.

states

Percentage of
English counties,

n ¼ 46

Percentage expected
in an independent
random process

1 2.0 4.4 N/A

2 10.2 4.4 N/A

3 18.4 21.7 1.06

4 20.4 15.2 11.53

5 20.4 30.4 26.47

6 20.4 10.9 29.59

7 4.1 13.0 19.22

8 4.1 0 8.48

9 0 0 2.80

10 0 0 0.81

Totals 100.00 100.00 100.00

Mean

contact

number

4.45 4.48 6.00
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patches, are widely used in ecology (see, for example, Turner et al., 2001). In
this context, the way in which a landscape is broken up into areas that
represent different kinds of habitat is often considered important. While
occasionally only the total available area of a particular habitat is of interest,
more often the number and size of the habitat patches or the length of the
boundary between habitats are significant. Often, only areas above some
minimum size represent a viable habitat, but equally, for the avoidance of
catastrophic events, it may be important that there be some minimum
number of habitat patches and that they not be too widely dispersed (so
that populations can move from one patch to another). How much edge
adjoining other habitat types patches have may also be of interest, as this
may affect habitat quality and in some cases maymake a habitat more prone
to invasion by exotic species. In different circumstances, patches with long
edges may be desirable as corridors, or perhaps as obstacles; fire breaks are
an example of the latter.
Many measures of these and related patch characteristics are provided

by a useful tool called FRAGSTATS (Berry et al., 1998; McGarigal et al.,
2002). In its most recent version, this software works on categorical raster
data. It can be set up to treat one category as a matrix and other categories
as patches and corridors in the matrix. For each category, the numbers and
sizes, along with a range of other metrics, are calculated for every patch,
along with their averages and standard deviations relative to the overall
distribution of patch sizes, and relative to patch sizes within that category.
Other metrics measure the degree of separation or proximity of patches to
similar patches and the relative abundance of different patch types, as well
as many other features of a landscape. Full details of the outputs available
are provided in the above works. A more recent program with similar
capabilities is IAN, also developed in an ecology context (DeZonia and
Mladenoff, 2004).

7.4. MEASURING SPATIAL AUTOCORRELATION

In the remainder of this chapter, we develop the idea of spatial auto-
correlation, first introduced in discussing the problems with spatial data in
Section 2.2; we also describe ways of measuring it. You will recall that
spatial autocorrelation is a technical term for the fact that spatial data
from near locations are more likely to be similar than data from distant
locations. More correctly, any spatial data set is likely to have character-
istic distances or lengths, or lags, at which it is correlated with itself, a
property known as self-correlation or autocorrelation. Furthermore,
according to Tobler’s (1970) first law of geography that ‘‘Everything is
related to everything else, but near things are more related than distant
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things,’’ autocorrelation is likely to be most pronounced at short distances.
If the world were not spatially autocorrelated in this way, then geography
would have little point, so autocorrelation is extremely important to the
discipline and to spatial analysis. The ubiquity of spatial autocorrelation is
the reason why spatial data are special. As a result of autocorrelation,
samples from spatial data are not truly random, with consequences for
statistics that are a major theme of this book.

As geographers, we are predisposed to spatial patterns in data, and
because of autocorrelation, patterns very often appear to be there. One
reason for developing analytical approaches to spatial autocorrelation is
to provide a more objective basis for deciding whether or not there really is
a spatial pattern, and if so, how unusual that pattern is. The by-now
familiar problem is to decide whether or not any observed spatial auto-
correlation is significantly different from random. Could the apparent
pattern have occurred by chance? Arguably, one of the tests for auto-
correlation discussed in the remainder of this chapter should always be
carried out before we start developing elaborate theories to explain the
patterns we think we see in a map just in case those apparent patterns
are no more than a chance occurrence.

The degree to which data are similar or different over short or long
ranges is fundamental to all branches of geographic information analysis,
and the autocorrelation concept is correspondingly applicable to all the
types of spatial objects we have recognized (point, line, area, and field) but,
for pedagogic convenience and with an eye on tradition, we introduce the
idea in the context of patterns in the attributes of area objects. Tradition-
ally, spatial autocorrelation has been thought of as a statistical property
of a spatial pattern, but in the context of the measures of pattern discussed
in the previous section, it is also possible to think of it as just another
pattern metric. Many of the point pattern measures already considered in
Chapters 4, 5, and 6 can be considered as measures of autocorrelation for
the occurrence of point events. Similarly, the semivariogram, which is
fundamental to more advanced methods of interpolation (discussed in
Chapter 10), is another approach to characterizing autocorrelation in a
continuous field.

Spat ia l Structure and the Spat ia l Weights Matr ix

The essental idea of any approach to autocorrelation is to assess how similar
or different attribute values at geographic locations are relative to how
spatially close or distant are the associated locations. In broad terms, it is
easy to see how we can assess similarity in attribute values using some
simple calculation based on the difference in the attribute values. The real
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research question is how to incorporate spatial proximity into a measure of
autocorrelation. In fact, we have already encountered the conceptual tools
needed to do this, in Section 2.3, where the concepts of distance, adjacency,
interaction, and neighborhood were introduced. Each of these is a way to
represent spatial relationships between locations.
In the measurement of autocorrelation, we need to capture the spatial

relationship between all pairs of locations, and this is done using a spatial

weights or spatial structure matrix generally denoted W. In the first row of
the matrix, we record the spatial relationship between the first location and
every other location in the map in turn, so that the value in the first row,
second column of the matrix represents the relationship between the first
and second locations in the map. More generally, the element in row i,
column j of the weights matrix, denoted wij, represents the relationship
between location i and location j, so that we have

W ¼

w11 w12 � � � w1n

w21 w22
..
.

..

.
} ..

.

wn1 � � � � � � wnn

2
6664

3
7775 ð7:4Þ

Eachwij value is dependent on the spatial relationship between locations i
and j and on how we choose to represent that relationship. Note that while
the order of the locations is arbitrary, the ordermust be the same for both the
rows and columns of the matrix.
With this framework in place, we need to assign values to each matrix

element. Most simply, if we use adjacency, the wij values will be 1 if two
locations are adjacent and 0 if they are not. Even this simple case is not as
straightforward as it seems, as we may choose to require areas to share an
edge in order to consider them adjacent (the Rook’s case), or we may consider
it sufficient that they only meet at a corner vertex (the Queen’s case). These
cases are shown in Figure 7.5(i) and (ii), respectively, where the extra
adjacencies introduced in the Queen’s case between polygons that meet at
a corner only are apparent. These four polygons have been extracted from the
maps of Figure 7.6 (i) and (ii), where the same adjacencies are applied to the
103 Census Area Units of Auckland City, New Zealand.

(i) (ii)

Figure 7.5 (i) Rook’s and (ii) Queen’s case adjacencies among polygons.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 7.6 Eight alternative spatial structures for the 103 Census Area Units in

Auckland City, NewZealand: (i) Rook’s case adjacency, (ii) Queen’s case adjacency,

(iii) center-to-center distance less than 1 km, (iv) center-to-center distance less than

2.5 km, (v) three nearest neighbors, (vi) six nearest neighbors, (vii) Delaunay

triangulation, and (viii) lag two Rook’s case adjacency.
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Alternatively, wemay ignore contiguity between the polygons entirely and
instead use some measure of distance between polygons. Often, this involves
representing the polygon areas as points at the polygon centroid or at some
central point on the skeleton and then measuring the distances between the
points. Then, based on some distance threshold d, we consider two cases
adjacent if dij < d and not otherwise. In Figure 7.6(iii) and (iv), the
adjacencies produced with a distance threshold of 1 km and 2.5 km are
shown. The sparse connectivity of the lower distance threshold case is clear.
Alternatively, we may wish to include only the nearest neighbors. Figures
7.6(v) and (vi) show the connectivity for three and six nearest-neighbor cases.
More complex cases are also possible. A number of adjacency rules

based on the Delaunay triangulation introduced in Section 2.3 can be
developed. These are discussed in Bivand et al. (2008, pp. 244–246), and
the simplest case is shown in Figure 7.6(vii). The variants discussed by
Bivand et al. remove the troublesome longer-distance links that appear
around the boundary of the study area when this approach is adopted.
Finally, in Figure 7.6(viii), we show the connectivity produced when
adjacencies at lag two are used. Zones adjacent at lag two are those
that are neighbors ‘‘once removed’’ across an intervening zone. Often
the lag two adjacency matrix is denoted W(2), and, for clarity, its elements
are denoted wij

(2). It is a trivial matter to find the adjacency matrix at any
desired lag using matrix multiplication operations or network shortest
path algorithms, although some care is required to avoid counting relation-
ships multiple times at different lags. However, in practice, it is not clear
how meaningful analyses based on more remote lags are likely to be. For
discussions of yet more ways of constructing W matrices, see Bavaud
(1998) and Getis and Aldstat (2004).
In the cases discussed above, adjacency remains a binary quantity, so

that wij may only take on the values 1 (connected) or 0 (not connected). We
may also consider some relationships to be stronger than others, and then
the wij values will range from 0 (for weak interaction) to 1 (for strong
interaction). Common ways of weighting the strength of interaction be-
tween two locations use an inverse-power relationship and their separation
distance. Further complexity can be introduced by considering the length
of shared boundaries between adjacent locations, so that

wij / lij
dz
ijli

ð7:5Þ

where z is a power factor, lij is the length of the shared boundary between
zones i and j, and li is the length of the perimeter of zone i. With this
approach, it is necessary to scale the weights so that they all lie in the range 0
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to 1. A typical method is to ensure that each row of the matrix sums to 1, as
discussed in Section 2.3.

Two important considerations in the construction of the weights matrix
are how we deal with the relationship between each location and itself and
how we enforce symmetry. Because we are not interested in the relationship
between each location and itself, elements on themain diagonal of thematrix
(i.e., w11, w22) are usually set to zero. Symmetry in the weights matrix is
generally required so that wij ¼ wji in all cases. Some methods for construct-
ing the matrix do not guarantee symmetry. For example, in the k nearest-
neighbor approach, area A may have areas B, C, and D as its three nearest
neighbors, while the three nearest neighbors of B are C, D, and E and do not
include A. In this case, wAB 6¼ wBA. To resolve this situation, we can enforce
symmetry by setting

Wfinal ¼ 1

2
WþWT

� �
ð7:6Þ

so that each pairwise two-way relationship is the average of the two one-way
relationships.

Intuitively, wemight suppose that the information in aWmatrixwill tell us
quite a lot about the spatial patterning of the areas fromwhich it was derived,
and recent work has explored aspects of this situation. Although developed in
a slightly different context, a key early paper is that by Tinkler (1972), who
was concernedwith the structure present in connectednetworks, inwhich the
structure is expressed using a binary connectivity matrix, C, recording the
presence or absence of a connection between any two specified nodes on a
network. The eigensystem (see the Appendix) of such a matrix characterizes
the network connectivity. The principal eigenvalue of a C matrix gives an
overall connectivity measure of the set of nodes, and the elements of its
eigenvector indicate the centrality within the network of each node in turn
(see also Boots, 1983, 1984). Similar interpretations are possible for our W
matrices (Griffith, 1996; Boots and Tiefelsdorf, 2000).

The important points to appreciate are that a wide variety of spatial
weights matrices are possible in any given situation and the choice of
spatial weights for use in autocorrelation measurement is a key step in the
analysis. In a sense, the choice of W represents a hypothesis about the
phenomenon being studied, so that ideally, the spatial structure repre-
sented in the weights matrix will correspond to some aspect of the problem
that is meaningful in terms of the processes under consideration. This is
not always easy to arrange, however, and in the study of social processes in
particular, census units or other administrative units are often used in the
absence of any other convenient approach. Developing a spatial weights
matrix that relates to the posited underlying processes will also be difficult
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where those processes are not well understood. In such cases, it is advisable
to work with simple adjacency-based approaches at least in the exploratory
phase of the analysis.

Moran’s I , an Index of Spat ia l Autocorre lat ion

Once the spatial structure for analysis has been determined, any particular
measure of autocorrelation can be constructed by defining a way of measur-
ing the difference between location attribute values. The most widely used
measure is Moran’s I, which is a translation of a non-spatial correlation
measure to a spatial context and is usually applied to areal units where
numerical ratio or interval data are available (Moran, 1950). The easiest way
to present the measure is to dive straight in with the equation for its
calculation and to explain each component in turn.
I is calculated from

I ¼ nPn
i¼1

yi � �yð Þ2

2
664

3
775�

Pn
i¼1

Pn
j¼1

wij yi � �yð Þ yj � �y
� �

Pn
i¼1

Pn
j¼1

wij

2
6664

3
7775 ð7:7Þ

This equation is fairly formidable, so let’s unpick it piece by piece. The
important part of the calculation is the second fraction. The numerator on
top of this fraction is

Xn
i¼1

Xn
j¼1

wij yi � �yð Þ yj � �y
� � ð7:8Þ

which you should recognize as a covariance term. The subscripts i and j refer
to different areal units or zones in the study, and y is the data value in each.
By calculating the product of two zones’ differences from the overall mean (�y),
we determine the extent towhich they co vary. If both yi and yj lie on the same
side of the mean (above or below it), then this product is positive; if one is
above the mean and the other below, then the product is negative and the
absolute size of the resulting total will depend on how close to the overall
mean are the zone values. The covariance terms are multiplied by wij, an
element from the spatial weights matrix W, which has the effect that the
covariance elements are weighted according to how closely related they
are spatially. When W is an adjacency matrix with wij ¼ 1 if zone i and
zone j are adjacent and 0 otherwise, then the covariance term is included in
the calculation only for pairs of adjacent locations.
Everything else in the equation normalizes the value of I relative to the

number of zones being considered, the number of adjacencies in the problem,
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and the range of values in y. The divisor SSwij accounts for the total spatial
weights in the map, and the multiplier

nPn
i¼1

yi � �yð Þ2
ð7:9Þ

is actually division by the overall data set variance, which ensures that I is
not large simply because the values and variability in y are high.

The net result of the calculation in Equation (7.7) is that if the data are
positively autocorrelated, then most pairs of adjacent locations will have
values on the same side of the mean andMoran’s Iwill have a positive value.
On the other hand, if the data are negatively auto correlated, most adjacent
locations will have attribute values on opposite sides of the mean, and the
overall result will be negative. Thus, as for a conventional nonspatial
correlation coefficient, a positive value indicates a positive autocorrelation
and a negative value a negative or inverse correlation. The value is not
strictly in the range �1 to þ1, as it is impossible for a map to be perfectly
autocorrelated, whether positively or negatively, except in very unusual
situations. Generally speaking, an index score of 0.3 or more, or of �0.3 or
less, is an indication of relatively strong autocorrelation. However, some
attention must be paid to the statistical significance of any measure index
value, and we discuss this in more detail below.

7.5. AN EXAMPLE: TUBERCULOSIS IN
AUCKLAND, 2001–2006

Figure 7.7 shows reported cases of tuberculosis per 100,000 population for
Auckland City, New Zealand, in 2001–2006 (note that these are not annual
rates, but rates accumulated over the whole six-year period relative to the
2006 census population). As a preliminary stage in the analysis of these data,
determining how strongly autocorrelated they are is of interest. Examina-
tion of the map suggests that there is a tendency for census areas in the
southwest of the city (towardNewWindsor) to have experienced higher rates
of incidence of tuberculosis. These areas form an arc from near Waterview to
Onehunga. There is also amore isolated group of areas around Tamaki in the
east, which also have higher incidence rates.

Using the Rook’s and Queen’s case spatial weights matrices shown in
Figure 7.5(i) and (ii), we can determine Moran’s I for these data. This would
be an arduous calculation to perform by hand, but it is readily carried out in a
number of current software packages, such as ArcGISTM, GeoDa, and pack-
ages available in theR statistics environment. The calculated result in theR
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package spdep is 0.383, for the Rook’s case, and 0.394, for the Queen’s case.
As visual inspection of the map suggests, both results are evidence for
positive spatial autocorrelation.
Before considering more closely how we can associate a level of statistical

significance with these results, it is instructive to study the scatterplot in
Figure 7.8. This is aMoran scatterplot showing the relationship between the
attribute values themselves (horizontal axis) and the local mean attribute
value (i.e., the mean value of the adjacent locations). This graph has four
regions: the lower-left quadrant contains cases where the attribute value in
each polygon and the mean attribute value of neighboring polygons are less
than the global mean; the upper-right quadrant contains cases where both
the attribute value and the local mean are greater than the global mean; and
the other two quadrants contain cases where the attribute value and the
local mean lie on opposite sides of the global mean. Locations that lie in the
lower-left and upper-right quadrants are those that contribute to overall
positive autocorrelation, since they have an attribute value similar to that of
their neighbors, while locations in the other two quadrants contribute to a
negative autocorrelation. If, as here, most locations are in the lower-left and
upper-right quadrants, then the overall outcomewill most likely be a positive
value of Moran’s I, indicating positive autocorrelation.
In Figure 7.8, particular locations have been identified that contribute

strongly to the measured positive autocorrelation. You should be able to
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Figure 7.7 Reported cases of tuberculosis per 100,000 population, Auckland City,

2001–2006. The polygons are New Zealand Statistics census area units.
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deduce from the map, and from the plotted values, which census area units
are Owairaka West and East and also Onehunga North West. In one of the
most widely used programs for performing this type of analysis, GeoDa, this
exploration can be performed interactively via linked brushing (see Section
3.4), with a selection area in the Moran scatterplot highlighting associated
regions in a map view.

It is worth noting thatMoran’s I is effectively the correlation coefficient for
the relationship between the attribute values and the local mean attribute
values. If you are familiar with the statistical theory behind regression, this
is clear if the equation for Moran’s I is rewritten in matrix form as

I ¼ nX
i

X
j

wij

� yTWy

yTy
ð7:10Þ

where y is the column vector whose entries are each yi � �yð Þ. In statistics,
this is a common formulation of this type of calculation and you may
encounter it in the literature (see Anselin, 1995).

This insight allows the standard diagnostic statistics from linear regres-
sion to be used to associate p-values with observed values of Moran’s I.
However, because the spatial structure of the map is also a parameter in the
analysis, a more usual approach is based on a Monte Carlo procedure (see
Section 5.4). The location attribute values can be permuted any required
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number of times (999 is typical), that is, the attribute values observed in the
map are randomly assigned to the map locations, and Moran’s I is recalcu-
lated each time for the ‘‘scrambled’’ map. This gives an empirical sampling
distribution for the index and allows the observedMoran’s I to be assessed in
terms of how unusual it is relative to this randomized benchmark. Figure 7.9
is a histogram of the distribution of 999 random permutations of the data in
this map, with the vertical line showing the value of Moran’s I observed for
the actual data. It is clear that the observed value is very unusual with
respect to the randomized data, which means that we regard the finding of
positive autocorrelation as statistically significant.
In Table 7.2 the Moran’s I results are shown for a number of the other

spatial weighting schemes presented in Figure 7.6. As we might expect, the
results are consistent across all weighting schemes, since they all emphasize
immediate neighboring locations. The only slight exception is the distance
threshold of 2.5 km, which has a somewhat lowered value.
If we determine the index value for a range of spatial lags based on Rook’s

adjacency and plot these results, with error bars (determined by a Monte
Carlo procedure), we obtain the result shown in Figure 7.10. This confirms the
strength of the finding of positive autocorrelation, since it holds at lags of up to
three. This figure also suggests that if you move four ‘‘steps’’ away from a
census area unit, then you are likely to come to an area where the incidence
rate of tuberculosis is unrelated to that in the original location. After two
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Figure 7.9 Comparison of the observed value of Moran’s I with the values

produced under 999 random permutations of the data.
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further steps, the new location’s incidence rate is likely to be opposite to the
original locations, so that there is a slight negative autocorrelation at this
spatial lag. Another way of thinking about this is that the scale of the regions
of higher or lower relative rates of incidence is such that they do not extend
more than about four census area units in any direction. This is in accordance
with the pattern we see in the map. This type of analysis is closely related to
semivariogram analysis, which is a preliminary step in the advanced inter-
polation methods considered in Chapter 10.

7.6. OTHER APPROACHES

Although it is the measure most frequently used and has possibly the most
attractive properties, Moran’s I is not the only spatial autocorrelation
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Figure 7.10 Moran’s I at different spatial lags for the Auckland data.

Table 7.2 Moran’s I for Various Spatial Weighting Schemes: TB in Auckland,
2000–2006

Spatial weighting scheme Figure Moran’s I

Rook’s adjacency 7.5(i) 0.3830

Queen’s adjacency 7.5(ii) 0.3941

d < 2500 m 7.5(iv) 0.3510

k ¼ 3 nearest 7.5(v) 0.3780

k ¼ 6 nearest 7.5(vi) 0.4014

Delaunay triangulation 7.5(vii) 0.3846
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measure. An alternative is Geary’s C. This is similar to I and is calculated
from

C ¼ n� 1Pn
i¼1

yi � �yð Þ2

2
664

3
775�

Pn
i¼1

Pn
j¼1

wij yi � yj
� �2

2
Pn
i¼1

Pn
j¼1

wij

2
6664

3
7775 ð7:11Þ

As with Moran’s I, the first term is a variance normalization factor to
account for the numerical values of y. The second term has a numerator
based on the square of the difference in y between the two areas under
consideration, and is greater when there are large differences between
adjacent locations. The denominator, 2 SSwij, normalizes for the combined
spatial weights in themap. Geary’sC can be confusing in one respect: a value
of 1 indicates no autocorrelation; values less than 1 (but greater than or equal
to 0) indicate positive autocorrelation, and values more than 1 indicate
negative autocorrelation. The reason for this is clear if you consider that
the

P
wij yi � yj

� �2
term in the calculation is always positive but gives

smaller values when similar values are neighbors. Geary’s C can easily
be converted to the more intuitive �1 range by subtracting the value of the
index from þ1.
In situations where interval or ratio data are not available, or where

some threshold value of the attribute is of particular interest, so that areas
above and below the threshold can be treated as binary outcomes, another
possible approach is the joins count test. This approach is based on count-
ing the number of occurrences of neighboring pairs of polygons in the
various different possible categories. In the binary case, where we can
characterize the two available states as ‘‘black’’ and ‘‘white,’’ we arrive at
counts of the number of black–black, white–white, and black–white neighbor
joins. The observed counts can be compared to the expected numbers to
assess the type and strength of autocorrelation present. Positively autocor-
related maps will have more black–black and white–white joins than
expected, while negatively autocorrelated maps will have fewer such joins
and more black–white joins than expected. Cliff and Ord (1973) and Unwin
(1981) provide a full account of this approach.
Joins counting is very similar to one of the measures of spatial pattern

provided by FRAGSTATS, which is a count of the number of neighboring like
pairs of grid cells in a raster. Joins counts methods are rather limited,
however, since they only apply to categorical data, and are not easy to handle
when there aremore than a small number of categories (2 or 3) because of the
large number of possible types of join that quickly arise (for example, with 6
categories, 15 join types are possible, and with 12 there are 66!
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CHAPTER REVIEW

� Area objects of interest come in many guises, with a useful—though
sometimes ambiguous—distinction between those that arise naturally
and those that are arbitrarily imposed for the purposes of data
collection.

� Area objects have geometric and topological properties that can be
useful in description. The most obvious of these is the object’s area,
but we can also find the skeleton and centroid, and attempt to
characterize their shape. If there are many area objects in a pattern,
measures of fragmentation and other spatial pattern metrics may
also be used.

� Autocorrelation is a key concept in geography, so much so that,
arguably, a test for autocorrelation should always be carried out before
further statistical analysis of geographic data.

� Any autocorrelation measure must be based on both the spatial
structure of the geographic objects in the study and the similarity
or difference of attribute values at locations near one another.

� The spatial structure of the study area is usually represented by
constructing a spatial weights matrix based on the adjacency or
interaction between locations.

� A wide variety of methods for defining spatial weights is avail-
able. Binary outcomes (0 or 1) can be produced using Rook’s or
Queen’s adjacency, as well as distance thresholds or nearest-
neighbor rules. The Delaunay triangulation is the basis of several
other approaches.

� Adjacency-based matrices can also be calculated with spatial lags that
record locations that neighbor one another via a number of interven-
ing connected locations.

� Continuously variable spatial weights between 0 and 1 may also
be used. They are usually based on some combination of distance
and, optionally, on the length of the shared boundary between
polygons.

� The most widely used measure of spatial autocorrelation is Moran’s I,
which employs a covariance term between each areal unit and its
neighbors. A value of zero indicates random arrangement, a positive
value positive autocorrelation, and a negative value negative
autocorrelation.

� Geary’sC uses the sum of squared differences between each areal unit
and its neighbors. A value of 1 indicates no autocorrelation, values
between 0 and 1 indicate positive autocorrelation, and values between
1 and 2 indicate negative autocorrelation.
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� For many autocorrelation measures, Monte Carlo simulation is the
most appropriate way to determine statistical significance. In this
context, simulation consists of randomly shuffling the observed areal
unit values and recalculating the autocorrelation measure(s) of
interest to determine a sampling distribution.

REFERENCES

Anselin, L. (1995) Local indicators of spatial association—LISA. Geographical
Analysis, 27: 93–115.

Bavaud, F. (1998) Models for spatial weights: a systematic look. Geographical
Analysis, 30: 152–171.

Berry, J. K., Buckley, D. J., and McGarigal, K. (1998) Fragstats.arc: Integrating
ARC/INFO with the Fragstats landscape analysis program. Proceedings of the
1998 ESRI User Conference, San Diego, CA.

Bivand, R. S., Pebesma, E. J., and Gomez-Rubio, V. (2008) Applied Spatial Data
Analysis with R (New York: Springer).

Boots, B. N. (1977) Contact number properties in the study of cellular networks.
Geographical Analysis, 9: 379–387.

Boots, B. N. (1983) Comments on using eigenfunctions to measure structural
properties of geographic networks. Environment and Planning, Series A, 14:
1063–1072.

Boots, B. N. (1984) Evaluating principal eigenvalues as measures of network
structures. Geographical Analysis, 16: 270–275.

Boots, B. and Tiefelsdorf, M. (2000) Global and local spatial correlation in
bounded regular tessellations. Journal of Geographical Systems, 2: 319–348.

Boyce, R. and Clark, W. (1964) The concept of shape in geography. Geographical
Review, 54: 561–572.

Cerny, J. W. (1975) Sensitivity analysis of the Boyce-Clark shape index. Cana-
dian Geographer, 12: 21–27.

Clark, W. and Gaile, G. L. (1975) The analysis and recognition of shapes.
Geografiska Annaler, 55B: 153–163.

Cliff, A.D. and Ord, J.K. (1973) Spatial Autocorrelation (London: Pion).
Coppock, J. T. (1955) The relationship of farm and parish boundaries: a study

in the use of agricultural statistics. Geographical Studies, 2: 12–26.
Coppock, J. T. (1960) The parish as a geographical statistical unit. Tijdschrift

voor Economische en Sociale Geographie, 51: 317–326.
DeZonia, B. and Mladenoff, D. J. (2004) IAN—raster image analysis software

program. Department of Forest Ecology and Management, University of
Wisconsin, Madison, WI. Available at http://landscape.forest.wisc.edu/
projects/IAN/.

Frolov, Y. S. (1975)Measuring the shape of geographical phenomena: a history of
the issue. Soviet Geography, 16: 676–687.

Area Objects and Spatial Autocorrelation 213



Frolov, Y. S. andMaling, D.H. (1969) The accuracy of areameasurement by point
counting techniques. Cartographic Journal, 6: 21–35.

Garreau, J. (1992) Edge City (New York: Anchor).
Getis, A. and Aldstat, J. (2004) Constructing the spatial weights matrix using a

local statistic. Geographical Analysis, 36: 90–104.
Gierhart, J. W. (1954) Evaluation of methods of area measurement. Survey and

Mapping, 14: 460–469.
Griffith, D. (1996) Spatial autocorrelation and eigenfunctions of the geographic

weights matrix accompanying geo-referenced data. Canadian Geographer, 40:
351–367.

Houghton, R. A., Skole, D. L., Nobre, C. A., Hackler, J. L., Lawrence, K. T., and
Chomentowski, W. H. (2000) Annual fluxes or carbon from deforestation and
regrowth in the Brazilian Amazon. Nature, 403(6767): 301–304.

Lee, D. R. and Sallee, G. T. (1970) A method of measuring shape. Geographical
Review, 60: 555–563.

McGarigal, K., Cushman, S. A., Neel, M. C., and Ene, E. (2002) FRAGSTATS:
Spatial Pattern Analysis Program for Categorical Maps. Computer software
program produced at the University of Massachusetts, Amherst. Available at
www.umass.edu/landeco/research/fragstats/fragstats.html.

Medda, F., Nijkamp, P., and Rietveld, P. (1998) Recognition and classification of
urban shapes. Geographical Analysis, 30(4): 304–14.

Moran, P. A. P. (1950) Notes on continuous stochastic phenomena. Biometrika,
37: 17–33.

Nepstad, D. C., Verissimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P.,
Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M., and
Brooks, V. (1999), Large-scale impoverishment of Amazonian forests by log-
ging and fire. Nature, 398(6727): 505–508.

Smith, B. and Varzi, A. C. (2000) Fiat and bona fide boundaries. Philosophy and
Phenomenological Research, 60(2): 401–420.

Tinkler, K. (1972). The physical interpretation of eigenfunctions of dichotomous
matrices. Transactions of the Institute of British Geographers, 55: 17–46.

Tobler, W. R. (1970) A computer movie simulating urban growth in the Detroit
region. Economic Geography, 46: 234–240.

Turner, M. G., Gardner, R. H., and O’Neill, R. V. (2001) Landscape Ecology in
Theory and Practice: Pattern and Process (New York: Springer-Verlag).

Unwin, D. J. (1981) Introductory Spatial Analysis (London: Methuen).
Wentz, E. A. (2000) A shape definition for geographic applications based on edge,

elongation and perforation. Geographical Analysis, 32: 95–112.
Wood, W. F. (1954) The dot planimeter: a new way to measure area. Professional

Geographer, 6: 12–14.
Worboys, M. F. and Duckham,M. (2004)GIS: A Computing Perspective (London:

Taylor & Francis).
Zhang, D. and Lu, G. (2004) Review of shape representation and description

techniques. Pattern Recognition, 37(1): 1–19.

214 GEOGRAPHIC INFORMATION ANALYSIS



Chapter 8

Local Statistics

C H A P T E R O B J E C T I V E S

In this chapter, we:

� Explain the concepts underlying the emerging array of local statistics
� Account for the relatively late arrival of local statistics on the spatial
analytic scene

� Review the various approaches that can be used to construct localities
for the development of local statistics

� Discuss how the popular Getis-Ord family ofG statistics are calculated
and interpreted

� Outline the local version of Moran’s I statistic
� Explain why inference based on local statistics is challenging and
describe current approaches to dealing with the difficulties

� Provide an overview of the increasingly popular method geograph-

ically weighted regression
� Explain howmany other spatial analysismethods can be considered as
local statistics even if this was not the intent behind their original
development

After reading this chapter, you should be able to:

� Explain what is meant by local statistics and suggest reasons for their
current popularity

� Provide some explanations for the slow adoption of local statistical
approaches

� Review a number of bases on which localities for local statistics can be
constructed
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� Define the Getis-Ord G and local Moran’s I statistics and discuss how
they should be interpreted

� Give an account of why inference for local statistics is difficult and
outline approaches for addressing the various problems

� In general terms, describe how geographically weighted regression
works

� Redescribe a selection of other spatial analytical methods as local
statistics

8.1. INTRODUCTION: THINK GEOGRAPHICALLY,
MEASURE LOCALLY

We now consider one of the most important innovations in geographic
information analysis in recent years, namely, the development and use of
a variety of local statistics. As we will see, local statistics arise naturally out
of any of the methods for measuring spatial autocorrelation, discussed in the
previous chapter. Once the connection is noted and generalized, the way is
open to development of localized variants of almost any standard summary
statistic, with a particularly interesting recent innovation being geograph-
ically weighted regression. In the same way, many older spatial analysis
methods can also be reinterpreted as local statistics. Thus, this chapter is
also a useful precursor to the interpolation methods discussed in more detail
in the next chapter, because many estimates produced by spatial interpola-
tion are based on local statistics.

What do we mean by a local statistic? A local statistic is any descriptive
statistic associated with a spatial data set whose value varies from place to
place. In the broadest sense, any spatial data set is a collection of local
statistics, in that the recorded attribute values are different at each
location. A local statistic is different in that it is derived by considering
a subset of the spatial data local to the spatial location where it is being
calculated. A simple example is a localized mean, calculated by determin-
ing the mean value of an attribute based on attribute values in the data set
near the location of interest. In the next chapter, we will see that such a
localized mean is the underlying basis for many simple methods of spatial
interpolation. It is also worth noting that a localized mean is exactly
equivalent to one kind of smoothing filter that may be applied to image
or raster data. In Section 9.5, we will see that this concept has been
generalized as map algebra, specifically in the form of focal operations
on raster data. Thus, the concept of a local statistic is widely deployed in
spatial analysis, although it goes by different names in different contexts.
For now, the important point is to realize how central the concept of a local
statistic is for many spatial analysis methods.
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It is perhaps surprising that such a key idea has only gained currency since
the mid-1990s. Two review papers in Progress in Human Geography by
Unwin (1996) and Fotheringham (1997) were the first to highlight explicitly
the importance of local statistics. With this in mind, it is useful to consider
why the idea has only taken off recently. One important consideration is the
mapping capability provided by GIS tools. As we shall see, many local
statistics are a natural by-product of the calculation of summary global
statistics. Prior to the possibility of easily mapping any data set, the
summary result would have been reported and the local statistics used in
its calculation discarded. It was the advent of readily availablemapping tools
that led to the exploration of the potential of local statistics as an analytical
output in their own right. These developments parallel the increasing
importance of exploratory data analysis (Tukey, 1977), an approach where
indentifying outliers and the overall structure in data are important aims
and visualization methods are central.
A second technical reason for the recent increase in the popularity of

local statistics is that (perhaps paradoxically) the statistical evaluation
of local statistics is more challenging than the statistical assessment of
related global measures. This parallels the difficulties faced in identifying
local clusters in point patterns relative to simply determining if a point
pattern is clustered or not. The difficulty lies in assessing analytically the
statistical significance of particular localized patterns, and in this context,
Monte Carlo simulation approaches are often used to generate pseudo-
significance results. The computational burden of simulation-based meth-
ods is significant, so local statistics have only become practical as
substantial computing power has become generally available.
A third reason for the increased interest in local statistics is recognition of

the importance of geographic variation in phenomena. This is itself a side-
effect of the widespread adoption and use of GIS tools and the accompanying
increase in data availability. As more data have become available, this has
allowed studies both to expand their spatial range and to focus in at higher
spatial resolution. Both developments have prompted the realization that
the idea of a single global process ormodel being a realistic explanation is not
always very plausible.
Finally, interest in local statistics reflects developments in the spatial

sciences more generally that increasingly recognize the importance of local
contexts in understanding the global patterns of phenomena. While the
methods deployed bymany human geographers in their research have become
increasingly qualitative since the 1980s, this is largely a response to the
realization that local contextsmatter. Qualitative methods such as interviews
and focus groups recognize the multilayered richness of local contexts and the
importance of multiple interpretations by people in those contexts. By their
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very nature, quantitative or statistical data tend to simplify and flatten out
some of that complexity. This is particularly the case if we restrict ourselves to
global summary statistics and a search for broad generalizations about the
whole of a large study area. Local statistics, on the other hand, emphasize the
variety among local contexts and focus attention on what is different from
oneplace to another rather than onwhat is similar.Thus, local statistics can be
seen as a response from the quantitative end of geography to increased
recognition of the importance of local context.

8.2. DEFINING THE LOCAL: SPATIAL
STRUCTURE (AGAIN)

In Section 7.4, as a necessary precursor to the development of global spatial
autocorrelation statistics, the construction of a wide variety of spatial
weights matrices among a set of polygons was described. The local neigh-
borhood of a particular location is fully described by a single row in such
spatial weights matrix. Thus, if the weights matrix is

W ¼

w11 w12 � � � w1n

w21 w22
..
.

..

.
} ..

.

wn1 � � � � � � wnn

2
6664

3
7775 ð8:1Þ

then a row matrix

Wi ¼ wi1 wi2 � � � win½ � ð8:2Þ

describes the local neighborhood of each location i. As has been discussed in
Chapters 2 and 7, there is awide range of possible bases onwhich theweights
matrix and thus localities may be defined.

Some More Revision

It is useful at this point to revisit Section 2.3 and revise the materials on

definitions of distance, adjacency, neighborhood, and proximity, as well as

how these can be summarized in adjacency A or weights matrices W.

Whenyouhave done this, revisit Section 7.4 to remind yourself of how these

matrices are used in the definition of global spatial autocorrelation indices.

218 GEOGRAPHIC INFORMATION ANALYSIS



For polygon data, adjacency either immediately or indirectly via interven-
ing neighboring polygons is a common basis for construction of localities.
Using polygon centroids, localities may be constructed based on distance
criteria, and the same approach can also be applied to point data sets. In this
case, it is also possible to introduce additional constraints so that all locations
have some minimum number of neighbors in their locality.
It is important to keep in mind that the choices made in constructing

localities prior to determining local statistics are a critical aspect of the
analysis. Local statistics may point to patterns of a particular kind when
localities are constructed based on adjacency, but they may reveal com-
pletely different patterns when localities are constructed based on a
distance criterion. The important points are, first, that where possible,
a number of different weights matrix constructions be examined, and
second, that consideration be given to which method makes the most sense
in substantive terms. For example, it is easy to assume that simple spatial
adjacency based on contiguity among a set of polygons is somehow the
‘‘natural’’ approach to constructing localities. However, when we are
interested in some phenomenon whose patterns are likely to be related
to transport accessibility, it may be much more relevant to connect loca-
tions via the transport network, and thus to base adjacency on estimated
distances over road or other networks. Such options have become much
more readily explored using the capacity of GIS to relate spatial data in a
wide range of ways.

8.3. AN EXAMPLE: THE GETIS-ORD GI AND
GI* STATISTICS

The goal of the Getis-Ord family of local statistics developed in Getis and Ord
(1992) and Ord and Getis (1995) is to enable detection of local concentrations
of high or low values in an attribute, and it nicely illustrates the concept of a
local statistic. The statistic is simple to calculate. For a location i, the value is
given by

Gi(d) ¼

X
j

wij(d)xj

Pn
j¼1

xj

for all i 6¼ j ð8:3Þ

where wij(d) are weights from the spatial weights matrix and xj denotes the
attribute values at locations j. The dependence on a particular set of
assumptions about spatial dependence is denoted for both Gi and wij by
their functional dependence on d. Note that the numerator in this fraction is
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the sum of the xj values in the locality of the location of interest i but not
including xi itself, and that the denominator is the sum of all the x values in
the whole study area. Thus, Gi is simply the proportion of the sum of all x
values in the study area accounted for by just the neighbors of i. In a location
where high values are clustered, Gi will be relatively high; conversely, in a
location where low values are concentrated, Gi will be low. The closely
related statistic G�

i is defined similarly to Gi, the only difference being
that the attribute value at location i itself is included in both the numerator
and denominator summations in Equation (8.3). Due to the dependence ofGi

(andG�
i ) on the ratio of two sums of x values, it is important that the attribute

under consideration be a ratio-scaled variable with a natural origin. Another
way to think about this is that the value of Gi will be different if we add a
constant value to every location or if we transform the variable by taking
logarithms.

It is relatively easy to derive expected values and the variance for the Gi

statistic under an assumption of random spatial distribution of the attribute
values. The expected value is given by

E Gi(d)ð Þ ¼

X
j

wij(d)

n� 1
ð8:4Þ

which states that the expected value of Gi is that proportion of the study
region accounted for by the neighborhood of location i where we assume 0/1
valued adjacency weights. Calculation of the statistic’s variance is more
complex (see Getis and Ord, 1992, p. 191 for details).

In all the equations above, d denotes the fact that we can calculate the
value of the statistic for various distances or, more generally, under a
variety of definitions of locality. Thus, as discussed in the previous section,
the spatial weights matrix is chosen by the analyst under some assumption
of what constitutes a meaningful set of localities for the purposes of the
analysis. In essence, the choice of a W encapsulates a hypothesis about
both the range and nature of any likely local geographic effects. Typically,
this will be distance-dependent in some way, insofar as we are interested
in knowing if concentrations of high or low data values occur only at
short distances, over a wide range of distances, or perhaps only at large
distances.

Because expected values and variances for the Getis-Ord statistic are
known, a z score can be determined for each location’s Gi value. The map in
Figure 8.1 shows calculated Gi values as z scores based on the tuberculosis
incidence data considered in the previous chapter, using the Rook’s case
adjacency weights matrix. The notable difference between this map and
the map of incidence rates themselves shown in Figure 7.7 is that the
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highest-incidence locations are not the ones with the highest associated Gi

values. Instead, the census area units neighboring high-incidence areas are
highlighted. This is most obvious in the case of Mt. Wellington, toward the
southeast of the area, which has a high z score in spite of having a relatively
low incidence rate. The two particularly highGetis-Ord statistic scores in the
western part of the map are also not locations among the highest incidence
rates in the original map, but they do have neighboring locations with high
incidence rates.
Although we might normally interpret z scores outside the range �1.96 to

+1.96 as unusual cases and single out these parts of the map for particular
attention, more care is required in making inferences from local statistics.
This is because an assumption of normality in the distribution of most local
statistics is problematic, particularly where the localities under considera-
tion are small, so that the statistic is being calculated based on small
numbers of cases. If d is increased so that localities have larger numbers
of cases, this is less of a problem, but, of course, the localities under
consideration are no longer quite so local either! It is particularly important
to be cautious about overinterpreting high or low z score values toward
the edges of the study area, as these may be based on very small numbers
of locations. These considerations limit the usefulness of analytical ap-
proaches to the statistical assessment of the statistic, leading to a need
for simulation-based approaches to inference. This difficulty is common in
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from the calculated Gi values.

Local Statistics 221



the interpretation and analysis of local statistics and is considered in more
detail in Section 8.4.

Other Local Stat ist ics

In principle, almost any standard statistic can be turned into a local
statistic. Instead of summarizing over a whole data set, we summarize
over only the data in the locality of each data point. The calculations
required to determine a global value of Moran’s I provide another example.
In this case, at each location, the following quantity is calculated:

Ii ¼ zi
X
j

wijzj ð8:5Þ

where the z values are z scores determined from the values of the attribute of
interest for the whole data set. Positive values of Ii result where either low or
high values of the attribute are near one another, while negative values
result where low and high values are found in the same area of the map.
Thus, local Moran’s I gives an indication of data homogeneity and diversity.
This statistic is fully developed in a paper by Luc Anselin (1995), which
presents the more general concept of local indicators of spatial association
(LISA) statistics.

When working with the local version of Moran’s I, the Moran scatterplot of
Figure 7.8 comes into its own as an analytical tool. The four quadrants of the
plot defined by the global mean attribute value ðor by zi ¼ 0 and

P
jwijzj ¼ 0Þ

each correspond to the different possible combinations of the value at i and
among its neighbors. We can identify these in shorthand as ‘‘low–low’’ or
‘‘high–high’’ cases that contribute to positive autocorrelation and ‘‘low–high’’
or ‘‘high–low’’ cases that contribute to negative autocorrelation. For example,
‘‘high–high’’ cases are oneswhere the value of i is high and neighboring values
are also high. While all cases are in one of the four quadrants, in general, we
are only interested in cases that are statistically unusual in some sense. How
these cases are identified is discussed in Section 8.4 when we consider
inference for local statistics.

Getis and Ord (1992, pp. 198–199) suggest that both theGi and Ii statistics
should be used in any exploration of a spatial data set, as they measure
different things and may point to different driving processes underlying the
observed spatial distributions of attribute values. While Moran’s global
statistic measures spatial autocorrelation without distinguishing between
patterns dominated by concentrations of high or low values, a global version
of the Gi statistics enables these cases to be distinguished. This is clearer
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when the global G statistic is written out in full:

G(d) ¼

Pn
i¼1

Pn
j¼1

wij(d)xixj

Pn
i¼1

Pn
j¼1

xixj

for all i 6¼ j ð8:6Þ

This statistic tends to have a high value when the locations where high
values are located near one another outweigh the locations where low
values are located near one another (and vice versa). Thus, G helps to
determine whether it is clusters of high values (‘‘hot spots’’) or low values
(‘‘cold spots’’) that contribute most to an overall finding of positive spatial
autocorrelation.
While a local form of almost any statistic could be developed in principle, in

practice relatively few have been formalized as local statistics per se,
although, as we shall see, many statistics can be usefully considered as
local statistics even if they are not used in the exploratory manner discussed
here. The likely reason for this is that the most pertinent feature of any
spatial data set is the degree to which attribute values exhibit spatial
dependence, and this is precisely the aspect of the data on which the
Getis-Ord andMoran’s statistics focus. Another reason is that local statistics
are most useful as exploratory tools in the early stages of an investigation.
More formal statistical analysis calls for some method by which significance
can be determined, and this presents difficult problems in the context of the
small number of cases included in each localized calculation.

8.4. INFERENCE WITH LOCAL STATISTICS

We have seen how the simplifying assumption of spatial randomness can
allow analytical results for the expected values of the Gi local statistics to be
determined. Such simplifying assumptions treat local statistics as simple
random samples from the total population of all the attribute values in the
study area. In many cases, because of the central limit theorem, this results
in the expectation that local statistics will be normally distributed, and that
unusual cases can be identified where calculated z values are less than�1.96
or greater thanþ1.96, which is the range of values associated with standard
95% confidence intervals.
However, this approach is problematic. It is evident that this is the case

when Figure 8.1 is reviewed. Six census areas have z score values less than
�1.96, while 14 have values greater than 1.96. On a conventional interpre-
tation, this would suggest that almost 20% of the locations (20 out of 103
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census area units) are unusual in a statistical sense. The difficulty here is
that the data are evidently not well accounted for by a null model that
assumes complete spatial randomness. We already know this from the
calculations detailed in Section 7.5, which show significant positive spatial
autocorrelation in this data set. If we know that the data are positively
autocorrelated, it makes little sense to identify statistically unusual cases
based on a null model that assumes complete spatial randomness!

Another difficulty is that this is a situation where repeatedly applying a
statistical test to the same data, when that test assumes independence of
the observations, leads to problems (as was mentioned in relation to
the GAM in Section 6.7). Consider any two locations, A and B, that are
neighbors in a spatial data set. If A has an unusually high value of the Gi

statistic, then, given that it shares many of the same neighbors as B, it is
highly likely that B will also have a high value of the Gi statistic. Thus,
statistical tests of local statistics are inherently nonindependent, and we
must make some adjustment to the criteria we use to determine which
observations are unusually high or low. This is known as the multiple
testing problem, which can be addressed by adjusting the probability
threshold used to determine which results are considered statistically
significant. Where n tests are conducted, with a desired statistical signifi-
cance (i.e., a p-value) of a, one possible corrected significance level sug-
gested by Sidak (1967) and endorsed by Ord and Getis (1995) and by
Anselin (1995) is

a0 ¼ 1� 1� að Þ1=n ð8:7Þ

An alternative simpler approach, known as the Bonferroni correction, is to
set a0 ¼ a/n. In practice, the two approaches produce very similar corrected
significance levels. In Figure 8.1, where n¼ 103, for a 0.05 significance level,
applying the correction of Equation (8.7) gives an adjusted p-value of
0.000498, while the Bonferroni correction produces a similar value of
0.000485. The former value is associated with a z score of �3.29.

Applying this new threshold to the mapped data results in only the two
highest-value census area units (those located east and west of Owairaka)
being considered statistically significant cases. We would interpret this as
meaning that even given the known positive autocorrelation in these data,
those locations exhibit unusually high similarity to their neighbors. Some
writers consider these corrections for multiple testing to be too conservative
for the semi-independent tests actually applied in the context of local
statistics, and also believe that they result in too few determinations of
statistically unusual cases. Anselin (1995, p. 96) discusses this matter in
some detail. The crux of the argument is that the standard corrections
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suggested above are for cases where exactly the same data are tested n times.
For local statistics, overlapping subsets of the same data are tested a number
of times, but never exactly the same subsets. A rough estimate of the
‘‘effective’’ number of multiple tests actually occurring might beP

i

P
jwij=n, where n is the number of locations in the data set. However,

no detailed research results have been reported in this area.
A more recent (and liberal) approach to the statistical assessment of local

statistics is to apply a Monte Carlo simulation procedure to produce pseu-
dosignificance values. This is the same approach adopted in assessing many
point pattern measures discussed in Section 5.4. For local statistics, the
approach is typically repeated using conditional permutation (or ‘‘shuffling’’)
of the attribute values in the spatial data among the locations in the data set.
Each time the data are shuffled, the value at the location of interest is held
constant (this is what makes the permutation conditional), the calculations
for the statistic in question are performed on the shuffled data, and the
resulting value of the local statistic is determined. The permutation proce-
dure is repeated a large number of times (say, 999), and the value of the local
statistic associated with the actual distribution of the attribute is ranked
relative to the list of values produced by the permutation procedure. Meas-
ured actual values of the local statistic that are either very low or very high
relative to the list of results produced by the shuffling procedure are then
judged to be of interest. A pseudosignificance value can be determined by
noting the rank of the actual local statistic relative to the permuted results.
For example, if the actual local statistic is the highest recorded among 999
permutations, then it is estimated to be a 1 in 1000 occurrence with a
pseudosignificance of p � 0.001.
While this approach is more computationally intensive than the results

derived from analytical expected values and variances, it is conceptually
more satisfying and has become routine given contemporary computational
resources on the desktop. With appropriate adjustment of the permutation
procedure, the simulation approach also has the potential to be used to
explore how unusual are the values of local statistics given the presence of
known levels of global spatial autocorrelation. This is an aspect of the
results reported by Anselin (1995, pp. 108–111) that deserves more atten-
tion, since his results clearly demonstrate that the distributional charac-
teristics of local statistics can be expected to depend strongly on global
levels of autocorrelation. An appropriately designed permutation proce-
dure that maintains levels of global autocorrelation in the permuted data
sets similar to those observed in the actual data would, at least in theory,
enable identification of those local patterns that are unusual even in the
context of the observed global patterns. We are not aware of any reported
results of this kind, and it is clear that such analysis would present
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substantial challenges in both execution and interpretation. Given such
challenges, it seems likely that local statistics of the kind discussed in this
section will continue to be used primarily in an exploratory and descriptive
mode for the foreseeable future. Many examples of the use of these
measures can be found in the research literature in a wide range of subject
areas, in spite of the lack of a completely satisfactory inferential frame-
work. As evidence of this, consider the fact that at the time of writing, the
three papers by Anselin (1995) and Getis and Ord (1992, 1995) have been
cited a combined total of almost 1000 times!

8.5. OTHER LOCAL STATISTICS

Geographical ly Weighted Regress ion

Another popular local statistic developed in the last decade or so is geo-
graphically weighted regression. In a simple multivariate regression model,
we model the relationship between one dependent variable and one or more
independent variables. Themathematical model underlying multiple regres-
sion is

yi ¼ b0 þ b1xi1 þ b2xi2 � � � þ bmxim � � � þ ei

¼ b0 þ
Xm
j¼1

bjxij þ ei ð8:8Þ

so that the value of the independent variable at each location yi is modeled as
the sum of a constant b0, a sum of products of each independent variable
value xij, and a coefficient bj, alongwith an error term ei. Themodel is fitted to
the observed data using a least squares regression procedure, which ensures
that the sum of the squared errors at all locations in the data set is
minimized. Themathematics underlying regression is comparatively simple,
but beyond the scope of this book, and is covered in numerous introductions
to statistics. For the present purpose, it is convenient to express the full
regression model in matrix terms as follows:

y1
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2
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y ¼ Xbþ e

ð8:9Þ

so that b is a vector containing the estimated regression model coefficients,
and y and X contain the observed data for the dependent and independent

226 GEOGRAPHIC INFORMATION ANALYSIS



variables, respectively. It turns out that the least squares estimates of the
regression coefficients can be calculated for this model from

b ¼ XTX
� ��1

XTy ð8:10Þ

Ordinary least squares regression is frequently applied to data that are
spatially distributed. This involves creating a global regressionmodel so that
the relationship between the variables is assumed to apply with the same
coefficients at all locations. An important step in the construction and
evaluation of any regression model is to examine closely the model residuals,
or errors, for evidence of any trends relative to any of the variables included
in the model. For a model where the data are geographically distributed, a
natural next step is to map the residuals. When any trend is discernible in
the residuals, a regression model is said to be misspecified. This can be
interpreted in a number of ways, but it generally requires that the analyst
consider including additional variables in the model, removing variables
from the model, or otherwise adjusting the model to address the problem. A
subtle point is that suchmisspecification doesn’t mean that themodel is of no
use. For example, the model is still the least squares best fit to the data.
However, it does mean that the regression diagnostic statistics used to
evaluate the statistical model are unreliable.
In a geographic setting, when we observe spatial structure in model

residuals (which is almost always the case), this implies that either
(1) spatial dependence of the variables should be included in the model
or (2) it may be reasonable to allow the model to vary spatially. Both
approaches have been developed to a considerable degree in the last two
decades or so. The first option is adopted in various forms of spatial

regression, which include spatially lagged versions of each model variable
as additional variables in the model and provide an array of new diagnostic
statistics for assessing the quality of the model. Many of these methods are
discussed in detail by Luc Anselin in Spatial Econometrics (Anselin 1988)
and in subsequent collections by Anselin et al. (1995, 2004). We do not cover
spatial regression methods of this type in this book, as their interpretation
is a rather advanced topic.
Although such spatial regression approaches explicitly include spatial

dependence in the model, they generally consider spatial dependence itself
to be uniform across the whole study area. Thus, the same estimates for the
spatial dependence in the various variables included in the model are based
on global estimates of the spatial dependence. In presenting geographically
weighted regression (GWR), Fotheringham et al. (2002) suggest that this
means that those types of spatial regression are ‘‘semilocal’’ rather than
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truly local statistics. GWR, by contrast adopts the second possible approach
above and allows the regression coefficients in the model to vary from place
to place. Thus, in the same way that the variables themselves change
from place to place, we assume that the relationships among them may
vary from place to place. This idea is made explicit in the subtitle to the
definitive introduction to GWR in Fotheringham et al. (2002): The Analysis
of Spatially Varying Relationships. That book provides a comprehensive
overview of the basic features of GWR and is recommended, particularly
the second chapter, which sets out the idea in a very clear, direct way. We
borrow heavily from that chapter in the description of the approach below.

Now that we have noted the spatial autocorrelation in the residuals of
our regression model, the idea in GWR is to build many local models
instead, as a way of better understanding the spatial structure in the
model. At its simplest, this concept involves simply partitioning the data
set into a number of regions and estimating a local regression model for
each region individually. Thus, instead of modeling (say) school truancy
rates based on socioeconomic variables across the whole of a large urban
region, we might develop a set of models, one for each of the school districts
in the region. It is worth noting here that a related approach is multilevel
modeling. In this framework, a series of nested models are developed in
which the variance in the dependent variable accounted for by a set of
independent variables at one level is removed and the remaining variance
is then modeled using another set of independent variables. Such a model
may include several scales. A number of geographers have explored the
application of this approach where levels are defined by a series of geo-
graphic scales from the whole study area down to a highly localized level
(see Jones, 1991). Since multilevel modeling was originally developed in
the context of understanding educational outcomes based on school dis-
trict, school, and classroom-level variables, this is a natural approach,
which may make a lot of sense in many applications.

Returning to GWR, a further development of the idea of a collection of
local models is to construct a ‘‘moving window’’ collection of models, where
at any chosen location a local subset of the data is used to estimate a
regression model. The obvious next step in this progression, adopted in
GWR, is to construct a local model at every location in the study area such
that observed data are included in each local model and spatially weighted,
depending on their proximity to the location. In this approach, as with
other local statistics, nearby data points are weighted more heavily than
those from more remote locations using a kernel function in exactly the
same way as KDE (see Section 3.6). This development relies on using
weighted linear regression for each local model rather than ordinary least
squares regression. In weighted regression, a weight is associated with
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each observation in the data set, so that the regression coefficient estimates
are now given by

b ¼ XTWX
� ��1

WXTy ð8:11Þ

where W is a diagonal matrix of weights for each case in the data set. Off-
diagonal elements in W are zero, and the diagonal elements have valuesffiffiffiffiffiffiffi
wii

p
, where wii is the weight we wish to associate with each observation. In

GWR, the elements in W are based on the spatial association between the
location at which the local regression is performed and the available points
at which data are available, so that we have a local version of weighted
regression.
Clearly, how the regression weights Wi are determined for each local

model is critical. The approach described by Fotheringham et al. (2002)
involves using either a Gaussian or biweight kernel function at each location
to assign weights to nearby observations in the data set. As with kernel
functions in other applications, the critical aspect is not the mathematical
form of the kernel but its bandwidth. In applications that support GWR, the
bandwidth can be a value chosen by the user, which is fixed for all locations,
or it can be an adaptive variable bandwidth, which is different at every
location. The latter approach accommodates data sets that include signifi-
cant variation in the intensity of the data points, although it involves a
considerable amount of computation. A complex method for automatically
choosing each local bandwidth has been implemented based on running
multiple models at each location, omitting one point at a time and setting the
bandwidth such that it produces the best estimates of the omitted location.
The end result of all this computation is a set of estimated regression

coefficients that vary across the study area. These estimates can be mapped
so that varying relationships between variables across space can be investi-
gated. Diagnostic statistics associated with the method address the question
of whether or not any estimated spatial variation in coefficients is simply a
random sampling effect or is actually indicative of spatially varying relation-
ships in the data. The approach is similar to the drift analysis of regression
parameters developed by econometricians (Casetti and Can, 1999), as well as
the ideas of kernel and nearest-neighbor regression developed by statisti-
cians (Cleveland, 1979; Cleveland and Devlin, 1988).
In the case presented by Fotheringham et al. (2002, pp. 27–64), interpre-

tation of GWR results is straightforward. Their example is house prices in
London, modeled as dependent on a range of property characteristics, such
as floor space, number of bedrooms, availability of a garage, and so on. In this
context, geographic variation in the regression model parameters is readily
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interpreted as variation in the market value of the various property features
included in the model. Thus, for example, the market valuation placed on a
garage may be different in different parts of London. Unfortunately, varia-
tion in model parameters in other contexts can be much harder to interpret.
This is particularly so when the variation in a regression coefficient is
extreme enough to shift from positive to negative values across a study
area. In such cases, it may be reasonable to assume that other variables in
the model are confounding the results or that important variables are
missing. Less extreme but still significant variation in the association
between variables is typically easier to interpret (see the example discussed
below). In all cases, it is vital to map the results, as with other local methods.

Invariably, GWR models produce better fits to observed data than global
regression models. This is not surprising, given that a GWR model is not a
single model, but a (potentially very large) number of local models. Using
the approach to inference proposed by Fotheringham et al. (2002), even
allowing for the additional degrees of freedom, GWR models are typically
better than the associated global model based on Akaike’s Information
Criterion (AIC).

A Simple Example of GWR in Act ion

GWR can be illustrated by summarizing a paper by Brunsdon et al. (2001)
that examines spatial variations in the relationship between average rainfall
and altitude across Great Britain. In the past, workers typically used
standard linear regressions to show that as one ascends, the average annual
rainfall increases, a phenomenon called orographic enhancement, which
results from a combination of meteorological processes. The simple linear
model of this relationship, usually fitted by ordinary least squares (OLS)
methods, is

P ¼ b0 þ b1H þ e ð8:12Þ

where

P¼ rainfall (mm)

b0¼ rainfall at sea level (mm)

b1¼ rate of increase in rainfall with altitude, or height coefficient (mm/m)

H¼ station altitude (m above sea level)

e¼ an error term

Many years ago, for some 6500 stations across Britain, Bleasdale and
Chan (1972) found an overall relation in which the estimated average annual

230 GEOGRAPHIC INFORMATION ANALYSIS



rainfall was given by

P̂ ¼ 714þ 2:42 Hð Þmm ð8:13Þ

This implies a constant sea level rainfall of 714 mm across the entire
country and a constant rate of increase in average annual rainfall with
height of 2.42 mm/m. There are at least three reasons that led Brunsdon
et al. to suggest that this relationship cannot be the same across the entire
country:

� In the United Kingdom, the orographic effect is most pronounced at
warm fronts and in the warm sector of depressions but is not impor-
tant in cold frontal rain. It is known that there is spatial variation in
the mixture of rain-producing events across the country that would be
expected to produce nonstationarity in the relationship.

� Analysis of the results of this model shows that it systematically
overpredicts rainfall in the east and underpredicts it in the west,
giving a strongly spatially autocorrelated pattern of residuals.

� Armed with data from over 10,000 rain gauge sites, a preliminary
visualization exercise in which spatial subsets of the data were
isolated and the rain/height relation examined showed enormous
variation in the estimates for both b0 and b1. Typically, subsets of
the data from the south and east showed lower values for both of these
coefficients than subsets from the west and north.

The results of the GWR analysis for these data are shown in Figure 8.2,
which presents contour maps for the spatially varying b0 and b1 estimates.
To produce these estimates, Brunsdon et al. had a problem in choosing both
the form and the bandwidth of the kernel to be used. While a narrow
bandwidth captures many rain gauges in the lowlands, it risks finding
too few in the highlands and along the coast. Too wide a bandwidth risks
smoothing out important variations in the relationship. Based on a complex
cross-validation exercise, a two-dimensional Gaussian function with a 2-km
bandwidth (i.e., standard deviation) was chosen. This choice implies that all
the gauges in an effective neighbourhood of area 113 km2 around each
estimation point were used, with a weighting that drops sharply with
distance until, at 6 km, it is effectively zero.
The results are summarized in two maps shown in Figure 8.2, one for the

estimated rate of increase in average annual rainfall in millimeters per
meter of ascent, the other for the intercept term, equivalent to the estimated
rainfall in millimeters at sea level.
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Figure 8.2(i) shows the results for the height coefficient. The expectation of
spatial nonstationarity in the model is confirmed, with a variation from a
value of 0.0 in the east (implying that there is no increase with height), rising
rapidly in a band running from south to northeast across the country to
values in excess of 5.0 mm/m over the mountains of northwest Scotland.
Figure 8.2(ii) shows the results for the intercept constant, b0, which varies
from less than 600mmovermuch of the east of the country tomore than 1200
mm in the far northwest. In conclusion, and perhaps a little tongue in cheek,
Brunsdon et al. concluded that perhaps the real relationship between
average annual rainfall and altitude across the United Kingdom should
be rewritten as follows:

P̂ ¼ <600 to >1250ð Þ þ 0:0 to >4:5ð ÞHmm ð8:14Þ

Figure 8.2 Estimation results of GWR for (i) the height coefficient b1 in mm/m

contouredat intervals of0.5mm/mand (ii) the intercept constantb0 forGreatBritain

contoured at 50-mm intervals from 600 to 1250 mm.

(Source: Brunsdon et al., 2001)
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Crit ic ism of GWR

Critics of GWR raise valid concerns about a number of aspects. Some focus on
how inferences are made about whether or not the observed variations in
regression coefficients are statistically significant, andmuch debate revolves
around how to assess the dependence of the model on the automatically
determined kernel bandwidths: how are degrees of freedom involved in
determining the bandwidths to be accounted for? Such difficulties are similar
to those encountered in inference about other local statistics. In the same
vein, there may be concerns in GWR about how many observations are
included in each local model, and also with the characteristics of those
observations in terms of their suitability as input variables to a regression
model. In brief, stable regression coefficients depend on the independent
variables in a model being uncorrelated with one another (if they are not,
then multicollinearity problems arise), and also on their having well-be-
haved distributional characteristics without too many extreme values. For
the best results, the independent variables should be approximately nor-
mally distributed. Given that the local models are each based on subsets of
the total data set, in GWR it is quite likely that some of the local models will
suffer from one or both of these problems. Since a symptom of either problem
is unreliable estimation of the regression coefficients, a side effect of such
issues could be a tendency for GWR to overestimate howmuch the regression
coefficients vary in space.
These are clearly important issues to consider when using GWR. However,

many of these concerns are primarily about the inferences that can be made
in GWR. These become less important if the method is treated as essentially
an exploratory one. That this is the preferred approach to GWR ismade clear
in the title of the one of the first papers discussing the method, ‘‘AMethod for
Exploring Spatial Nonstationarity’’ (Brunsdon et al., 1996).

Density Est imat ion

Density estimation has already been discussed in Section 3.6. Herewe suggest
that you consider the simple idea that a density estimation is essentially a local
statistic. For the set of point events or point-located count data, density
estimation produces a locally weighted count in order to estimate the intensity
of thepointprocessat every location. In this case, thekernel function fulfills the
role of defining each locality by determining the weight to be associated with
each event of a point-located count based on its distance from the location at
which an estimate of event intensity is required. Structurally, this is very
similar to the Gi statistic, although here we make the density estimates at
locations that are not part of the point data set.
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Interpolat ion

Spatial interpolation methods may also be regarded as local statistics.
These are considered in some detail in the next two chapters. However, it is
worth noting in advance that, in essence, all spatial interpolation methods
estimate values at unsampled locations in a field based on some locally
weighted sum of the values at sampled locations. In the simplest case, all
the sampled locations are equally weighted in the sum, and the interpola-
tion is simply a local mean. In more widely used approaches, this procedure
is modified slightly by introducing a distance weighting component so that
nearer observations matter more than distant ones. The similarity to
density estimation is striking, although the intention and the outcomes
are quite different. The intention is different in that the surface being
estimated at each location is not an intensity surface, but rather the
surface of (unmeasured) attribute values. The outcome is different largely
because of a seemingly minor but important difference in the two methods.
In density estimation, the weights associated with each event or point-
located count are unaffected by the number of points included. Where there
are many events in a local area, the resulting estimates will increase with
each additional event. In interpolation, since the underlying basis of the
weighting is an averaging procedure, additional observations included in
the local statistic result in the weight associated with each observation
being reduced. In fact, in spatial interpolation, the sum of the weights used
for each local estimate is 1. Here, additional observations in the locality
refine the calculation of the local mean but do not necessarily increase it.
Instead, they may increase or decrease the outcome, depending on whether
they are low- or high-value observations.

8.6. CONCLUSIONS: SEEING THE WORLD LOCALLY

This chapter is in some ways a review of many of the methods considered in
previous chapters. We hope that by now you can see just how central to
spatial analysis the concepts of adjacency, distance, interaction, and neigh-
borhood introduced in Section 2.3 really are. All the local statistics discussed
here make use of these concepts as a preliminary step in the development of
the analysis. At the same time, this chapter anticipates developments in the
next two chapters on spatial interpolation methods, because there too,
concepts of locality and the associated spatial weighting of observations
are of central importance.

In spite of their importance, local statistics still present considerable
challenges for the spatial analyst. Foremost among these is the difficulty
of drawing inferences based on them. We have discussed the reasons for this
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difficulty, with the problems of small, nonrandom sampling and multiple
testing being the root causes. The current preferred solution, based on
computer simulation, is well established and provides one reason for the
relatively slow diffusion of local statistics: their seemingly paradoxical
dependence on substantial computational resources. This and the impor-
tance of mapping local statistics are major reasons why it is only the advent
of GIS that has seen local statistics come into their own.
The challenges associated with drawing inferences based on local statistics

have led to a strong tendency to treat them as primarily exploratory
approaches. That is considered to be a major failing of the approach by
some, who prefer more formal statistical approaches over the exploration of
data. We believe that seeing the world locally using these methods is a
powerful approach that has a place in the toolkit of all would-be spatial
analysts.

CHAPTER REVIEW

� Local statistics are an important new approach to spatial analysis that
has gained in popularity since the 1990s.

� Among the reasons for the slow rise to prominence of local statistics
are their dependence on the easy design and creation of maps with
which to visualize them and the need for considerable computational
resources for assessing the statistical significance of local statistics.

� Less technically, local statistics have also become more popular as the
importance of spatial variation in phenomena has becomemore widely
recognized as a result of the diffusion of GIS and other geospatial
technologies.

� The earliest local statistics specifically developed for the exploration of
data sets are the Getis-Ord Gi and G�

i statistics, which allow explora-
tion of the degree to which high or low values in a data set are spatially
clustered.

� A local version of Moran’s I statistic is readily derived from the
development of the global statistic.

� Both the G and I statistics are required to obtain a thorough under-
standing of the spatial dependence structure in a data set.

� Inference about the localG and I statistics (and other local statistics) is
made difficult by the twin problems of multiple testing and small
sample sizes. The best solutions to these difficulties lie in computer
simulation of multiple permutations of the original data and deriva-
tion of pseudosignificance tests.

� Several local forms of regression are available under the general
heading of spatial econometrics.
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� Geographically weighted regression (GWR) is a local form of weighted
linear regression that allows the standard regression coefficients to
vary from place to place and provides approaches to inference con-
cerning the variability in the resulting surfaces of local coefficients.

� Many standard spatial analysis techniques can be usefully reinter-
preted as local statistics, an approach that emphasizes the importance
of the key concepts of adjacency, interaction, and neighborhood (or
locality).
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Chapter 9

Describing and Analyzing Fields

CHA P T E R O B J E C T I V E S

In this chapter, we attempt to:

� Show how important fields are in many practical problems
� Show how field data can be recorded and stored in a GIS
� Introduce the concept of interpolation as spatial prediction or estima-
tion based on point samples

� Emphasize the importance of the first law of geography in inter-
polation

� Demonstrate how different conceptions of near and distant or neigh-

borhood result in different interpolation methods that produce differ-
ent results

� Explore some of the surface analysis methods that can be applied to
fields

After reading this chapter, you should be able to:

� Outline what is meant by the term scalar field and differentiate scalar
fields from vector fields

� Devise an appropriate model for such data and understand how the
choice of model will constrain any subsequent analysis

� Interpolate point data by hand to produce a field representation
� Describe how a computer can be programmed to produce repeatable
contour lines across fields using proximity polygons, spatial averages,
or inverse distance weighting

� Explain why thesemethods are to some extent arbitrary and should be
treated carefully in any work with a GIS
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� Understand the ideas of the slope and aspect as a vector field, given by
the first derivative of height

� List and describe some typical processing operations using height data

9.1. INTRODUCTION: SCALAR AND VECTOR
FIELDS REVISITED

In Chapter 1 we drew attention to a basic distinction between an object
view of the world that recognizes point, line, and area objects, each with a
bundle of properties (attributes), and a field view where the world consists of
attributes that are continuously variable and measurable across space. The
elevation of the Earth’s surface is the clearest and easiest-to-understand
example of a field, since, almost self-evidently, it forms a continuous surface
that exists everywhere. In a more formal sense, it is an example of a scalar

field (as we shall see shortly, it turns out that this apparently obvious fact is
arguable). A scalar is any quantity characterized only by its magnitude or
amount independent of any coordinate system in which it is measured.
Another example of a scalar is air temperature. A single number gives its
magnitude, and this remains the same no matter how we transform its
spatial position using different map projections. A scalar field is a plot of

the value of such a scalar as a function of its spatial position.
Scalar fields can be represented mathematically by the very general

equation

zi ¼ f (siÞ ¼ f (xi; yi) ð9:1Þ

where f denotes ‘‘some function.’’ This equation simply says that the surface
height varies with the location.

Revision

In order to fit what follows into our framework, you should review earlier

material as follows:

� Section 1.2 on spatial data types, noting what is meant by the field

view of the world
� Section 2.3, especially Figures 2.3, 2.4, and 2.5 and the related text on

proximity polygons
� Section 3.8 on visualizing fields
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Just by writing down this equation, we have alreadymade some important
assumptions about the scalar field. Depending on the phenomenon repre-
sented and on the scale, these assumptions may not be sustainable for real
fields. First, we assume continuity: for every location, si, there is a measur-
able zi at that same place. Although this seems intuitively obvious, it is an
assumption that is not always satisfied. Strictly, mathematicians insist that
continuity also exists in all the derivatives of z, that is, in the rates of change
of the field value with distance. For a field representing the height of the
Earth’s surface, this implies that there are no vertical cliffs. Try telling that
to anyone who has gone rock climbing in, say, Yosemite or, less dramatically,
the Derbyshire Peak District! Second, we assume that the surface is single-
valued. For each location, there is only one value of z. This is equivalent to
assuming that there are no caves or overhangs of the sort that (a few!) rock
climbers greatly enjoy.

Notation and Terminology

By convention, z is used to denote the value of a field. When we think of a

field as a surface, z is equivalent to the surface height above some datum

level. In our notation, si denotes a spatial location whose coordinates are (xi,

yi). By height, we mean the scalar value of the variable that makes up the

field. This could be a quantity such as temperature, rainfall, or even popula-

tion density. We often use height as a general term for any field variable we

are interested in.

An Example of a Field and Its Usefulness

The best example of field data in geography is the height of the Earth’s

surface, usually expressed inmeters above sea level. Such datamight be used:

� To produce maps and other visualizations of the relief of the Earth’s

surface for navigation and general interest
� In hydrology to detect features of interest in the landscape such as

river watersheds and drainage networks
� In ecology for the computation of attributes of the land surface that

have ecological significance, such as its slope and aspect
� In studies of radio and radar propagation by the mobile telephone

industry or military

(continues)
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In fact, scalar fields are found and analyzed in virtually all the sciences.
This has its benefits in that there are well-developed theories, methods, and
algorithms for handling them. There is also a downside in that the same
concepts are often reinvented and given different names in different disci-
plines, which can lead to confusion.

(box continued)

� In photorealistic simulations both in arcade games and in serious

applications such as flight simulation
� In terrain-guided navigation systems to steer aircraft or, more notori-

ously, Tomahawk cruise missiles
� In landscape architecture to map areas visible from a point (or

viewsheds)
� In geoscience, as an input into systems to predict the fluxes of energy

(for example, sunlight) onto and across (for example, water) the

landscape

The land elevation field has a concrete existence—you stand on it almost

all the time. Other scalar fields are less concrete in that we often can’t see,

touch, or perhaps even feel them, but they are still measurable in a

repeatable way.

As an exercise, how many scalar fields of interest in geography can you

list? How might these fields be manipulated in studies using GIS?

A Note on Vector Fields

By contrast, with scalar fields, vector fields are those where the mapped

quantities have bothmagnitude and direction that are not independent of the

locational coordinates used. Scalar fields all have an equivalent vector field

and vice versa. For example, the scalar field of land elevation may be used to

generate a vector field giving the maximum surface slope (a magnitude) and

its aspect (a direction). This is a common operation in GIS. The results

obtained may change when we use different map projections. Any vector

field may be thought of as the slope and aspect field of a corresponding scalar

field that ‘‘generated’’ it.

For the examples of scalar fields you suggested in the previous exercise,

what is themeaning of the equivalent vector fields? If we have a scalar field of
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9.2. MODELING AND STORING FIELD DATA

As for other spatial object types, how a field is recorded and stored in a GIS
can strongly affect the analysis that is possible. For fields, there are two steps
in the recording and storage process: sampling the real surface and employ-
ing some form of interpolation to give a continuous surface representation. In
this section, we briefly consider surface sampling but concentrate on five
approaches to continuous surface representation: digitized contours, math-

ematical functions, point systems, triangulated irregular networks (TINs),
and digital elevation matrices (DEMs). Each of these generates a digital
description of the surface that is often called a digital elevation model.
Details of simple interpolation techniques that may be used to produce
such continuous representations from sample data are presented in Section
9.3. The end product of sampling and interpolation is a field that may be
visualized and analyzed (or processed) to attach meaning to the underlying
data. A selection of processing operations commonly used in GIS is discussed
in the concluding sections of this chapter.

Step 1: Sampl ing the Real Surface

Whatever field description and processing methods are used, it is necessary
to acquire suitable sample data. These often strongly affect how a field is
modeled and stored. There are numerous possibilities. Sometimes we have a
series of measured values of the field obtained by some method of direct
survey. For example, we might have the rainfall recorded at sites where rain
gauges are maintained or values of air temperature recorded at weather
stations. For Earth surface elevation, recorded values are called spot heights.
A more general term is control point. In terms of the general equation
zi ¼ f(si), control points are a list of z values for selected locations in some
pattern scattered over the region. Increasingly, field data are acquired from

temperature, what does the vector field represent? How can the atmospheric

pressure field be used to predict the vector field of winds?

Your local science library or bookshop will have many books in the

mathematics section on scalar and vector fields. A useful one is McQuistan’s

Scalar and Vector Fields: A Physical Interpretation (1965). A good overview

of vector fields in geographic information science can be found in Li and

Hodgson (2004).
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aerial and satellite remote sensing platforms, including very high spatial
resolution Light Detection and Ranging (LIDAR) scanning usually providing
z values over a regular grid of locations. In terms of the basic field equation,
this is a solution in the form of a regular table of numbers. Field data may
also be acquired by digitizing the contours on amap.Manymapping agencies
produce grids of height data that appear to have been directly measured but
have actually been produced from a digital version of the preexisting
topographic maps. In terms of the equation

zi ¼ f (si) ¼ f (xi; yi) ð9:2Þ

digitized contours are previous solutions in the form of all the (x, y) values
with various fixed z values—the contour heights. Since the contours may
have been determined from a set of spot heights in the first place, such data
should be treated with caution. Further processing can produce data in
which the contour values are overrepresented.

Whatever the source, there are three important points to consider in
relation to field data:

� The data constitute a sample of the underlying continuous field. Even
if we wanted to, it is impractical to measure and record values every-
where across the surface.

� With the exception of a few relatively permanent fields such as the
height of the Earth’s surface, these data are all that we can ever have.
Many fields or surfaces are constantly changing (think of most
weather patterns), and only the values recorded at particular locations
at particular times are available.

� Unless we go out into the real world and do the measurements
ourselves, much of the time we have no control over where the sample
data have been collected.

An indirect corollary of the last point, which has always been true in basic
field surveying, is that the best control points are those where you have had
an opportunity to influence the sampling design before collecting the height
values to enhance the opportunities for further processing.

Step 2: Cont inuous Surface Descr ipt ion

As we have just seen, to represent faithfully any scalar field requires an
effectively infinite number of points. What determines the number of points
actually used is rarely the surface itself but instead our ability to record and
store it. Even in the nearly-ideal situation of Earth surface elevation, which,
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in principle at least, could be measured everywhere, practical considerations
dictate that any information system is unable to store all the data (indeed,
until very recently, high-resolution measurements such as LIDAR put a
considerable strain on computer resources anywhere they were collected).
Generally, a surface of interest has been recorded at a limited number of
control points and must be reconstructed to produce what we hope is a
satisfactory representation of the truth. Often, we cannot be certain that the
reconstructed surface is reasonable—for example, the air temperature on a
particular day is no longer available, except in the form of the values
recorded at weather stations. Today, nobody can possibly know the actual
air temperature at a location where no record was made yesterday.
Reconstruction of the underlying continuous field of data from the limited

evidence of the control points is called interpolation and is an example of the
classic missing data problem in statistics. Whatever type of surface is
involved and whatever control points are used, the objective is to produce
a field of values to some satisfactory level of accuracy relative to the intended
subsequent use of the data. It is therefore important to consider the possi-
bilities for storing and representing a field before interpolation is under-
taken, since the representation adopted may affect both the choice of
interpolation technique (see Section 9.3) and the possibilities for subsequent
analysis (see Section 9.4).
Several methods, illustrated in Figure 9.1, can be used to record field data.

Each of these is considered in the sections that follow.
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Figure 9.1 Methods of storing fields.
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Cont inuous Surface Descr ipt ion (1):
Digit ized Contours

An obvious way of recording and storing altitude is to digitize and store
contour lines from a suitable map, as in Figure 9.1(i). Such data are readily
acquired by digitizing the contour pattern of a printed map. Just as these
data are easily acquired, they are also easy to display by ‘‘playing back’’ the
stored coordinates. Some surface processing operations, such as calculation
of the areas above or below specified heights, are easy to do with contour
data. In production cartography concerned with topographic maps, where
most plotting is of point or line information, this is the preferred method, but
for GIS analysis it has severe limitations. First, the attainable accuracy
depends on the scale of the original map together with both the spatial and
vertical accuracy of the source map contours. Second, all information on
surface detail between contours is lost. Third, the method oversamples steep
slopes with many contours relative to gentle ones with only a few. Finally,
many processing operations, such as finding the slope or even something as
apparently simple as the elevation of an arbitrary location, are remarkably
difficult to automate for contour maps.

Cont inuous Surface Descr ipt ion (2):
Mathematica l Funct ions

In some GIS applications, it is possible to use a functional expression such as

zi ¼ f (si) ¼ f (xi; yi) ¼ �12x3i þ 10x2i yi � 14xiy
2
i þ 25y3i þ 50 ð9:3Þ

This gives the height of the field using an explicit mathematical expression
involving the spatial coordinates. In principle, a single, compact mathemat-
ical expression is a very good way of recording and storing surface informa-
tion, since it allows the height at any location to be determined. Figure 9.1(ii)
shows a simple example. A more complex case—the surface described by the
above equation—is shown in Figure 9.2. Note that x and y are likely to be
expressed in kilometers, whereas z would be expressed in meters.

In this approach, the problem is to find amathematical function, or series
of functions, that interpolates or approximates the surface. By interpolate,
we mean that the expression gives the exact value for every known control
point, so that the surface it defines honors all the known data. In contrast, a
function that approximates the surface may not be an exact fit at the
control points and does not honor all the data. Sometimes—for example, in
producing contour maps of the Earth’s surface elevation—interpolation is
required since the observed height information is known exactly. At other
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times, when control point data are subject to significant error or uncer-
tainty, or where scientific interest focuses on trends in the surface values,
approximation is more appropriate.
A mathematical representation of a surface has many advantages. First,

it is a compact way of storing all the information. Second, the height at any
location (xi, yi) can be found by substitution into the formula. Third, finding
contour lines is straightforward, involving the solution of an equation for
all coordinate values with the required z-value. Fourth, some processing
operations, such as calculation of surface slope and curvature, are easily
performed using the calculus to differentiate the function. The disadvan-
tages of the approach lie in the often arbitrary choice of function used and
a tendency for many functions to give values that are very unlikely or
even impossible—for example, negative rainfall totals—in the spaces
between data control points. It is also frequently almost impossible to
derive a parsimonious function that honors all the data. A parsimonious
function is one that does not use a large number of terms in x and y and
their various powers.
In most GIS textbooks you will find little mention of this approach, but it

is used more frequently than is realized. In some applications, complex
functions are used to describe even relatively simple scalar fields. The best
example is in operational meteorology, where atmospheric pressure pat-
terns are often recorded this way. The method is also used in one statistical
approach to analyzing spatially continuous data called trend surface

analysis (see Section 10.2). Mathematical functions are also used in the
method of locally valid analytical surfaces. From Figure 9.2, it is evident
that not far beyond this small region, the equation will give extreme
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Figure 9.2 Surface from the equation presented in the text over a small range

of (x, y) values. Note that the z-axis is exaggerated fivefold in this diagram.
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values. For example, at x ¼ 0, y ¼ 2, the equation gives z ¼ 450, making for
extremely rugged terrain! This is typical of the difficulty of finding a
function that fits the real surface over a wide area. For locally valid
surfaces, this problem does not arise. The area covered by a field is divided
into small subregions, over each of which the field behaves regularly. Each
subregion is then described by its own mathematical function. The result-
ing collection of functions accurately and economically represents the
entire surface. Effectively, this is also what is done when a TIN or DEM
description of a surface is contoured.

Continuous Surface Descr ipt ion (3): Point Systems

Representing a surface by contours or a mathematical function produces a
compact data file, but both representations are, in a sense, dishonest. What
is stored is already an interpretation of the surface, one step removed from
the original control point data. A third method avoids this problem by
coding and storing the surface as a set of known control point values Under
this general heading, there are three possible ways of locating the control
points that can be called surface random, surface specific, and grid

sampling.

1. In a surface random design, the control point locations are chosen
without reference to the shape of the surface being sampled. The
result, shown in Figure 9.1(iii), is an irregular scatter of control
points that may, or (more likely) may not, capture significant
features of the surface relief.

2. In surface specific sampling, points are located at places judged to be
important in defining the surface such as peaks, pits, passes, and
saddle points and along streams, ridges, and other breaks of slope.
This is shown schematically in Figure 9.1(iv), where points along
ridge lines and at a surface peak have been recorded. The advantage
of this method is that surface-specific points provide information
about the structural properties of the surface. Spot heights on most
topographic maps are surface-specific sampling systems because
they are usually located at significant points on the land surface
such as hilltops and valley floors.

3. In grid sampling, we record field heights across a regular grid of
(x, y) coordinates. This often appears in a GIS as a raster data layer,
and if the field of interest is the height of the Earth’s surface, it is
called a digital elevation matrix (DEM) (see Figure 9.1v). The
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advantages of grids are obvious. First, they give a uniform density of
point data that is easily processed and facilitates the integration of
other data held on a similar basis in a raster data structure. Second,
spatial coordinates need not be stored explicitly for every control
point, since they are implicit in each z value’s grid location. To locate
the grid relative to the real world, all that need be stored are the
coordinates of at least one point, and the grid spacing and orienta-
tion. A third advantage is less obvious but very important. In a grid,
we know not only each z value’s position implicitly, we also know its
spatial relationship to all other points in the data. This makes it
easy to calculate and map other surface properties, such as gradient
and aspect. Fourth, grid data can be readily processed using array
data structures, available in most computer programming lan-
guages.

The disadvantages of grid data sets are the work involved in
assembling them, the large arrays required, and the difficulty of
choosing a single grid resolution appropriate across all of a large
region. Because the number of points needed increases with the
square of the linear resolution, changes in either the area covered or
the resolution involved may be achieved only at great cost in extra
data. For example, a standard 5 by 5 km ‘‘Profile’’ tile from the
Ordnance Survey of Great Britain, with 10-m grid resolution,
requires 250,000 values to be recorded, but halving the horizontal
resolution to 5 m requires four times as many grid points
(1,000,000). A tendency to oversample in areas of simple relief
(such as a flat, dry salt lake bed) is also problematic. On the other
hand, a large grid interval that avoids this problem might seriously
undersample the surface in areas of high relief. In practice, the grid
interval must be a compromise dependent on the objectives of the
study. Cartographers encounter similar problems in choosing a
single contour interval appropriate for large map series.

Continuous Surface Descr ipt ion (4): Tr iangulated
Irregular Networks (TINs)

A common alternative to the DEM is a triangulated irregular network
(TIN), illustrated in Figure 9.1(vi). TINs were originally developed in the
1970s as a way of contouring surface data, but they have subsequently been
used to represent continuous surfaces based on a point sample. In a TIN,
sample points are connected to form triangles, and the relief inside each
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triangle is represented as a plane or facet. In a vector GIS, TINs can be
stored as polygons, each with three sides and with attributes of slope,
aspect, and the heights of the three vertices. The TIN approach is attract-
ive because of its simplicity and economy, since a TIN of 100 points will
usually describe a surface as well as a DEM of several hundred, perhaps
even several thousand, elements.

In creating a TIN, for best results it is important that samples are obtained
for significant points such as peaks, pits, and passes, as well as along ridge
and valley lines. Many GISs have facilities to do this, taking as their input a
very dense DEM from which so-called very important points (VIPs) are
automatically selected and used to build a TIN representation. The selected
set of points may be triangulated in various ways, but typically the Delaunay
triangulation is used. This uses proximity polygons as its basis, as described
in Section 2.3.

9.3. SPATIAL INTERPOLATION

Spatial interpolation is the prediction of exact values of attributes at
unsampled locations from measurements made at control points in the
same area. In GIS, interpolation may be used to convert a sample of
observations at control points into an alternative representation, typically
either a contour map or a digital elevation model. Since we usually have no
way of confirming the true values of the field away from the control points,
interpolation is a type of spatial prediction. Figure 9.3 outlines the basic
problem.

(s, z)

z ?

z ?

z ?

z ?

z ?

A

Figure 9.3 The interpolation problem. Control points are black circles, where we

know the location, s, and the height, z, but we require the field height, z,

anywhere in the region A—say, at the unfilled circle locations.

250 GEOGRAPHIC INFORMATION ANALYSIS



The best way to introduce interpolation is to attempt it by hand. The boxed
exercise takes you through an example.

The First Law Again

Think for a moment about the first law of geography in relation to the

possibility of spatial interpolation or prediction. Tobler’s law tells us that

‘‘everything is related to everything else, but near things are more related

than distant things’’ (Tobler, 1970), and, as we saw in Chapter 7, this appears

in spatial analysis as spatial autocorrelation. Now consider a field of data that

are not spatially autocorrelated, to which Tobler’s law does not apply. Is

spatial interpolation possible for such a field?

Hopefully, you answered a resounding ‘‘no.’’ The possibility of spatial

interpolation depends on spatial autocorrelation being present. If it is not,

then interpolation is not possible; we might just as well guess values based on

the overall distribution of observed values, regardless of where they are

relative to the locations we want to predict. An important concept to grasp

here is that different interpolation methods are distinguished by the way that

the concept near from the first law of geography is operationalized. This is

always a key question in geography. We assume that space makes a

difference; the question is, how? The interpolation methods described in

the remainder of this chapter each answer this question in a different way. In

choosing which method to use, you must consider how plausible the answers

implied by each method are for the geographic problem at hand.

Spatial Interpolation by Hand and Eye

Figure 9.4 shows spot heights of the average January temperature (�F) in a

part of Alberta, Canada. Your task is simple: Get a pencil (you will also need

an eraser) and produce a continuous surface representation of these data by

drawing contours of equal temperature (isotherms). While doing this, keep in

mind three things:

1. Resist the temptation to join the dots. Remember that the data are

unlikely to be exact and, even with a 0.1� resolution, each isotherm is

likely to have substantial spatial width. In many applications, it is

wildly optimistic to assume that the data are exact.

(continues)
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(box continued)

2. Experience suggests that it pays to start the process with a contour

value in the middle of the data range and to work up and down from

there.

3. Perhaps arguably, you should try to make the surface of average

temperatures as smooth as you can, consistent with its honoring all

the data. This means that there should be no inconsistencies where

measured temperatures lie on the ‘‘wrong’’ side of relevant isotherms.

It’s not as easy as it looks is it? Several points can be made based on this

exercise. First, different people arrive at different solutions, making different

predictions about the unknown values between the control points. Your

solution may be a good one, but it is also only one of the many possible

solutions.Without more information, there is no way be sure which solution

is the best.

Second, because this is a map of average air temperature, we can be

confident that assumptions of continuity and single value are reasonable, but

what if the problem were to map the subsurface depth of a highly folded and

faulted stratum where these assumptions did not hold?

Third, if you had access to additional information about the weather

stations, such as their height above sea level, would this help? This illustrates

the importance of prior knowledge in any interpolation. For example, if the

surface were of elevation and not temperature, you would avoid valleys that

rise and fall down their long profile, but you would be happy to create sharp

V-turns in the contour lines, indicating drainage channels.
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Figure 9.4 Average January temperature (�F) in a part of Alberta, Canada.
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Given the difficulty of manual interpolation, it is natural to ask if it is
possible to devise computer algorithms that interpolate in a consistent and
repeatable way. In the remainder of this section, we introduce simple
mathematical approaches to this problem. The next chapter describes
more complex statistical methods of interpolation.
It is useful to think of the problem of predicting field values at unknown

locations in the following way: If you had no information about the location of
control points, what estimate would you make of the likely value of a new
sample? Basic statistics tells us that the best estimate is simply the mean of
the sample data points. In spatial terms, this would be equivalent to the
situation represented in Figure 9.5. We make the assumption that all the
unknown field heights have a single value equal to the mean, so that they
form a single horizontal plane in the study area.
In Figure 9.5, higher values of the data set tend to be in the foreground and

lower values in the background. Using a simple mean to predict values at
unknown locations in this way, we are ignoring a clear spatial trend in the
data. This results in a spatial pattern to our prediction errors, or residuals,
with underprediction in the foreground and overprediction in the back-
ground. In other words, we know very well that the unknown values do
not form a flat surface as shown. Instead, we expect them to exhibit some
geographic structure, and making use of the spatial distribution of our

mean
“height”

Figure 9.5 Not taking space into account in prediction.

Finally, your confidence in the accuracy of each isotherm will not be

consistent across the area. It will depend strongly on the number and

distribution of control points, the chosen contour interval, and, more awk-

wardly, the unknown characteristics of the surface itself.
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samples and the first law of geography, we hope to be able to do better than
this.

Automating Interpolat ion (1): Proximity Polygons

A simple improvement on using the mean is to assign to every unsampled
point the value at its nearest control point using proximity polygons. In
terms of the first law, of geography, this means that we are taking the idea of
near to mean nearest. This operation is carried out by constructing proximity
polygons for the control point locations and then assuming that each polygon
has a uniform height value equal to the value at the control point. This
technique was introduced almost a century ago by Thiessen (1911), who
wanted to use rain gauge records to estimate the total rainfall across a
region.

The proximity polygon approach has the virtue of simplicity, but as Figure
9.6 shows, it does not produce a continuous field of estimates. At the edges of
each polygon, there are abrupt ‘‘jumps’’ to the values in adjacent polygons. In
some situations, this may be the best we can do. Whether or not it is
appropriate depends on the nature of the underlying phenomenon. If step
changes are a reasonable assumption, then the approach will be fine. Also,
remember that we may not have any way of knowing the accuracy of an
interpolated surface, so this approach also has the virtue of making its
assumptions immediately obvious to someone using the resulting spatial
field. More smoothed fields may appear to have a spurious accuracy not
justified by the observed data. Finally, if the data are not numerical but

Figure 9.6 The ‘‘blocky,’’ discontinuous results of an interpolation

using proximal polygons.
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nominal—say, a soil, rock, or vegetation type—then the proximal polygon
approach is often useful. However, bear in mind that processing nominal
data in this way is not usually considered interpolation.

Automat ing Interpolat ion (2): The Local Spat ia l Average

Another way to approach interpolation is to calculate local spatial means of
the sample data points. In effect, interpolation is a local statistic exactly like
those discussed in Chapter 8. The idea here is that it is reasonable to assume
that the first law of geography holds and to predict values at unsampled
locations using the mean of values at nearby locations. The key question is,
which locations are nearby? The proximity polygon approach has already
suggested one answer: Use just the nearest location. Instead of using only
the nearest control point, we can use only points within a fixed distance of the
location where we wish to determine a value. In Figure 9.7, the effects and
problems of this approach are highlighted.
The three maps show the results of using successive radii of 250, 500, and

750 m to determine local spatial means for the same set of spot heights. The
obvious difficulty is that, because some locations are not within the chosen
distance of any sample locations, it is not possible to estimate a full surface

Heights

Higher

Lower

locations within 250 m locations within 500 m

locations within 750 m

Figure 9.7 Interpolation using the mean of control points within 250, 500,

and 750 m of locations to be estimated. Areas where no estimates

are made are shown in white.
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for the study region. A second problem is that, because points drop abruptly
in and out of the calculation, the resulting field is not properly continuous.
This is most obvious when the radius for including points in the local mean
calculation is relatively small.

An alternative to a fixed radius is to use an arbitrary number of nearest-
neighbor control points. For example, we might choose to use the six nearest
control points to calculate the local mean at each unsampled location.
Results for a series of different numbers of near neighbors are shown in
Figure 9.8. This approach has the advantage that the effective radius for
inclusion in the calculation of each local mean varies, depending on the local
density of control points. In areas where control points are densely clustered,
the radius is reduced; where control points are sparse, the radius is in-
creased. An advantage of this method is apparent: All locations can have a
value estimated, because all locations have three (or six, or however many)
nearest neighbors. However, caution is required. For example, all the
locations in the first panel of Figure 9.7, where there is no interpolated
value, have no control point closer than 250 m away. This means that the
interpolated surfaces in Figure 9.8 use control points all of which are farther
away than 250 m to estimate values in those regions. This may not be very
sensible in some cases. Another questionable aspect of both radius-limited
and nearest-neighbor interpolation is that control points on only one side
of the point to be estimated may be used if it happens that the nearest
control points are all in more or less the same direction. In most software
packages, it is possible to avoid this problem by requiring that some

Heights

Higher

Lower

3 nearest neighbors 6 nearest neighbors 12 nearest neighbors

25 nearest neighbors 50 nearest neighbors

Figure 9.8 Nearest-neighbor interpolation for the data in Figure 9.7.
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minimum number of control points in each direction away from interpolated
locations be used.
Radius-limited and nearest neighbor interpolation share two character-

istics. First, the chosen limit is arbitrary, whether it is a distance or a number
of near neighbors. Second, as the sets of values on which estimates are based
increase in size, discontinuous steps in the interpolated surface become
smaller and a smoother appearance is produced. However, the appearance of
smoothness is not real, because control points still drop in and out of the local
mean calculations abruptly. One side-effect is that it is difficult to draw
contours on the resulting interpolated surfaces. Furthermore, the larger the
sets of control points we use for estimation, themore the interpolated surface
becomes like the horizontal plane in Figure 9.4. With a little thought, those
familiar with the concept should be able to see that this is a spatial version of
the central limit theorem of classical statistics.

Automating Interpolat ion (3): the Inverse Distance
Weighted Spat ia l Average

So farwe have taken account of spatial proximity by using only control points
judged to be ‘‘near’’ to calculate a local mean. A further refinement to
interpolating unknown values is to use inverse distance weighting when
determining the mean. This method was the basis of SYMAP, which, in the
early 1960s pioneered the application of computers to processing spatial
data. SYMAP consisted of a few hundred lines of FORTRAN code, but a
simplified version was published by the geologist John Davis (1976), and it
has been re-invented since then by others (see, for example Unwin, 1981, pp.
172–174). Rather than treating all included sample locations equally, nearer
locations are given more prominence in calculating the local mean. The
simple local mean calculation is

ẑj ¼ 1

m

Xm
i¼1

zi ð9:4Þ

where ẑj is the estimated value at the jth location and
P

zi is the sum of m
neighboring control points. It is implicit that each control point inside the
critical radius is weighted 1 and all those outside are weighted 0. As in other
spatial analysis settings, this idea can be expressed using a spatial weights
matrix, W, so that

ẑj ¼
Xm
i¼1

wijzi ð9:5Þ
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where each wij is a weight between 0 and 1 and is calculated as a function of
the distance from sj to the control point at si. If the distance is dij, then an
obvious function to use is

wij / 1

dij
ð9:6Þ

This sets the weight proportional to the inverse of the distance between the
point to be interpolated and the control point. If we want the wij values to
sum to 1 (as we should: why?), then we set each weight equal to

wij ¼ 1=dijPm
i¼1 1=dij

ð9:7Þ

Large values of dij where the control point is distant are thus given small
weights, whereas control points at short distances are given large weights.

To see how this works, consider the situation shown in Figure 9.9. Here, we
want to estimate the height of the field at the point shown as an open circle
using the nearest four control points, which have z values of 104, 100, 96,
and 88. Table 9.1 shows the calculations involved, for simple inverse distance
weighting. This gives the required estimate from the weighted sum as 95.63.
The simple average of these four heights would be (104 þ 100 þ 96 þ 88)/4 ¼
97, so the inverse distance-weighted result of 95.63 is biased toward the
nearer, in this case lower, values.

The mathematically inclined will have spotted a problem that must be
handled by the software: What happens if an estimated location is exactly
coincident with a control point? The distance dij is zero, and when we divide

96100

104

88control point
not used

z = ?

1 2 3

1

2

3

Figure 9.9 Inverse distance weighting in spatial interpolation.
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this into z, the result is undetermined. Because of this problem, inverse
distance approaches test for the coincidence condition, and when it occurs,
they use the control point value as the interpolated value. This is important
because it guarantees that the method honors every data point. In the
jargon, it is an exact interpolator. An equally important but less immedi-
ately obvious problem arising from the mathematics is that this method
cannot predict values lower than the minimum or higher than the maxi-
mum in the data. This is a property of any averaging technique restricted
to positive weights that sum to 1.
Inverse distance-weighted spatial averages are often used for interpola-

tion in GIS. Given a set of control points, the first step is to lay a grid of points
over the area. An interpolated value is then calculated for each point on the
grid. The interpolated values on the grid may then be contoured to produce a
surface representation. Contouring the interpolated grid is relatively simple.
Even with this technique, there are at least three ways we could alter the
procedure to change the final contour map:

1. Specify a finer or a coarser grid overwhich the interpolation ismade.
A very fine grid will add a lot of local detail; a coarse grid will
produce a more generalized surface.

2. As for other local statistics, we may alter the choice of neighboring

control points used. Whether we use near neighbors or a limited
radius to choose them, as the number of control points increases, a
smoother surface results.

3. We can alter the distance weighting. In the example, we used the
actual distance, that is,

wij / 1

dij
ð9:8Þ

More generally, we can adjust theweight using an exponent k to arrive
at the formula for the weights:

Table 9.1 Illustrating Estimation Using Inverse Distance Weighting

Control
point

Height
zi xi yi

Distance
dij

Inverse
distance 1/dij

Weight
wij

Weighted
value wijzi

1 104 1 2 2.000 0.50 0.1559 16.21

2 100 2 3 1.414 0.71 0.2205 22.05

3 96 3 3 1.000 1.00 0.3118 29.93

4 88 3 1 1.000 1.00 0.3118 27.44

Totals 3.21 1.0000 95.63
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wij / 1

dk
ij

ð9:9Þ

Higher values of k decrease the effect of more distant points and
produce a ‘‘peakier’’ map, often with distinctive ‘‘bulls-eyes’’ around
control points. Values less than 1 increase the effect of distant points
and smooth the resulting map. We can also change the distance
weighting function used. An alternative to inverse powers is the
inverse negative exponential, given by

wij / e�kdij ð9:10Þ

Whatever function is used, the calculations must still ensure that the
weights at any interpolated point sum to 1.

Figure 9.10 shows two maps produced from the same data using m ¼ 12
neighbors, but with the weights given by a simple inverse distance and
inverse distance squared approaches. Although the general shape is similar,
there are differences between the twomaps.Many computer programs follow
SYMAP’s example and use k ¼ 2 by default.

Relative to nonweighted schemes, one other point is worth making. As
noted, the apparent continuity of the surfaces in Figure 9.8 is illusory,
because the points included in each spatial average drop in and out of
calculations abruptly. Inverse distance weighting changes this, so that
the surface produced really does vary smoothly and continuously. This
makes contouring of the interpolated surface from inverse distance weight-
ing possible, as shown in Figure 9.10

It should be obvious that by changing any of the above aspects of the
procedure, we can produce various reconstructions of a field from sample

Heights

Higher

Lower

12 nearest neighbors
proportional to 1/w d

12 nearest neighbors
proportional to 1/w d

2

Figure 9.10 Different inverse distance weighted interpolation results.
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data. Given the effectively infinite range of possible objective interpolation
schemes, which is best? The answer is that there is no universally best
scheme. It is up to the analyst to make sure that the chosen method is suited
to the particular problem (see Rhind, 1971; Morrison, 1974; Braile, 1978).
There are at least four ways that this issue can be addressed:

1. One simple way is to rely on the maps produced. Do they look
reasonable? In a modern GIS, it is relatively easy to experiment
with different settings and even techniques until a result that
appears reasonable is obtained.

2. Alternatively, if a large number of control points are available,
another approach is to perform interpolation using a subset of
the data and to examine errors in the result relative to the unused
control points. The preferred interpolation procedure is then the one
that gives the smallest errors. This approach is known as cross-
validation.

3. It is also possible to gain insight into the selection of the k parameter
for the chosen weighting equation by running the interpolation at
each control point location, but with the corresponding control point
removed from the data. The interpolated values at each control
point location are then used to estimate the overall error for the
interpolation for that value of k. By repeatedly interpolating the
control point data while varying k, a single best value can be
efficiently determined (see Davis, 1976). This procedure is known
as leave one out cross-validation.

4. Finally, in kriging, we use the control point data themselves to
estimate the spatial structure in the underlying surface and use this
information to determine appropriate spatial weights. We examine
kriging more thoroughly in Chapter 10.

Automating Interpolat ion (4): Even More Opt ions!

There are many other ways to interpolate a surface. Space and time don’t
allow us to go into these in detail, but mention should be made of three:

1. Bicubic spline fitting is a mathematical technique that finds con-
tours that are the smoothest possible curves (in two dimensions)
that can be fitted and still honor all the data. Logic suggests that this
is a sensible, conservative approach. However, in regions where
there are no nearby control points, this method can produce some
very unlikely predictions.
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2. Multiquadric analysis is a method developed by Hardy (1971) for
application to topography. It is similar to the method of density
estimation we applied to point data in that it centers a varying-sized
circular cone on each of the n control points in the data. The cone
sizes are themselves estimated so as to satisfy a series of linear
equations that ensure that they honor all the data points exactly.
The value of z at any point is then expressed as the sum of all the
contributions from these quadric surfaces. We know of no GIS that
implements this approach, but it has been widely used for the
interpolation of rainfall data and is relatively easy to program.

3. One other interpolation technique deserves mention because it is
widely used for terrainmodeling and is especially relevant when the
intention is to use the representation in computer visualizations. A
TIN model for field data based on a set of sample point locations
‘‘tiles’’ the study region with triangles to the limit of the sample
locations. In practice, the Delaunay triangulation (see Figure 2.5) is
often used. This construction can be used to interpolate a z value for
any location inside a triangle in the triangulation. We simply
assume that each triangle is a flat facet and calculate z values
based on this assumption. This is effectively an inverse distance-
weighted approach based on the position of the unknown location in
the surrounding triangle of points. The triangular structure makes
it relatively easy to render images of a TIN mesh and also to
generate reasonably realistic images of terrain.

All these methods are similar to inverse distance weighing in that they are
deterministic. In every case, they assume that the data at the control points
are exact and they use a deterministic, mathematical procedure to perform
the interpolation. Given the data, method, and any required parameters, the
results are uniquely determined. You may argue about the chosen parame-
ters, but the results are verifiable and repeatable. An alternative is to once
again use ideas about random processes and interpolate using statistical
methods, as discussed in Chapter 10.

Spatial interpolation is straightforward using a computer to do the
work, so you must ensure that the methods you use are appropriate for
your specific problem. One problem that cannot be addressed adequately
by any of the techniques discussed above is that sampled data points
are not randomly distributed in space. You should consider the effects
of this on the solutions obtained. For example, often sample points are
denser in areas where people gathering the data felt it necessary. This
might happen with mining surveys, for example, where more detailed
investigations are carried out in promising areas. With climate data,
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sample points may be more densely clustered near centers of population.
Unsampled locations in less densely sampled regions are inherently less
well defined than those in more densely sampled regions. This is an
important point to remember when reviewing the results of any interpola-
tion procedure.

9.4. DERIVED MEASURES ON SURFACES

In most investigations, creating a continuous field by interpolation is a
means to an end. We might, for example, want to know the field values
for an ecological gap analysis where observations of the incidence of a plant
or animal species are to be related to environmental factors like average
January temperatures or mean annual rainfall. In addition to this direct use
of interpolated values, it is sometimes necessary to derive measures that
provide additional information about the shape of the field.
Although scalar fields are of interest in most branches of geography,

physical geographers have tended to develop most of the available methods
for summarizing and describing them. Geomorphologists interested in land-
forms have analyzed elevation fields, deriving useful information from
properties such as average elevation, the frequency distribution of elevation
values, and landform shape as described by slope and aspect. Similarly,
climatologists have analyzed atmospheric pressure fields to derive the
predicted geostrophic wind, while hydrologists have found the total basin
precipitation from a field of precipitation depths. Often, similar methods
have been developed and named independently, and there is an enormous
variety of possible ways of describing surfaces. In the following account, we
deal with a representative selection of descriptive and analytic measures of
surfaces. Most of these have immediately obvious interpretations in the
context of landscape (i.e., fields of elevation values), but many are applicable
to other fields as well.

Relat ive Rel ief

Perhaps the simplest measure used is relative relief, which is the height
range from the lowest to the highest point over some clearly specified area. A
map of relative relief over a network of small grid squares gives a useful
indication of the roughness of the surface and is yet another example of a
local statistic. Prior to GIS and the widespread availability of accurate
DEMs, relative relief was assessed by a variety of labor-intensive methods
(see Clarke, 1966). In a DEM, relative relief is easy to compute. All that is
required is to work across the grid, finding for each grid square themaximum
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and minimum height values within some defined neighborhood around that
grid cell.

The Area/Height Relat ionship

Plots of the proportion of area at differing heights have been used frequently
in geomorphology in attempts to detect the existence of flat planation
surfaces (for reviews of the numerous available techniques, see Clark and
Orrell, 1958; Dury, 1972). This can easily be derived from a histogram of
height frequencies taken directly from a DEM. The ability to produce such
frequency distributions often exists in GISs that handle raster data.

Slope and Gradient

A critical quantity when considering altitude is the slope of the ground
surface. This obviously affects how easily we can walk up and down, and it is
a key variable in the visualization of real landscapes. It is also central to an
enormous range of ecological and geoscientific applications in GIS. Mathe-
matically, the slope is themaximum rate of change of elevation at a point and
is called the gradient of the field.

The left-hand side of Figure 9.11 is a contourmap of a hill whose summit is
at an elevation of 500m. Suppose that wewalk up to it fromA,which is at 100
m. On the walk, we ascend through a vertical interval of 400 m and walk a
plan view distance of 3 km. The tangent of the slope angle from A to B is thus

tanu ¼ vertical interval

horizontal distance
¼ 400

3000
¼ 0:133 ð9:11Þ

which is equivalent to an average slope angle of around 7.5�. We can specify a
slope like this in any direction across the surface. Notice that this slope angle
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Figure 9.11 Calculation of the slope angle for a surface.
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only applies along the direction AB and so is a vector quantity with both a
magnitude (7.5�) and a direction (around 50� E of north). It should be apparent
that slope can be measured in any direction. What is usually calculated in a
slopemap is the slope in the direction of the steepest slope through that point.
This is the slope down which a dropped ball would roll, called the fall line by
skiers. It is this slope that is termed the gradient of the field.
To display the vector field of gradient properly, one needs either two

maps, one for each magnitude and direction, or a single map on which are
drawn slope arrows with their heads facing in the correct direction and
with lengths proportional to the slope magnitude. An example is shown in
Figure 9.12.
Producing gradient maps from digital data is not as easy as it might

appear. Most analysts working in GIS use either a TIN or a DEM as the
starting point. Compared to the DEM case, it is easy to find the slope and
aspect at a particular location using a TIN. We simply find the slope and
aspect attributes of the containing triangle. For a DEM, the standard
approach works across the grid point by point, calculating the gradient
for each grid location in turn.
Figure 9.13 shows a typical grid point, P, surrounded by eight other points,

each of which could usefully contribute information about the likely gradient
at P. The different methods vary in the way they use this information. The
simplest way is to assume that the slope across the four grid squares that
meet atP is an inclined plane, as illustrated. The orientation of this plane can
be specified by two slopes, one in the direction of the x-axis (ux), the other in
the direction of y (uy). The slope in the x direction is estimated from the
difference in the height values on either side of P as

Figure 9.12 A vector field visualized using arrows pointing in the downslope

direction of the gradient. Contour lines of the scalar field are also shown.
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tanux ¼ z r; cþ 1ð Þ � z r; c� 1ð Þ
2g

ð9:12Þ

where g is the grid spacing in the same units as the z values. Similarly, the
slope along the y direction is

tanux ¼ z rþ 1; cð Þ � z r� 1; cð Þ
2g

ð9:13Þ

These two slopes can then be resolved by Pythagoras’s theorem to give the
gradient:

gradient at P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ux þ tan2uy

q
ð9:14Þ

The direction, or aspect, of this gradient is found from

tana ¼ tanux
tanuy

ð9:15Þ

In using this method, one has to be confident that the original grid is
sufficiently dense for the inclined plane assumption to be reasonable. It
should be noted that use is made of information from only four neighboring
points, and the central point, z (r, c) is ignored completely.
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Figure 9.13 Estimating the gradient through a point in a DEM.
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An alternative method using the concept of a locally valid analytical
surface introduced in Section 9.2 has been suggested by Evans (1972).
Briefly, this works its way across a grid of values performing a local operation
that approximates the surface shape across each set of four grid squares
using a quadratic polynomial surface fitted to all nine relevant points. This is
fitted to observed heights by the method of least squares and is thus over-
determined, since only six points are needed to define the polynomial,
whereas nine are available. The result is that each quadratic is not an exact
fit to the nine points, so that there are potential difficulties if the lack of fit is
large. Evans reports that discrepancies are not serious, at least for elevation
data. All that remains is to find the gradient of the locally fitted quadratic
function. This is accomplished by direct differentiation of the equation of the
fitted surface.
In conclusion, two issues should be noted. The first is scale and the grid

spacing of the DEM used. The gradient at a point is a mathematical limit as
the distance over which it is measured goes to zero, but in practice, we
evaluate the gradient over a distance equal to 2g, twice the grid spacing. This
means that any measure obtained is an estimate of the true gradient at the
point, and will tend to smooth out steeper slopes and to miss detail in the
surface relief. Second, manyDEMdata products are themselves interpolated
from contours, and to save on computer memory, height values may be
rounded to the nearest whole number of meters. In areas of low relative
relief, the errors this introduces in both aspect and slope values can be
significant.

Surface Specific Points and the Graph of a Surface

Whatevermethod is used to find the gradient of a field, it will sometimes give
a value of exactly zero, indicating that the surface is locally flat. Examination
of the formulae given in the previous section indicates that a zero gradient
occurs if, and only if, both of the slopes along x and y are zero. This will be the
case at the top of a hill or at the bottom of a pit. In the case of ridges and valley
lines, the slope in at least one direction will be zero. Of course, if elevations
are measured to high precision, the chance of two grid point values being
exactly the same is very small. Usually, the precision of the data is such that
rounding z values to the nearest convenient integer generates apparently
equal values. It follows that points with zero gradient will occur on most
surfaces. Having no gradient also means that the aspect is vertically upward
and thus cannot easily be mapped. Such points are surface specific and are of
six types:
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1. Peaks higher than their immediate neighborhood
2. Pits lower than their immediate neighborhood
3. Saddles that lie at the self-crossing of figure-of-eight contours
4. Ridge lines
5. Flat valley bottoms or channels
6. Plains that are flat in every direction

Algorithms have been developed for the automatic detection of surface
specific points. An interesting branch of surface analysis uses the distribu-
tion of pits, saddles, and summits, together with their connecting ridges
(from a saddle to a peak) and channels (from a pit to a saddle), as a way of
characterizing surface forms topologically. The lines connecting these sur-
face specific points form a surface network whose properties can be analyzed
using graph theory (Pfalz, 1976; Rana, 2004).

Catchments and Drainage Networks

Two major aspects of a drainage basin are its topographic form and the
topologic structure of its drainage network. The manual quantification of
these components is tedious and time-consuming. Automated determina-
tion is an ideal application of GIS technology, since watersheds comprise a
method that completely partitions space and many environmental phe-
nomena can be related to them. Furthermore, knowledge of drainage
divides and drainage networks can be used to provide better estimates
of slopes and aspects, since slopes should break at divides and at channels.
Determination of drainage networks and the associated drainage divides is
an important first step in the creation of an effective hydrologic informa-
tion system.

A DEM contains sufficient information to determine general patterns of
drainage and watersheds. The trick is to think of each grid height value as
the center of a square cell and determine the direction of water flow out of
this cell by inspection of the altitudes of the surrounding cells. Algorithms to
determine flow direction based on this idea generally assume only four
possible directions of flow (up, down, left, right—the Rook’s case) or, occa-
sionally, eight possible directions (the Queen’s case). Each possible flow
direction is numbered. A typical algorithm sweeps the entire DEM, labeling
each cell by the assumed direction of water movement. Pits in the DEM are
treated separately, usually by ‘‘flooding’’ them with virtual ‘‘water’’ until an
outlet direction is found. To determine the drainage network, the set of flow
directions is then connected with arrows. Since, in natural systems, small
quantities of water generally flow overland, not in channels, we may also
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want to accumulate water flowing downstream through cells so that chan-
nels begin only when a threshold volume is reached.
Simulated drainage networks cannot capture all the detail of a real

stream network. For example, real streams sometimes branch down-
stream, which cannot occur using the method described. Also, the number
of streams joining at a junction, known as the valency of the junction, is
almost always three in reality but may be as many as eight when an eight-
direction algorithm is used. Junction angles are determined by the cell
geometry in the simulation, but in reality they are a function of the terrain
and of erosion processes. Finally, in areas of uniform slope, the technique
generates large numbers of parallel streams, whereas in reality, streams
tend to wander because of surface unevenness and the resulting junctions
reduce the density of streams in such areas. As a result, the length of
stream channel per unit of surface area, the drainage density, is often too
high in simulations. Some of these limitations can be overcome using
considerably more complex dynamic models based on TINs (see, for exam-
ple, Tucker et al., 2001).
Similar logic can be used to determine the watershed of a point. This is an

attribute of each point on the network and is given by the region upstream of
the point that drains toward it. Using a grid of flow directions developed as
above, it is easy to find the watershed of any cell. Simply begin at the
specified cell and label all cells that drain to it, then all cells that drain to
those, and so on, until the upstream limits of the basin are defined. The
watershed is then the polygon formed by the labeled cells.

Viewsheds

Another surface operation is the calculation of a visibility region, or
viewshed. Originally, programs were written to compute the line of sight
from a point in a specified direction. As machines have become faster, it has
been possible to extend these methods to estimate and map all the ground
visible or potentially visible from a specified point. Viewsheds have applica-
tion in the military; in locating unsightly constructions like pipelines, wind
farms, and electricity lines; and in landscape architecture, where they are
used in studies of landscape attractiveness. Communications companies also
use viewsheds to locate transmitter and receiver towers.
As in finding gradients or determining surface specific points, calculat-

ing the viewshed of a point is an operation conducted locally on each grid
point in a DEM. Some algorithms replicate the manual method of ‘‘draw-
ing’’ a series of profiles radially out from the viewpoint, marking on each
the hidden segments, and transferring these back to the base map. A
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simpler method finds the intervisibility to all other points making up the
DEM. An imaginary profile is drawn from a viewpoint to every other grid
point in turn (to some limit determined by the scale of the DEM, earth
curvature, and so on), and successive heights along each profile where it
crosses a grid line are listed and used to determine whether or not the point
is visible (see Burrough andMcDonnell, 1998, for an overview). Algorithms
for finding viewsheds that use a TIN data model have also been described
(DeFloriani and Magillo, 1994).

Surface Smoothing

Another operation carried out on surface data is smoothing and generaliza-
tion. Typically, this is necessary when displaying a relief map at lower
spatial resolution than that at which data were collected and stored. The
standard approach to smoothing makes use of the idea of a moving average
calculated across a field, where the height of every data point across a grid of
values is replaced by the average of its near neighbors. Inevitably, this
reduces the variance of the entire grid of values and results in a smoother
map. The technique also has the potentially undesirable side effect of
occasionally erasing significant hilltops and valley floors. More sophisticated
algorithms avoid this problem.

9.5. MAP ALGEBRA

A framework that is often used for thinking about all of the surface analysis
methods described above (and many more besides) ismap algebra. It is most
readily understood in the case of field data that are stored as a grid of values,
but in principle, it is applicable to any type of field data. Map algebra was
devised by Dana Tomlin and is presented in his 1990 book Geographical

Information Systems and Cartographic Modeling, which you should consult
for a much more detailed treatment than is given here (see also DeMers,
2001). Many GISs support map algebra, although this is often hidden behind
other terminology such as map calculator.

The fundamental concepts of map algebra are exactly the same as those of
mathematical algebra:

� Values are the things on which the algebra operates. Input data and
output data (results) are presented as grids of values. Values can be
categorical (nominal or ordinal) as well as numerical.

� Operatorsmay be applied to values to transform them, or between two
or more values to produce a new value. In mathematical algebra, the
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minus sign ‘‘–’’ is an operator that negates a single value when placed
in front of it, as in –5. The plus sign ‘‘þ’’ is also an operator, signifying
the addition operation, which, when applied between two values,
produces a new value: 1þ 2 ¼ 3.

� Functions are more complex but still well-defined operations that
produce a new value from a set of input values. The input set may
be a single value, as in log10(100) ¼ 2, or a set of values, as in mean
({1, 2, 3, 4}) ¼ 2.5.

Now consider two small grids of values like those in Figure 9.14(i). If we
want to apply an operation or function to these values, how should we
proceed? In fact, we have a number of options, and map algebra clearly
defines them, as described below. Note that we refer to these grids as
[left_grid] and [right_grid] where necessary in the discussion.

Local Operat ions and Funct ions

A local operation or function in map algebra is applied to each individual cell
value in isolation. For example, the local negation operation signified by the
minus sign ‘‘–’’ and applied to the right-hand grid in Figure 9.14(i) results in
the output grid, –[right_grid], in Figure 9.14(ii).

7.6 8.1 8.0 8.6 8.2 8.4 8.6 7.9 7.7 7.1 -8.4 -8.6 -7.9 -7.7 -7.1

7.8 8.1 8.8 8.8 8.6 8.8 8.2 8.1 7.7 7.1 -8.8 -8.2 -8.1 -7.7 -7.1

8.2 8.6 8.9 8.0 8.9 9.1 8.3 8.4 7.6 7.9 -9.1 -8.3 -8.4 -7.6 -7.9

7.8 8.0 8.3 8.1 8.2 8.8 9.1 8.9 8.2 7.6 -8.8 -9.1 -8.9 -8.2 -7.6

8.6 8.2 8.3 9.0 8.6 9.0 8.8 8.9 8.8 8.3 -9.0 -8.8 -8.9 -8.8 -8.3

16.0 16.7 15.9 16.3 15.3 8.4 8.6 8.0 8.6 8.2 8.1 8.8 8.8 8.8 8.8

16.6 16.3 16.9 16.5 15.7 8.8 8.2 8.8 8.8 8.6 8.6 8.9 8.9 8.9 8.9

17.3 16.9 17.3 15.6 16.8 9.1 8.6 8.9 8.0 8.9 8.6 8.9 8.9 8.9 8.9

16.6 17.1 17.2 16.3 15.8 8.8 9.1 8.9 8.2 8.2 8.6 8.9 9.0 9.0 9.0

17.6 17.0 17.2 17.8 16.9 9.0 8.8 8.9 9.0 8.6 8.6 8.6 9.0 9.0 9.0

(i) (ii)

(iii) (iv) (v)

Figure 9.14 Example small grids: (i) [left_grid] and [right_grid], (ii) –[right_grid],

(iii) [left_grid] + [right_grid], (iv) result of a local maximum operation applied

between [left_grid] and [right_grid], and (v) result of a focal maximum operation

applied to [left_grid] using the shaded focal shape shown.
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Applying a local operation between two grids involves applying the opera-
tion to values in corresponding positions in each grid and recording the result
in the corresponding position in the output grid. The result of theþ operation
applied between the two grids in Figure 9.14(i) is shown in 9.14(iii). Another
example is a local maximum operation between two (or more) grids, which
assigns to each output location the maximum of the values at the corre-
sponding location in the input grids. The result of this operation applied to
the grids in Figure 9.14(i) is shown in 9.14(iv).

Focal Operat ions and Funct ions

We can also apply an operator or, more often, a function, focally to a grid.
This means that the value at each location in the output grid is arrived at by
combining values focused at the corresponding location in the input grid or
grids. A simple example is focal_max, which would assign to each output
location the maximum of the values among those at the location itself and its
immediate neighbors in the input grid. The result of applying a focal
maximum function to [left_grid] is shown in Figure 9.14(v).

Many functions can be applied focally in this way, such as maximum,
minimum, mean, median, standard deviation, range, and so on. In addition
to the function itself, the output grid will depend on how the focal neighbor-
hood is defined in a particular case. In the above example, the focal neigh-
borhood is the grid cell itself and its eight immediate neighbors. Some
alternative neighborhood definitions are shown in Figure 9.15.

Figure 9.15 Some alternative possible definitions of the focal neighborhood

relative to the central cell of this small grid.
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A different choice of focal neighborhood will alter the output grid that
results when a focal function is applied. Notice that there is no requirement
that the neighborhood be symmetrical about the focal grid cell, as shown in
the last example in Figure 9.15. A nonsymmetrical neighborhoodmight have
application in understanding how air pollution spreads given a prevailing
wind direction.

Zonal Operat ions and Funct ions

Zonal operations and functions are an extension of the focal concept. Rather
than define operations with respect to each grid cell, a set of map zones are
defined (for example, counties, census tracts, or regions of some specified
land use) and operations or functions are applied with respect to these zones.
Zonal operations are generally used to summarize the characteristics of the
regions in question. The summary might be in terms of the mean, variance,
or total amount of the phenomenon in question with respect to the surface.

Global Operat ions and Funct ions

Finally, some operations and functions are global, meaning that the values
at each grid cell in an output grid may potentially depend on the values at all
grid cell locations in the input grid(s). An operation that finds the cost (in
time or money) of the shortest path from a specified location (say, a school) to
every other location may have to take into account values at all locations in a
grid to find the correct answer (the travel cost might, for example, be based
on the land cover type and its slope).

9.6. CONCLUSIONS

Many important environmental phenomena, such as altitude, temperature,
and soil pH, are interval or ratio scaled and form continuous, single-valued
scalar fields. However, in almost all cases, our knowledge of the precise form
of these surfaces is limited to a sparse and inadequate pattern of control
points where measurements have been made. Usually, it is prohibitively
expensive to make measurements at all the locations where values are
required for use in subsequent studies, so we must interpolate from the
sample data to reconstruct the complete surface.
Most GISs have capabilities to enable the creation of interpolated

surfaces at the click of a mouse. The intention of this chapter has been
to persuade you that this operation must be approached with some caution.
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Depending on the approach used, very different results may be obtained.
At the very least, find the system documentation and check how the system
vendor decided to do the interpolation. Where the details are vague—for
whatever reason—you should proceed with the utmost caution. Interpola-
tion results reliant on the secret inner workings of a particular GIS are
probably less useful than contours hand drawn by a human expert and are
certainly less useful than the original control point data, which at least
allow subsequent users to draw their own conclusions. Whenever you
perform interpolation on field data control points, best practice is always
to indicate the exact method used.

CHAPTER REVIEW

� Scalar fields are continuous, single-valued differentiable functions in
which the attribute value is expressed as a function of location.

� They can be recorded and stored in a variety of ways, including DEMs,
TINs, as explicit mathematical functions, or using digitized contours.

� Spatial interpolation refers to techniques used to predict the value of a
scalar field at unknown locations from the values and locations of a set
of survey locations or control points. Simple interpolation methods are
based on local statistics.

� A proximity polygon or nearest-neighbor approach is appropriate for
nominal data but results in a ‘‘blocky’’ or stepped estimate of the
underlying field, which may not be plausible for interval or ratio data.

� The nearest-neighbor approach is extended by basing local estimates
on spatial averages of more than one near neighbor. These may be
chosen either on the basis of some limiting distance or on the basis of
the m nearest neighbors. The resulting fields become progressively
smoother as more neighbors are included. Eventually, when all con-
trol points in the study region are included, this is identical to the
simple average. The interpolated surface does not necessarily honor
the control points.

� Themost popular approach is inverse distance-weighted averages that
make use of an inverse power or negative exponential function to give
more weight to nearby sample values in the calculation of spatial
averages.

� Alternative interpolation techniques are based on bicubic splines,
multiquadrics, and threading contours across a TIN.

� All these techniques are deterministic in the sense that once the
method and any necessary controlling parameters are set, only one
solution surface is possible.
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� There are many ways that fields can be analyzed to assist in interpre-
tation and understanding. These include calculation of the vector field
given by the gradient, the identification of watersheds and drainage

networks, viewsheds around a point, and smoothed and generalized
versions.

� A useful framework for thinking about and extending surface analysis
is map algebra.
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Chapter 10

Knowing the Unknowable:
The Statistics of Fields

CHA P T E R O B J E C T I V E S

In this chapter, we:

� Describe the application of multivariate regression where the inde-
pendent variables are spatial coordinates, that is, the method known
as trend surface analysis

� Show how the variogram cloud and semivariogram can be used to
describe the spatial structure of an observed field of data

� Describe interpolation by the method known as kriging in general
terms, with reference to the discussion of least squares regression and
the semivariogram

� Introduce variations on kriging that enable the same concepts to be
applied to the analysis of other types of spatial data

After reading this chapter, you should be able to:

� Show how standard multiple linear regression can be developed using
the spatial coordinates of some observations to give the geographic
technique of trend surface analysis

� State the difference between trend surface analysis and deterministic
spatial interpolation of the type undertaken in Chapter 9

� Implement a trend surface analysis using either the supplied function
in a GIS, spreadsheet, or standard package program for statistical
analysis
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� Outline how the semivariogram that summarizes the spatial depen-
dence in some geographic data can be used to develop a model for this
variation and estimate its parameters

� Outline how a model for the semivariogram is used in optimum
interpolation by kriging

� Describe some variations on this approach
� Make a rational choice when interpolating field data between inverse
distance weighting, trend surface analysis, and geostatistical interpo-
lation by kriging

10.1. INTRODUCTION

In Chapter 9, we examined some simple methods for spatial interpolation in
which we reconstruct a field using the evidence supplied by some control
points—the locations at which we know the height of the field. All of these
methods make simplifying assumptions about the underlying spatially
continuous phenomenon of interest, and all are deterministic in the sense
that they use some specified deterministic mathematical function as their
interpolator. Many geostatisticians argue that deterministic interpolators
are unrealistic for two reasons:

� Because no environmental measurements can be made without error,
almost all control point data have errors. Furthermore, measured
values are often a ‘‘snapshot’’ of some changing pattern, which means
that we ought to consider their time variability. From this viewpoint,
it is ill-advised to try to honor all the observed data without recogniz-
ing the inherent variability.

� In choosing the parameters that control deterministic interpolators,
we make use of very general domain knowledge about how we expect,
say, rainfall totals or temperatures to vary spatially. Other than this,
these methods assume that we know nothing about how the variable
being interpolated behaves spatially. This is foolish, because we
have—in the observed control point data—evidence of the spatial
behavior, and any sensible interpolation technique should make
use of this information.

In this chapter, we examine two approaches to the analysis of fields that
are statistical, rather than mathematical, in nature. The first, trend surface
analysis, is a variation on ordinary least squares regression, where specified
functions are fitted to the locational coordinates (x, y) of the control point data
to approximate trends in height, z, across the region of interest. Trend
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surface analysis is not widely used as a basis for interpolation of surfaces,
although it is occasionally used as an exploratorymethod to give a rough idea
of the spatial pattern in a set of observations. The second group of tech-
niques, called kriging, attempts to make as much use as possible of the
available control point data to develop an interpolator that models the
underlying phenomenon in what is sometimes thought to be the optimum
manner. This approach also makes simplifying assumptions about measure-
ment variability, but attempts to include it and estimates of the data
autocorrelation in the interpolation process.
In both cases, and unlike the methods discussed in Chapter 9, some

measure of the error involved can be produced. Kriging is a sophisticated
technique, widely used by earth scientists in mining and similar industries.
There are many variants of the basic method, and we do not attempt to cover
them all here. If you can understand the basic concepts on which kriging is
based, you will be well equipped to deal with many of the more specialized
variations on this approach.

10.2. REGRESSION ON SPATIAL COORDINATES:
TREND SURFACE ANALYSIS

The methods examined in Chapter 9 are all exact interpolators that honor
the data control points. In this section, we outline a technique called trend
surface analysis, which, rather than honoring the data, deliberately gener-
alizes the field into its major feature, or ‘‘trend.’’ In this context, the trend of a
surface is a global property, any large-scale, systematic change that extends
smoothly from one map edge to the other. Often, it might be appropriate to
consider this as the first-order spatial pattern, as discussed in earlier
chapters. Examples of such systematic trends might be the dome of atmo-
spheric pollution over a city, the dome of population density over a city, or a
north–south trend in mean annual temperatures.
The basics of trend surface analysis are very simple and are at heart a

simple extension of multiple linear regression. We briefly discuss regression
in Section 8.5 when we consider geographically weighted regression, but if
necessary, you should consult any introduction to statistics for a basic
account of this method.
Recall, first, that any scalar field can be represented by the equation

zi ¼ f sið Þ ¼ f xi; yið Þ ð10:1Þ

which relates surface height (z) to each location, s, and its georeferenced pair
of (x, y) coordinates. As it stands this is vague, since f denotes an unspecified
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function. Trend surface analysis specifies a precise and knownmathematical
form for this function and then fits it to the observed data using conventional
least squares multiple linear regression. It is extremely unlikely that any
simple function will exactly honor observed data, for two reasons. First, even
where the underlying surface is simple, measurement errors will occur in the
observed data. Second, it is unlikely that only one trend-producing process is
in operation. It follows that there will be local departures from the trend, or
residuals. Mathematically, we denote this as

zi ¼ f sið Þ þ ei ¼ f xi; yið Þ þ ei ð10:2Þ

That is, the surface height at the ith point is made up of the fitted trend
surface component at that point plus a residual, or error, at that point.

The problem in trend surface analysis is to decide on a functional form for
the trend part of the equation. There is an enormous range of candidate
functions, but the simplest trend surface imaginable is an inclined plane,
which can be specified as

zi ¼ b0 þ b1xi þ b2yi þ ei ð10:3Þ

Mathematically, the trend is a linear polynomial, and the resulting surface
is a linear trend surface. To calculate values for the trend part of this
equation, we need to know the constant parameters b0, b1, and b2 together
with the coordinates of points of interest. These constants have a simple
physical interpretation as follows. The first, b0, represents the height of the
plane surface at the map origin, where xi ¼ yi ¼ 0. The second, b1, is the
surface slope in the x-direction, and the third, b2, gives its slope in the y-
direction.

This is illustrated in Figure 10.1. The linear trend surface is shown as a
shaded plane passing through a series of data points, each shown as a circle.
Some of the observed data points, in white, lie above the trend surface, while
those below the surface are shaded gray. The trend surface is the one that
best fits the observed control point data using the least squares criterion. It is
thus exactly the same as a conventional regression model using as its two
independent variables the locational coordinates.

At this point, the mathematical notation may become a little confusing. As
mentioned in Section 8.5 (see Equation 8.10), the least squares solution to
this problem is given by

b ¼ XTX
� ��1

XTz ð10:4Þ
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where the augmented data matrix X is given by

X ¼
1 x1 y1
..
. ..

. ..
.

1 xn yn

2
64

3
75 ð10:5Þ

and b and z are vectors containing the estimated regression coefficients and
the observed height values, respectively.
It is easiest to appreciate how this works by looking at an example. Table

10.1 shows the Alberta temperature data first considered in Section 9.3 and
displayed in Figure 9.4. A series of temperatures have been observed across a
surface to which a linear trend surface is to be fitted. The first step is to
measure the locational coordinates (x, y). The second and third columns of
Table 10.1 show these values, together with the temperatures z.

1

2

0

x

y

Figure 10.1 A simple linear trend surface.

Table 10.1 Temperatures in Alberta in January (�F)

Control Point x y z

1 1.8 0.8 11.5

2 5.7 7.1 12.6

3 1.2 45.3 2.4

4 8.4 57.1 �6.6

5 10.2 46.7 �7.9

6 11.4 40.0 1.0

7 15.9 35.4 2.5

8 10.0 30.9 7.1

9 15.7 10.0 8.4

(Continues)
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The boxed section below shows the required calculations, but for accuracy
and to reduce labor, this type of calculation would almost always be done
using standard computer software or a built-in function in a GIS.

10 21.1 17.5 5.0

11 24.5 26.4 10.0

12 28.5 33.6 3.1

13 33.5 36.5 1.7

14 36.4 42.9 0.4

15 35.0 4.7 7.4

16 40.6 1.6 7.2

17 39.9 10.0 6.6

18 41.2 25.7 1.5

19 53.2 4.4 2.9

20 55.3 8.3 2.9

21 60.0 15.6 �0.9

22 59.1 23.2 0.0

23 51.8 26.8 1.4

24 54.7 54.0 �6.3

Calculating the Best-Fit Linear Surface

We proceed exactly as with multiple linear regression, described above, with

the coordinates as two of the independent variables. The augmented matrix

of the data, X, is thus

X ¼
1 1:8 0:8
..
. ..

. ..
.

1 54:7 54

2
4

3
5

To save space, we have not written out the full matrix, which has 24 rows

and 3 columns. Its transpose, XT, thus has 3 rows and 24 columns:

XT ¼
1 � � � 1

1:8 � � � 54:7
0:8 � � � 54

2
4

3
5

Table 10.1 (Continued)

Control Point x y z
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Simple but tedious multiplication gives us

XTX ¼
1 � � � 1

1:8 � � � 54:7
0:8 � � � 54

2
4

3
5 �

1 1:8 0:8
..
. ..

. ..
.

1 54:7 54

2
4

3
5 ¼

24 715:1 604:5
715:1 30065:23 16324:6
604:5 16324:6 22046:47

2
4

3
5

Again, to save space, we have not written out each matrix in full. Note how

a 3 x 24 matrix post multiplied by a 24 by 3 matrix gives a symmetric 3 by 3

result (see the Appendix). The next step is to invert this matrix. Take our word

for it that this is

XTX
� ��1 ¼

0:290278546 �0:004319108 �0:00476111
�0:004319108 0:00011989 2:9653� 10�5

�0:00476111 2:9653� 10�5 0:000153948

2
4

3
5

Although we have done the work of finding this inverse for you (it’s not so

hard with a computer!), notice that we retain as many digits in the working as

possible.With this in mind, we have shown the smallest number in this inverse,

which is 0.000029653, in exponent/mantissa form as 2.9653 � 10-5. Many

years ago, one of us (Unwin, 1975a) noted that the XTX matrix that arises in

polynomial trend surface analysis when dealing with more complex functions

than the linear is often what numerical analysts call ‘‘ill-conditioned’’, making

blind reliance on a computer, with its fixed and finite numerical precision,

sometimes hazardous. Inversion of such matrices can be very sensitive to even

small changes in the element values. Retention of as much precision as possible

at each stage of the calculation is therefore advisable.

To determine b, we also need XTz, which is

XTz ¼
1 � � � 1

1:8 � � � 54:7
0:8 � � � 54

2
4

3
5 �

11:5
..
.

�6:3

2
4

3
5 ¼

73:9
1588:79
299:31

2
4

3
5

Note that here multiplying a 3 by 24 matrix by a 24 by 1 column vector

produces a 3 by 1 column vector. The final least squares solution is given by

the product of the two intermediate matrices:

b ¼ XTX
� ��1

XTz

¼
0:290278546 �0:004319108 �0:00476111

�0:004319108 0:00011989 2:9653� 10�5

�0:00476111 2:9653� 10�5 0:000153948

2
64

3
75

73:9

1588:79

299:31

2
64

3
75

¼
13:16438146

�0:119826593

�0:258655349

2
64

3
75

(Continues)
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In some studies, it is the form of this trend that is of major interest, but in
other studies, interest may also center on the distribution of the local
residuals. From the previous equations, it is obvious that these can be
calculated as

ei ¼ zi � b0 þ b1xi þ b2yið Þ ð10:6Þ

Again, to guard against numerical errors, we have retained as many digits

as possible. Our best-fit, linear trend surface for these data is thus the inclined

plane described by the equation

ẑi ¼ 13:16� 0:1198xi � 0:2587yi

in which ẑi is the estimated temperature at location si with coordinates (xi,

yi). A contour map of this surface is shown in Figure 10.2. It is apparent that

the surface does not honor the data, although the overall trend is reasonable,

with temperatures falling from southwest to northeast, as we might expect in

the Northern Hemisphere.
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Figure 10.2 Contours of the least squares linear trend surface fitted

to the data of Table 10.1 and Figure 9.4.

(box continued)
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That is, the residual at each point is given by the difference between the
observed surface height at that point and the value predicted by the fitted
surface. Maps of residuals are a useful way of exploring the data to suggest
local factors that are not included in the trend surface.
Finally, it is customary to derive an index of how well the surface fits the

observed data. This is provided by comparing the sum of squared residual
values for the fitted surface to the sum of squared differences from the simple
mean for the observed z values. This is better known as the coefficient of
determination used in standard regression analysis and given by the square
of the coefficient of multiple correlation, R2:

R2 ¼ 1�
Pn
i¼1

e2i

Pn
i¼1

zi � �zð Þ2
¼ 1� SSE

SSz
ð10:7Þ

where SSE stands for ‘‘sum of squared errors’’ and SSz stands for ‘‘sum of
squared differences from the mean.’’ This index is conventionally used in
regression analysis in general and indicates how much of an improvement
the fitted trend surface is compared to simply using the data mean to predict
unknown values. If the residuals are large, then SSE will be close to SSz and
R2 will be close to 0. If the residuals are near 0, then R2 will be close to 1. In
the boxed example, R2 is 0.732, indicating a reasonably good fit between the
trend surface and the observed data.
Whether or not this fit is statistically significant can be tested using an F-

ratio statistic

F ¼ R2=dfsurface

1� R2� �
=dfradius

ð10:8Þ

where dfsurface is the degrees of freedom associated with the fitted surface,
equal to the number of constants used, less 1 for the base term b0, and
dfresiduals is the degrees of freedom associated with the residuals, found from
the total degrees of freedom (n � 1), less those already assigned, that is,
dfsurface. In the example, dfsurface¼ 3� 1¼ 2 and dfresiduals¼ 10� 1� 2¼ 7, so
that

F ¼ 0:732=2

0:268=21
¼ 0:3658

0:01279
¼ 28:608 ð10:9Þ

ThisF-ratio indicates that the surface is statistically significant at the 99%
confidence level, and we can assert that the trend is a real effect and is not
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due to chance sampling from a population surface with no trend of the
specified linear form.

If this test had revealed no significant trend in the data, several explan-
ations might be adduced. One possibility is that there really is no trend of
any sort across the surface. Another is that there is a trend in the under-
lying surface but our sample size, n, is too small to detect it. A third
possibility is that we have fitted the wrong sort of function. No matter how
we change the values of the b parameters in our linear trend equation, the
result is always a simple inclined plane. Where this does not provide a
significant fit, or where geographic theory might lead us to expect a
different shape, then other, more complex, surfaces may be fitted. Exactly
the same technique is used, but the calculations rapidly become extremely
lengthy. Suppose, for example, that we wish to fit a dome or trough-like
trend across the study area. The appropriate function to use is a quadratic
polynomial, giving a surface:

zi ¼ f xi; yið Þ ¼ b0 þ b1xi þ b2yi þ b3xiyi þ b4x
2
i þ b5y

2
i þ ei ð10:10Þ

This is still a basic trend model, but there are now six parameters, b0 to b5,
to be estimated, and you should be able to see that X is now the six-column
matrix

1 x1 y1 x1y1 x21 y21
..
. ..

. ..
. ..

. ..
. ..

.

1 xi yi xiyi x2i y2i
..
. ..

. ..
. ..

. ..
. ..

.

1 xn yn xnyn x2n y2n

2
6666664

3
7777775

ð10:11Þ

so that the term (XTX) will be a 6 by 6 matrix and the inversion will be
considerably more complicated, and certainly not something to attempt by
hand. Computer calculation of the b parameters is not particularly diffi-
cult. The addition of further terms produces more complex cubic, quartic,
quintic, and so on surfaces, but in practice, these are seldom used, because
difficulties arise in using many correlated independent variables. There is
also a danger of overfitting the trend surface when the aim of the procedure
is to generalize surface trends in the first place. Other types of surfaces,
including oscillatory ones, may also be fitted (for reviews, see Davis, 2002,
or Unwin, 1975b).

In the bad old days of user-unfriendly mainframe machines, many geo-
scientists spent time and effort writing long, complex programs to calculate
and map polynomial trend surfaces. Nowadays, GISs such as ArcGIS and
IDRISI have the capability built in. In fact, as long as you can move the
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output into a mapping program, it is easy to fit trend surfaces using any
software that offers basic statistical analysis, such asR, SPSS, orMINITAB,
and—provided that you have its data analysis routines loaded—even in
Microsoft Excel.
Whatever the merits of trend surface analysis, it should be obvious that it

is a relatively ‘‘dumb’’ technique:

� There will generally be no compelling reason to assume that the
phenomenon of interest varies in such a simple way with the spatial
coordinates, or even with some combination of the coordinates
squared, cubed, and so on.

� Almost always, in practice, there will be spatial autocorrelation in the
residuals. This will indicate that our model is misspecified, which
implies that we can’t reliably use the fit to make statistically signifi-
cant interpretations of the results.

� Although the control point data are used to fit a chosen model for the
trend by least squares multiple regression, other than simple visual-
ization of the pattern they appear to display, the data are not used to
help select this model.

In short, although it has definite merit as an exploratory technique and is
much used by mathematically inclined geologists (see Davis, 2002, pp. 397–
416 for a detailed review), the theoretical underpinnings of trend surface
analysis are weak. Moreover, as we noted in Section 9.2 and illustrated in
Figure 9.2, it provides one approach to continuous surface description of the
sort used by locally valid analytical surface techniques and in surface
gradient estimation.
It should be clear, however, that instead of specifying in advance the

general type of surface shape, it would be useful to have some way of using
the evidence of the observed control point data to inform our work. It turns
out that our old friend spatial autocorrelation is the key to this approach, but
instead of examining this in the context of area objects, we need to develop an
approach suitable for a continuously varying field.

10.3. THE SQUARE ROOT DIFFERENCES CLOUD
AND THE (SEMI-)VARIOGRAM

A natural way to characterize the spatial autocorrelation across a surface
that we have sampled at a set of n control points is to plot the differences in
height values for pairs of control points against their difference in distance.
A plot that does precisely this is the variogram cloud. First, examine the
data in Figure 10.3. These are control points (spot heights) gathered across
a 310� 310 foot survey area (see Davis, 2002, Figures 5.66 and 5.67 for
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details). A hand-drawn contour scheme has been added to give you some
sense of an overall structure. There is a general upward slope from north to
south, with some more confusing things happening in the southern part of
the mapped area.

From these data, for each possible pair of points (there are 52 spot heights
and therefore 1326 pairs of points), we plot the square root of the difference in
their heights against the distance between them. This gives us the square

root differences cloud (Cressie, 1993, p. 41) of points shown in Figure 10.4.
What can we tell from this figure? The reason for using the term cloud is

obvious, but what it shows is that there is a tendency for larger differences in
height to be observed the farther apart are two control point locations. This is
a very ‘‘messy’’ trend, even including spot heights separated by as much as
300 feet that have no height difference.

Referring back to Figure 10.3, we can see that most of the upward trend in
heights is from north to south. In fact, we can also make a plot of pairs of spot
heights whose separation is almost north–south in orientation. In other
words, we only plot pairs of points whose separation is close to exactly north–
south in orientation. If we were to restrict the pairs used to precisely this
directional separation, then we would probably have no pairs of points to
plot. Instead, we allow separations at north–south plus or minus 5o. Simi-
larly, we can plot pairs that lie almost exactly east–west of one another. Both
of these sets of pairs are plotted in a single cloud in Figure 10.6. Pairs of
points almost on an N–S axis are indicated by open circles, and pairs almost
on an E–W axis are indicated by filled circles.
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Figure 10.4 The square root differences cloud for the spot height

data in Figure 10.3.
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Figure 10.5 Square root difference clouds for N–S-oriented pairs in Figure 10.4

(open circles) and for E–W-oriented pairs (filled circles).
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There are several things to note about this diagram:

� Far fewer points are plotted. This is because pairs at NS�5o or at
EW�5o are much less numerous. In fact, we would expect only 10/180
¼ 1/18th as many points in each group as in the full plot of Figure 10.4.

� The distance range of the plot is shorter because of the allowed
orientations and the shape of the study area. Since the study area
is about 300 ft in both the N–S and E–Wdirections, only pairs of points
at these separations are available. Note that this is another example of
an edge effect in spatial analysis.

� Although there is considerable overlap in the two clouds, it is evident
that in general, there are greater differences between N–S separated
pairs of spot heights than between E–W separated pairs. This is
consistent with the overall trends in the data indicated by the contours
in Figure 10.3.

� This difference is indicative of anisotropy in this data set, that is, there
are directional effects in the spatial variation of the data.

Cloud plots can be useful exploratory tools, but they are often difficult to
interpret, largely because there are so many points. A more condensed
summary is provided by subdividing the distance axis into intervals, called
lags, and constructing a summary of the points in each distance interval. For
each lag, we calculate a measure of central tendency (mean or median) and
summarize the variation around this mean using box plots, one for each lag.
Figure 10.6 clearly shows a rising trend in the difference between (square
root) control point heights at greater distances, with edge effects becoming
clear in the dropoff in height differences beyond lags 6 and 7. These lags
correspond to separations of around 300 ft. Lags 8, 9, and 10 are made up of
differences between spot heights in diagonally opposite corners of the study
region, and inspection of Figure 10.3 shows that these heights are typically
similar to one another. A less restricted study region would probably not
show this effect at these distances. What this all shows is, of course, that
height differences tend to increase as the separation distance increases, and
the farther apart two control points are, the greater is the likely difference in
their surface heights. This is consistent with what we expect of earth surface
relief and indeed formost surface entities, which show strong positive spatial
autocorrelation at short distances, with a generally rapid fall in dependence
as the separation increases.

The square root difference cloud is one of a family of possible plots that can
be used to characterize a surface. Its cousin is the semivariogram cloud, a
plot that is of immense practical and theoretical importance. In Figures
10.3–10.6 the square root of the height difference was used, but Figure 10.7
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Figure 10.7 The semivariogram cloud for the data in Figures 10.3–10.6.
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Figure 10.6 A series of box plots for distance intervals summarizing

the data in Figure 10.4.
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plots the squared differences in height, or semivariances, for these same data
to give an example of a semivariogram cloud.

But our description can be even more concise. We can summarize this
semivariogram cloud, again using box plots in each of a series of lags across
the entire distance range. This is shown in Figure 10.8 and provides an
estimate of a continuous function called the experimental semivariogram.
Where the context allows, you will often seen this term shortened to vario-
gram. Losing the prefix semi is hardly important, but it pays to remember the

Thought for Sophisticates

Why, then, did we start by introducing the square root difference? This is

primarily to help visualization of the overall shape of the plot and follows the

advice given in Cressie (1993, pp. 41–42). It is clear that taking the square of

the height differences tends to exaggerate extreme values, leading to badly

skewed distributions in each bin that make it hard to gauge from the box plots

whether or not a large value is a result of this skew or of some atypical

observation. Ideally, what we would like in each lag is a nicely balanced box

plot indicative of a symmetric distribution of values around their mean or

median. The square root transformation helps achieve this.
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semivariogram cloud of Figure 10.7.
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word experimental and to keep in mind that it refers to a construct that is a
property, not of the observed control points, but of the entire surface that
they sample.
The equation for this estimation is

2ĝ dð Þ ¼ 1

n dð Þ
X
dii¼d

zi � zj
� �2 ð10:12Þ

The right-hand side of this equation is straightforward, consisting of the
sum of the squares of all the pairs of height control point values at a given
distance d, divided by their number n(d). In other words, it is simply their
mean. The left-hand side of the equation uses the standard notation in which
g is the conventional symbol for the semivariogram. The ‘‘hat’’ tells us that
we are dealing with an estimate at distance (d), and the 2 arises in the
original development of this idea by the French geostatistician Georges
Matheron (1963). This equation also makes it clear that there is a similarity
between this measure and Geary’s Cmeasure of spatial autocorrelation (see
Section 7.6). In essence, the (semi)variogram is an application of exactly the
same idea to control point data, with the additional provision that we wish to
estimate its value at a series of distances.
It should be noted that the estimation procedure implied by the above

equation is not straightforward. In particular, for a given distance d, more
likely than not, there will be no pair of observations at precisely that
separation. Therefore, as for the variogram cloud box plots, we make esti-
mates for distance bins (or lags) rather than continuously at all distances.
Thus, the above equation should really be rewritten as

2ĝ dð Þ ¼ 1

n d� D=2ð Þ
X

d�D=2

zi � zj
� �2 ð10:13Þ

indicating that the estimate is made over pairs of observations whose
separations lie in the range d � D/2 to d þ D/2. It is also important to
note that the form of the equations shown here depends only on the distance
between observations, effectively assuming that the underlying phenome-
non is isotropic, with no directional effects of the type detected in the field
shown in Figures 10.3 and 10.5.

10.4. A STATISTICAL APPROACH TO
INTERPOLATION: KRIGING

In Chapter 9 we reviewed some simple mathematical methods of interpola-
tion, particularly the much-used method of inverse distance weighting
(IDW), where the height of any continuous surface, zi, at location si is
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estimated as a distance-weighted sum of the sample values in some sur-
rounding neighborhood. The Achilles’ heel of this approach is the arbitrari-
ness in the choice of distance weighting function used and in the definition of
the neighborhood. Although the choice of method may be based on expert
knowledge, both are determined without any reference to the characteristics
of the data being interpolated. By contrast, in trend surface analysis, in
Section 10.2 we specify the general form of a function (usually a polynomial)
and determine its exact form by using all the control point data to find the
best fit according to a particular criterion (least squared error). In a sense,
trend surface analysis lets the data ‘‘speak for themselves,’’ whereas IDW
interpolation forces a set structure onto them.

It would make sense to combine the two approaches in some way, at least
conceptually, by using a distance weighting approach, but at the same time
letting the sample data speak for themselves in the best way possible to
inform the choice of function, weights, and neighborhood. Kriging is a
statistical interpolation method that is optimal in the sense that it makes
best use of what can be inferred about the spatial structure in the surface to
be interpolated from an analysis of the control point data. It was developed
in France in the 1960s by Georges Matheron as part of his theory of
regionalized variables, which in turn was a development of methods
used in the South African mining industry by Dani Krige. The basic theory
is nowadays usually called geostatistics, and has been much developed
from the original ideas and theories by numerous spatial statisticians. This
section explains a little of how kriging works.

The basis of interpolation by kriging is the distance weighting technique
outlined in Chapter 9. Recall that for every location, si, we estimated an
interpolated value as a weighted sum of contributions from n neighboring
data control points. The neighborhood over which this was done was set
arbitrarily by changing the number of included points, while the rate of
decay of influence with distance was changed by arbitrarily varying an
inverse distance function. In essence, all that kriging does is to use the

A Pronunciation Problem

How do you pronounce kriging? Many people pronounce it with the i as an

‘‘ee’’ sound, and a hard g (as in golf ), but, in view of its derivation from a

South African family name, perhaps it should sound more like kric-king.
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control point data as a sample to find optimum values for the weights of the
data values included in the interpolation of each unknown location. Al-
though often referred to by the one name, kriging, in fact there are several
types of kriging that are alike in that they draw on regionalized variable
theory, but that make different assumptions about the properties of the field
being interpolated. Because it is the one most often used, we will illustrate
the technique by examining ordinary kriging.
In order to interpolate in this way, three steps are involved:

1. Producing a description of the spatial variation in the sample
control point data

2. Summarizing this spatial variation by a regular mathematical
function

3. Using this model to determine interpolation weights

Step 1: Descr ib ing the Spat ia l Var iat ion

We have already done this! Our estimate of the (semi)variogram provides all
that we need to know about the spatial variation in the field. Step 2 is a lot
trickier.

Step 2: Summariz ing the Spat ia l Var iat ion by a
Regular Mathematica l Funct ion

Once we have approximated the (semi)variances by mean values at a series
of lags, the next step is to summarize the experimental variogram using a
mathematical function. The experimental variogram is an estimate, based on
the known sample of control points of a continuous function that describes
the way the variance of the height of the field changes with distance. Often,
for reasons of mathematical convenience, the semivariogram is fitted to
match a particular functional form that has appropriate mathematical
properties. The task of finding the underlying function is illustrated in
Figure 10.9.
No matter how well it might fit the (semi)variogram data, we cannot use

any function that comes to hand for this purpose. There are a number of
properties that candidate functions must have to be what is called autho-
rized. Of these, the most important is that, because it is essentially modeling
variances at distances and any variance must be a positive number, the
function cannot give negative values. Also, by definition, the (semi)variance
at the origin where d ¼ 0 should be zero. In practice, it often happens that
any line through the experimental values intercepts the (semi)variance axis
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at some positive value. This implies some discontinuity, and in the gold
mining industry, where kriging was first developed and used, it was natural
to identify the phenomenon with small lumps of gold dispersed throughout
the rock body and call it the nugget effect. More generally, the nugget
variance can often be ascribed to errors of measurement and to spatial
variation that lies below the shortest sampling interval in the data.

Figure 10.10 shows a selection of possible functions that might be fitted.
Figure 10.10(i) shows an example of an unbounded model where the
semivariance, g(d), increases without limit. This may at first seem un-
likely, but there are circumstances in which it can be appropriate. In the
example the rate of increase is linear, with a distance exponent set at unity,
but this could equally be according to some power of the distance. Note also
that for generality we have included a nugget effect, with the line inter-
secting the semivariance axis at some positive value usually denoted as
g(d) ¼ c0. Panel (ii) shows a similar model, but in this case the increase in
semivariance reaches a maximum value, at which g(d) ¼ c0 þ c1, where the
value c0 þ c1 is called the sill. The distance, d, at which this happens is
called the range, denoted a. The range is effectively the extent of any
neighborhood we need to consider around each location in the field. It is the
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distance at which the semivariogram levels off and beyond which the
semivariance is constant. Beyond the range, pairs of points might just
as well be selected at any separation. If the range in a data set is (say) 250
m, this means that it would be impossible to tell if a pair of observations
was taken from locations 250 m or 25 km apart. There is no particular
spatial structure in the data beyond the range. For obvious reasons, this is
called a bounded linear model. There are many possible authorized models
and hybrids with features of more than onemodel that could be fitted to any
real-world experimental data, and fitting itself can be a tricky operation, so
in practice, many workers use a model that is sufficiently robust to allow
for many possible semivariogram shapes. Panel (iii) shows one such shape
that is implemented virtually as the default in many GISs. This is the
spherical model. Finally, panel (iv) shows a so-called Gaussian model, in
effect using half of the familiar normal curve to describe the change in
semivariance with distance. Notice that in contrast to the spherical model,
this model has the property of leveling off as it approaches d ¼ 0.
These models can all be described mathematically. For example, the

spherical model starts at a nonzero variance (g0 ¼ c0) for the nugget and
rises as in an elliptical arc to amaximum value, the sill, at some distance, the
range, a. The value at the sill should be equal to the variance, s2, of the
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Figure 10.10 Some examples of the distance decay in dependence for four

possible semivariance models.
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function. This model has the mathematical form

g dð Þ ¼ c0 þ c1
3d

2a
� 1

2

d

a

� �3
 !

ð10:14Þ

for variation up to the range, a, and then

g dð Þ ¼ c0 þ c1

beyond it.

Clearly, a fitted variogram model can only be an approximation to the
spatial variation in a real data set. In spite of its limitations, it remains a
powerful summary of the overall properties of a spatial data set. A good idea
of its summary power is provided by Figure 10.12. On the left-hand side of
the diagram is a series of surface profiles with steadily increasing local

An Example

How good is a spherical model for the experimental semivariogram shown in

Figure 10.9? One possible fitted spherical model is shown in Figure 10.11.

The fit here is by no means perfect, and in fact, for the shape of the data,

perhaps a Gaussian model would be a better starting point.
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Figure 10.11 A spherical model fitted to the data of Figure 10.9.
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variation in the attribute values. On the right-hand side are the correspond-
ing semivariogram models that we might expect. As local variation in the
surface increases, the range decreases and the nugget value increases.
Because the overall variation in the data values is similar in all cases,
the sill is similar in all three semivariograms. The most distinct effect in
these plots is the way that the semivariogram range captures the degree to
which variation in the data is spatially localized.
According to two authorities, ‘‘choosing [semivariogram] models and fit-

ting them to data remain among the most controversial topics in geosta-
tistics’’ (Webster and Oliver, 2007, p. 127). The difficulties arise because:

� The reliability of calculated semivariances varies with the number of
point pairs used in their estimation. Unfortunately, this often means
that estimates are more reliable in the middle distance range rather
than at short distances or long ones (why?), and the least reliable

Profile Semivariogram

Figure 10.12 Typical spatial profiles and their associated semivariograms.

All plots are on the same scales.
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estimates are thus the most important for reliable estimation of the
nugget, range, and sill.

� Spatial variation may be anisotropic, favoring change in a particular
direction. In fact, based on the findings in Section 10.3 and Figure
10.5, we should really consider using an anisotropic model for these
data. It is possible to fit a semivariogram that is a function of the
separation vector, rather than simple distance, although this compli-
cates matters considerably.

� Everything so far assumes that there is no systematic spatial change
in the mean surface height, a phenomenon known as drift. When drift
is present, the estimated semivariances will not simply be due to
random variation but will be contaminated by a systematic amount.
We explore this further in the next boxed section.

� The experimental semivariogram can fluctuate greatly from point to
point. Sometimes, for example, there is no steady increase in the
variance with distance, as is implied by most models.

� Many of the preferred functional forms for the variogram are nonlinear
and cannot be estimated easily using standard regression software.

Modeling the Semivariogram: A Cautionary Tale

Figure 10.13 shows the variogram cloud for the Alberta temperature data

given in Table 10.1.
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Figure 10.13 The variogram cloud for the Alberta temperature

data in Table 10.1.
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How best to estimate the experimental semivariogram and how to choose
an appropriate mathematical function to model it is to some extent a ‘‘black
art’’ that calls for careful analysis informed by good knowledge of the variable
being analyzed. It is definitely not something that you should leave to be
decided as a default in a simple-minded computer program, although this is

Since there are 24 data points, the plot contains 276 points and, as before,

we can summarize it by using a series of lagged distance bands and plotting

the mean value in each band. Figure 10.14 shows the result.

This plot is fairly typical of the kind of result that real-world field data

generate. Would it be appropriate to model it using a spherical model? If not,

why not?

In fact, we already know why we should not attempt to use this exper-

imental semivariogram at all. As we saw in Section 10.2, there is a strong

trend in the mean value of these data that can be well described by a linear

trend surface.

In other words, there is evidence of drift in the mean height of the field,

which means that the assumption made in ordinary kriging that the un-

observed mean of the field is constant is very unlikely to be true. A concave

upward form of the experimental semivariogram is often indicative of drift.

The correct way to interpolate these data would be to subtract this drift in the

mean and then create and model the experimental semivariogram of the

residuals from the trend surface. This is done in universal kriging.

0 10 20 30 40 50 60 70 80

0

50

100

150

S
em

iv
ar

ia
nc

e

Distance

Semi

Figure 10.14 A semivariogram for the Alberta temperature data.

Knowing the Unknowable: The Statistics of Fields 301



precisely what some GIS systems attempt to do. Many experienced workers
fit models by eye, others use standard but complex numerical approaches,
and still others proceed by trial and error.

Step 3: Using the Model to Determine Interpolat ion
Weights by Ordinary Kr ig ing

Now that we have seen how the spatial structure of a data set can be described
using the semivariogram function, how can this information be used to
improve the estimation of continuous data from sampled locations? It is
important to remember from the outset that kriging is just another form
of interpolation by a weighted sum of local values in which we aim to find the
best combination of weights for each unsampled location, based on its spatial
relationship to the control points and on the relationships between the control
points as summarized in the semivariogram. In addition to the assumptions
that a surface has a constant but unknown mean with no underlying trend
and that it is isotropic, reliance on the model we have fitted to the exper-
imental semivariogram also means that we assume the following:

� The semivariogram is a simple mathematical function with some
clearly defined properties.

� The same semivariogram applies over the entire area, and all other
variation is assumed to be a function of distance. This is effectively an
assumption about stationarity in the field, but instead of assuming
that the variance is everywhere the same, we assume that it depends
solely on the distance. For reasons that you may appreciate from
Chapters 4, 5, and 6 on point patterns, this is sometimes called second-
order stationarity, and the hypothesis about the variation that it
contains is called the intrinsic hypothesis.

We wish to estimate a value for every unsampled location s using a
weighted sum of the z values from surrounding control points, that is,

ẑs ¼ w1z1 þw2z2 þ . . .þwnzn ¼
Xn
i¼1

wizi ¼ wTz ð10:15Þ

where w1 . . . wn is a set of weights applied to sampled values in order to
arrive at the estimated value. To show how simple kriging computes the
weights, we will use the very simple ‘‘map’’ shown in Figure 10.15. Although
muchofwhat follows isnormallyhidden fromview inside a computer program,
we think it is instructive to work through the detail of the calculation.
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It can be shown (see, for example, Webster and Oliver, 2007, p. 152) that
estimation error is minimized if the following system of linear equations is
solved for the vector of unknown weights, w, and a quantity we introduce
called a Lagrangian multiplier, denoted l;

w1g d11ð Þ þ w2g d12ð Þ þ . . .þ wng d1nð Þ þ l ¼ g d1p

� �
..
. ..

. ..
. ..

. ¼ ..
.

w1g dn1ð Þ þ w2g dn2ð Þ þ . . .þ wng dnnð Þ þ l ¼ g dnp

� �
w1 þ w2 þ . . .þ wn þ 0 ¼ 1

ð10:16Þ

where n is the number of data points used, each of the terms g(d) is the
semivariance for the distance between the relevant pairs of points, and the
last equation is a constraint such that the weights sum to 1. This is
necessary to ensure that the kriging estimates do not have any systematic
bias. This equation is much easier to represent in matrix form as the

1
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4 z = 3.8

z = 29.4

z = 41.0

1

2

AB

3

Figure 10.15 Data used for the ordinary kriging example. The open circles

are the two locations whose values are be estimated using a weighted sum

of just three surrounding control points shown along with their z values

as filled circles, numbered 1 to 3.

Interpolation by Hand?

At this point, you might like to see if you can thread isolines at z¼ 30 and z¼
40 height units through these data. What value might be expected at the

locations to be estimated?
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system

g d11ð Þ g d12ð Þ � � � g d1nð Þ 1

..

. ..
.

} ..
. ..

.

g dn1ð Þ g dn2ð Þ � � � g dnnð Þ 1
1 1 � � � 1 0

2
6664

3
7775�

w1

..

.

wn

l

2
6664

3
7775 ¼

g d1p

� �
..
.

g dnp

� �
1

2
6664

3
7775 ð10:17Þ

which gives a standard system of linear equations

A �w ¼ b ð10:18Þ
that can be solved in the usual way by premultiplying both sides by the
inverse, A�1, to get the required weights:

w ¼ A�1 � b ð10:19Þ

There are some similarities here to least squares regression. However,
instead of observed data values, in this case the entries in the matrices are
based on the calculated values of a fitted semivariance function according to
the distances between the data control points. Given a semivariance function
for the surface we are interpolating, all required values can be determined
and the set of weights calculated.

We will work through the estimation for location A in Figure 10.15 using
just the three indicated control points. This is a very simple, almost trivial,
example, but it will give some indication of what is involved.

In our example with n ¼ 3 control points there are four simultaneous
equations, three for each of the data points to be used and one to constrain
the weights to sum to unity. To solve this system of equations for an
unknown point, we must assemble the matrices A and b, invert A to find
A�1, and then solve for the weights and the Lagrangian in the vector w.
The key quantities in both A and b are the semivariances given by our
chosen model for the semivariogram, calculated at the distances between
the relevant control points. Normally, the semivariogram would be esti-
mated from the data as in Section 10.3, but for simplicity’s sake, we will use
a very simple unbounded linear model in which the semivariance increases
by 60 variance units for every unit increase in distance and there is no
nugget, that is:

g dð Þ ¼ 0þ 60 dð Þ ð10:20Þ

The data matrix for the three control points and two locations to be
estimated is
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s x y z
1 1:0 4:0 3:8
2 1:9 1:4 29:4
3 3:5 3:5 41:0
A 2:4 3:0 ?
B 1:5 3:0 ?

ð10:21Þ

The matrix A can thus be assembled starting with the matrix of distances
between the control points:

D ¼
0

2:75 0
2:55 2:64 0

2
4

3
5 ð10:22Þ

Since this matrix and many of those that follow are symmetrical, we have
only listed the lower triangle, and for display only, we have rounded our
results. This means that you may see some discrepancies in the results if you
work through this example using the values shown.
For matrix A, each element is replaced by the semivariance at the

appropriate distance calculated from our hypothetical model and then
augmented by a row and a column. For example, the distance between
sample points 1 and 2 is 2.75 coordinate units, so

g d1;2 ¼ 2:75
� � ¼ 0þ 60(2:75) ¼ 165 ð10:23Þ

This yields

A ¼
0 1

165:08 0 1
152:97 158:40 0 1

1 1 1 0

2
664

3
775 ð10:24Þ

Similarly, the column vector b is assembled using the distances from the
unknown point A whose value is to be estimated, to the three control points:

d ¼
1:72
1:68
1:21

2
4

3
5 ð10:25Þ

With the same model for the semivariogram and augmented by the extra
row, this gives us values for the matrix b:
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b ¼
103:23
100:58
72:50
1

2
664

3
775 ð10:26Þ

The required inverse of A is (once again, take our word for it, and once
again, showing just the lower triangle of a symmetric matrix) is

A�1 ¼
�0:004
0:002 �0:004
0:002 0:002 �0:004
0:335 0:345 0:320 �105:931

2
664

3
775 ð10:27Þ

Finally, premultiplying b by this inverse gives the weights vector as

w ¼
0:2603
0:2912
0:4485
�13:445

2
664

3
775 ð10:28Þ

Note that the three weights sum to 1.0, as they should (ignore the last
value in w—it is the Lagrangian). Just as in IDW interpolation, it is the
nearest points that have the largest weight, with the nearest point (3) having
the most influence and the most distant one (1) having the least. We must
now calculate the weighted sum of the control point values from

ẑs ¼
Xn
i¼1

wizi

¼ 0:2603 3:8ð Þ þ 0:2912 29:4ð Þ þ 0:4485 41:0ð Þ ¼ 27:94

ð10:29Þ

Notice that this is for a single unknown point on the field. For every other
pointwherewewant tomakeanestimate,wehave to go through thefinal steps
of the process again—calculating a new bmatrix each time by measuring the
distances, computing the semivariances, and computing the required sum.

Interpolating Another Point

It is easy to illustrate this. If we wish to estimate the value at location B using

the same three control points, all that we need to redo are the last three steps

starting from the augmented vector of distances between this new point and
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Perhaps you can see that one way to compute estimates for a whole map
would be to create a huge A matrix with the semivariances for all possible
distance pairs, solve for the inverseA�1, and then use this at every one of the
locations to be interpolated. This isn’t done for two reasons. First, such very
large matrices are often difficult to invert. Second, what we find is that
distant points have weights so close to zero that they contribute negligibly to
the final summations. Making use of this fact, many systems compute a
‘‘rolling’’ estimate using just control points that are close to the location to be
estimated and recalculating the changing A matrices as they go along.
This is only a small example, but you should be able to see several

important points:

� Kriging is computationally intensive. There will usually be many
more samples, so that inversion of a considerably larger matrix
than the 4 � 4 example described here is required.

� You need a suitably programmed computer. Although some GIS
systems offer semivariogram estimation, modeling, and kriging,
most serious workers in the field continue to use specialist software

the three controls:

b ¼
60� 1:118
60� 1:649
60� 2:062

1

2
664

3
775 ¼

67:08
98:96
123:69

1

2
664

3
775

w ¼ A�1:

67:08
98:96
123:69

1

2
664

3
775 ¼

0:5244
0:3359
0:1397
�9:739

2
664

3
775

Since no new control point has entered the neighborhood, the inverse of A

remains the same as before. The final estimate is

ẑs ¼
Xn
i¼1

wizi

¼ 0:5244 3:8ð Þ þ 0:3359 29:4ð Þ þ 0:1397 41:0ð Þ ¼ 17:60

Notice how this result reflects the fact that B is closer to point 1 than A, so

that it, rather than point 3, gets the higher weight.
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such as GSLIB (Deutsch and Journel, 1992), Variowin (Pannatier,
1995), and GS+ (see www.geostatistics.com). Webster and Oliver
(2007) give a relatively accessible account.

� As with most things statistical, it helps if you have a lot of data (large
n). Themore control points you have, themore distance pairs there are
to enable the semivariogram to be estimated and modeled.

All kriging results depend on the model fitted to the estimated semivario-
gram from the sample data and the validity of any assumptions made about
height variation of the field. As we have seen, estimation of a semivariogram
function is not simple and includes some more or less arbitrary decisions
(howmany distance bands? what distance intervals? what basic model to fit?
what values to take for the sill and the nugget?). Different choices lead to
different interpolated fields, and it is often the case that we will have no
reason to favor one over another. Fortunately, ‘‘even a fairly crudely deter-
mined set of weights can give excellent results when applied to data’’ (Chil�es
and Delfiner, 1999, p. 175; see also Cressie, 1991, pp. 289–299). This
observation leads to an important question about kriging. Simply put, noting
that we are likely to get a reasonable single location estimate from most
distance decay weighting functions that sum to unity and decline with
distance, what’s so special about kriging that justifies the additional com-
putational and modeling effort?

Some idea of the value of the approach may be obtained from Figure 10.16,
which compares two interpolated surfaces produced for Davis’s (2002) set of
elevations that we first presented in Figure 10.3. The surface on the left was
produced using inverse distance-weighted interpolation with an inverse
power law distance decay with k ¼ 2. This surface shows some of the
characteristic unrealistic ‘‘bulls-eye’’ effects that one soon comes to associate
with IDW interpolation. The surface on the right side of the figure was
produced by ordinary kriging, with a circular variogram fitted to the data.
Although the estimates produced at any particular location do not differ
much between these two maps, it is clear that the kriged surface appears
much more realistic and that the method has some ability to adjust the

Experimenting with Kriging

It is useful to experiment with the various options available in ordinary

kriging, as set by the model that we assume for the experimental semivario-

gram and the spatial configuration of the control point data. A simple

computer-assisted learning tool to do this is E(Z)-Kriging (Walvoort, 2004).

308 GEOGRAPHIC INFORMATION ANALYSIS



Figure 10.16 Interpolated surfaces for the data shown in Figure 10.3

(data from Davis, 2002). The left-hand surface is an IDW interpolation,

while that on the right was produced by ordinary kriging.

spatial structure of estimates to reflect local variations in the surface
structure. The additional subtlety of this interpolation was achieved without
any of the potential improvements that might be produced by including an
underlying trend surface (as in universal kriging) or by incorporating
anisotropy, as can be done via semivariogram modeling.
From a theoretical perspective, there are two reasons to prefer kriging to

simplermethods.First, if the correctmodel isused, themethodsused inkriging
have an advantage over other interpolation procedures in that the estimated
values have minimum error associated with them. This is why the method
is sometimes called optimum interpolation. Second, this error is quantifiable.
For every interpolated point an estimation variance can be calculated, which
depends solely on the semivariogram model, the spatial pattern of the points,
and the calculated weights. The estimation variance is given by the weighted
sum of the semivariances of the distances from the control points to the
location of the estimate. Returning to our estimates in Figure 10.15, the
estimation variance for location A is simply the sum of the semivariances of
the distances, each weighted by the appropriate kriging weight:

s2
P ¼

Xi¼nþ1

i¼1

wibi ð10:30Þ

Thus, for location A, the estimation variance is

s2
A ¼ 0:2603 103:23ð Þ þ 0:2912 100:58ð Þ þ 0:4485(72:50)� 13:445 1ð Þ ¼ 75:23

ð10:31Þ
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So, to estimate a 95% confidence interval around the original estimate, we
need to take the square root to get the standard error and then set limits at
1.96 times this above and below the estimate. Since

ffiffiffiffiffiffiffiffiffiffiffiffi
75:23

p ¼ 8.67 and
1:96� 8:67 ¼ 17, we discover that at this level the estimate could be any-
where between 11 and 45. Given the starting data, this is hardly surprising.
However, the ability to compute an estimation variance for every location
means that not only does kriging produce estimates that are in some sense
optimal, it also enables valuable maps to be drawn of the likely error in these
estimates. These can be used, for example, to decide where the most benefit
might be obtained by measuring additional locations in the field.

Other Members of the Kr ig ing Fami ly

There are other forms of kriging that ask slightly different questions about
the surface under study, make different assumptions about it, or recognize
differences in the nature of the data used. The method we have outlined and
illustrated in detail is called ordinary kriging. The success of the underlying
theory of regionalized variables, especially in practical geologic exploration
and prospecting, has led to a whole family of extensions. Texts such as
Cressie (1993), Chil�es and Delfiner (1999), Goovearts (1997), Isaaks and
Srivastava (1989), and Webster and Oliver (2007) cover this ground, and
there is at least oneWeb site devoted to geostatistics at www.ai-geostats.org.
All that we can do here is to point you in the right direction by outlining what
each member of the family does and how it might be used:

� Simple kriging assumes that themean height of the field is known and
doesn’t vary spatially in a systematic way due to drift. Any variation in
height depends only on distance, not on direction, so the field is
assumed to be isotropic. The assumption about the mean may appear
restrictive, but there are situations, notably when it can be assumed to
be zero (for example, using z scores or residuals from a regression),
that arise from time to time. In many circumstances this method
differs little from ordinary kriging.

� Universal kriging retains the isotropic assumption but corrects for
regional drift in themean. At still more advanced levels, methods have
been developed to allow for kriging of anisotropic fields. In practice,
universal kriging models drift by some form of trend surface and then
compute the semivariogram using residual values from that surface.

� Block kriging is an approach that has a great deal of utility in mining
engineering. Instead of estimating the value for specific point loca-
tions, it predicts the average value of the spatially continuous
variable over a defined area or block. In mining, where blocks of
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rock are to be extracted, this is a useful approach. The modifications
required to ordinary kriging aren’t as great as might be expected. We
simply form the vector b using the average semivariances between
the block concerned and the control point locations and proceed in
the usual way.

� Indicator kriging is a nonlinear and nonparametric approach used
where the field variable is a binary 0/1 indicator of the presence or
absence of some phenomenon. This enables many types of data, in-
cluding some nonnumeric qualitative attributes, to be accommodated.

� Disjunctive kriging is related to indicator kriging, but instead of
predicting a field of binary assignments, it estimates the probability
of the field exceeding some specified threshold value. This is precisely
the sort of information that might be required in spatial decision
making applications of GIS and is an approach that perhaps should
have more prominence than it has achieved to date.

� Finally, although it does not complete the kriging family roll call, we
have co-kriging, which extends the analysis to two or more variables
considered at the same time. This is most useful where two variables
are known to be spatially associated—for example, assays of the
content of two different minerals in rock samples. The information
contained in the associated variable is used to enable better estima-
tions (as measured by a decreased estimation variance) of the other
variable.

10.5. CONCLUSIONS

This chapter has covered a lot of difficult and detailed material. When
studying the statistical approach to field data, it pays to take time and to
ensure that each stage of development of the techniques is familiar before
moving forward into the unknown. We hope that, after reading this
chapter, you will have achieved at least some of the learning objectives
with which we started.
In any real analysis, the major decision you face iswhich of the techniques

presented in this chapter and the previous one should be used. If you have
data that contain a lot of error and are only interested in making rough
generalizations about the shape of the field, then trend surface analysis
seems appropriate. If, on the other hand, you want to create contour maps
that honor all your data but do not need estimates of interpolation error, then
some form of IDW will almost certainly be adequate. However, if you want
the same properties but also some indication of the possible errors, then
kriging is the approach to take. However, as the previous few paragraphs
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indicate, if you use it, you must clearly appreciate the properties of the
surfaces that you are studying.

Perhaps the most important general point that emerges is that, just as we
can apply statistical models and logic to point and area data, we can apply
them to spatially continuous fields to improve substantially the estimates we
make of unknown values of the field, relative to ‘‘guesstimation’’ derived from
a simple mean of all the data points. The fundamental reason for this
capability is that phenomena do not usually vary randomly across space,
but tend to exhibit characteristic spatial structures or autocorrelation effects.
Whetherwe represent the autocorrelation of our datawith a rule of thumb like
IDW or attempt the more involved process of estimating and fitting a vario-
gram, ultimately we are hoping to take advantage of this fundamental fact.

CHAPTER REVIEW

� The approaches to surface analysis discussed in Chapter 9 are all
deterministic and do not involve any statistical theory, whereas both
of the approaches described in this chapter appeal to and make use of
statistical theory.

� Standard multiple linear regression can be applied to spatial data
using the approach known as trend surface analysis, in which the
independent variables are the spatial coordinates of the observations.
This is a useful exploratory technique.

� It is useful to use a square root variogram cloud, which plots the
square root of height differences against separation distance for all
pairs of control point observations. At some cost in introducing an
artifact arising from the bin classification used, this can be summa-
rized by a series of measures in which these numbers are assigned to
bins at increasing lag distances.

� A second plot that shows the spatial structure of a set of observations
is the experimental semivariogram. The semivariogram function g(d)
is based on the squared (rather than square root) differences between
pairs of observations at distance d apart.

� Semivariograms are estimated starting from a variogram cloud that
records squared differences between observed values and their sepa-
ration distance as a scatterplot.

� Semivariograms are summarized using standard continuous mathe-
matical functions that model the variance as a function of the separa-
tion distance. Often this will be nonzero even at the origin, giving a
nugget variance, and will increase to a limit, called the sill, at some
distance referred to as the range beyond which there is no spatial
dependence.
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� The spherical model is often used and is capable of describing many
experimental semivariograms.

� So-called ordinary kriging uses the modeled semivariogram to deter-
mine appropriate weights, based on observed sample values, for an
estimate of unknown values of a continuous surface. These estimates
are statistically optimal, but the method is computationally intensive.

� There is a whole family of methods based on kriging (simple, univer-
sal, block, indicator, disjunctive, and co-kriging)

� If you are serious about spatial analysis using continuous field data,
then you must have a working knowledge of the field of geostatistics.
This is a difficult and technical subject, but it might at least make
you think twice before uncritically using the functions in your
favorite GIS because they seem to work. There’s a good chance
that they don’t!
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Chapter 11

Putting Maps Together—Map Overlay

CHA P T E R O B J E C T I V E S

In this chapter, we:

� Point out that polygon overlay, the most popular map overlay method
is but one of at least 10 possible ways by which geographic objects
might be overlaid

� Illustrate the basics of sieve mapping using Boolean yes/no logic
� Underline the importance of ensuring that the data used are fit for the
intended purpose, including greater than usual concern for ensuring
that the inputs are correctly coregistered onto the same coordinate
system

� Examine some of the typical issues that arise in Boolean overlay
� Develop a general theory of map overlay based on the idea of favor-
ability functions and outline some possible approaches to their
calibration

On reading this chapter, you should be able to:

� Understand and formalize the GIS operation calledmap overlay using
Boolean logic

� Understand why coregistration of any maps used is critical to the
success of any map overlay operation

� Give examples of studies that have used this approach
� Outline how overlay is implemented in vector and raster GIS
� Appreciate how sensitive overlay is to error in the input data modeling
strategy adopted and the algorithm used

� List reasons why such a simple approach as Boolean overlay can be
unsatisfactory

� Outline and illustrate alternative approaches to the same problem
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� Describe how these methods find utility in the techniques of multi-
criteria decision making and provide some examples from geographic
information analysis

11.1. INTRODUCTION

In this chapter we examine the very popular geographic analytical method
known as map overlay, which is shorthand for methods of combining
information from different map layers. The techniques introduced so far
have almost all been ones that are applied to single maps made up of points,
areas, or fields. Yet, one of the most important features of any GIS is its
ability to combine spatial data sets (or maps produced from them) to create
new maps that incorporate information from a variety of sources. Generi-
cally, this process has been given the name map overlay and is just the GIS
version of an old technique known as sieve mapping, which was used by
land use planners to identify areas suitable or unsuitable for some activity.
In this approach, the entire study area is considered potentially suitable;
then areas are disqualified on the basis of a series of criteria until all that
remains are the areas still considered suitable. Before the advent of GIS
systems and digital spatial information, planners used a light table and a
series of transparent map overlays, one for each criterion, on which areas
deemed unsuitable were blacked out. When all these binary maps were
stacked on top of each other, light would shine only through those areas
deemed suitable—hence left unshaded—on all the overlaid maps. Although
this technique was first formalized by a landscape planner (McHarg, 1969),
the idea is as old as the hills, and in retrospect, it has been used in many
analyses.

In a GIS environment many types of map overlay are possible, and it is
possible to argue that overlay in one form or another is involved in much
geographic information analysis. As Table 11.1 shows, there are at least 10
general ways in which we can combine the different types of geographic
objects in an overlay.

Table 11.1 Possible Types of Map Overlay: A Geometric View

Points Lines Areas Fields

Points Point/point

Lines Line/point Line/line

Areas Area/line Area/line Area/area

Fields Field/point Field/line Field/area Field/field
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Each of these types of operation presents different algorithmic and ana-
lytical problems, some with their own distinct names, but the most common
type of analysis is a map overlay where we take one map of planar enforced
area objects and determine its intersection with another. For obvious rea-
sons, this ‘‘areas-over-areas’’ process is called polygon overlay and, quite
apart from its use in geographic information analysis, it finds application in
numerous GIS functions. For example, polygon overlay is necessary in areal

interpolation, where we have the populations for one set of areas and want to
use these to estimate the populations of a different set of overlapping areas.
Apportioning population from the first set of polygons to polygons in the
second set according to the areas of overlap between the two can solve this
problem. This is a simple, albeit rough, way to estimate the population of
areas from statistics for another set of areas. In ecological gap analysis, use is
often made of similar techniques to estimate the areas where specified plant,
animal, or bird species are likely to be found. Each input map describes the
environmental conditions favored by the species, and these maps are over-
laid in someway to identify those areas seen to be favorable on all the criteria
(see Franklin, 1995). The basic low-level GIS operations called windowing

and buffering both also involve overlay of polygons.

Thought Exercise

Either by finding case studies in the literature or by thinking it through from

first principles, how many of these 10 overlays can you illustrate? You should

be able to think of useful example of every one.

Two Overlay Examples

It is useful to examine briefly two simple case studies demonstrating polygon

overlay. Keep these in mind as we progress through this chapter.

Landslides in Gansu, China

Catastrophic mass movements are a major environmental hazard on the

loess (or wind-blown dust) plateau of China, causing loss of life and severe

damage to infrastructure and farmland. Although the causes of any specific

landslide are dynamic and transient, related to changes in water content or

(continues)
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the incidence of earthquakes, the longer-term stability of loess landforms is

largely determined by static factors related to landform slope shapes and

geology. An obvious GIS approach to this problem, taken by Wang and

Unwin (1992), is to identify landscape factors thought to be significant in the

occurrence of landslides and to create binary maps, one for each factor,

where areas coded ‘‘1’’ are thought to be susceptible to landslides due to that

factor and those coded ‘‘0’’ are thought to be safe. All the maps can then be

combined by an overlay operation to identify areas that are susceptible (or

not) based on all factors. In fact, these authors use just three input maps:

� Slope steepness, estimated from a digital elevation matrix. Slopes

greater than 30� were thought to be at most risk.
� Slope aspect, derived from the same source, with slopes with a

northern aspect at more risk.
� Rock type, derived from a geologic map, with slopes developed on the

unstable loess materials at most risk.

Overlay of these three map layers was used to produce a map of the areas

thought to be at most risk. The analysis was conducted in a raster GIS

environment. Numerous subsequent studies have used GISs to address the

same problem and are summarized in Lee and Choi (2004).

Nuclear Waste Dumps

Openshaw et al. (1989) present a similar example in the social sciences. They

use an overlay strategy to identify areas in the United Kingdom suitable for

disposal of hazardous nuclear waste. The criteria they used came from the

industry itself:

� Areas with few people (fewer than 490/km2)
� Areas with good railroad access (less than 3 km from a line)
� Areas not already designated as conservation areas

Their analysis was conducted in a vector GIS environment, but the result

again was amap showingwhere, according to the three input criteria, nuclear

waste might be dumped. The useful surprise was that, even in a country as

densely populated as the United Kingdom, the number of sites that meet

these criteria is much higher than had been assumed. This does not, of course,

mean that all the identified areas would be even remotely reasonable as

dumping grounds, but the analysis narrows down the solution space. Indeed,

thedemonstration that a very large numberof siteswere identifiedmight even

be taken as evidence that the criteria used were themselves at fault!

(box continued)
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11.2. BOOLEAN MAP OVERLAY AND SIEVE MAPPING

Although the areas of application are very different, the two studies sketched
out above use essentially the same analytical strategy involving:

� Map overlay of sets of areas on top of each other.
� Successive disqualification of areas on the basis of each criterion until
those remaining are found to be susceptible on all criteria. Because of
the yes-no nature of this approach, it is called Boolean after the
mathematician who developed binary (true/false) logic.

Together these two parts of the analysis produce a Boolean overlay.
Figure 11.1 illustrates the process. Here we have two categorical maps to

be overlayed.MapA has the rock types ‘‘limestone’’ and ‘‘granite,’’ andMapB
has the land uses ‘‘arable’’ and ‘‘woodland.’’ Overlay produces Map A & B,
with four possible unique conditions given by the combinations granite/
arable, granite/woodland, limestone/woodland, and limestone/arable. If the
intention is to find those areas with the unique condition limestone/wood-
land, then this overlay would be a Boolean sieve mapping selection, and the
result would be the heavily outlined area shown.
In Boolean overlay in a raster environment it is worth noting that,

although the operation is based on logic, it can also be performed using
simple multiplication. Table 11.2 shows how this works by examining every
possible combination of the unique conditions for the overlay of Figure 11.1
and coding ‘‘limestone’’ ¼ 1, ‘‘granite’’ ¼ 0, on Map A and ‘‘woodland’’ ¼ 1,

LimestoneLimestone

GraniteGranite

ArableArable

WoodlandWoodland

Limestone /
Arable

Limestone /
Arable

Limestone /
Woodland

Limestone /
Woodland

Granite /
Arable
Granite /
Arable

Granite /
Woodland
Granite /

Woodland

Map A

Map B

Map A&B

Figure 11.1 Schematic illustration of map overlay.
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‘‘arable’’¼ 0 onMapB. It can be seen that only the unique condition coded ‘‘1’’
on both input maps ends up coded ‘‘1’’ on the output map. In short, the yes/no
selection is the result of a multiplication of all the 0/1 values on the input
criterion maps. We will return to this observation in Section 11.3.

Gett ing the Data

Decisions on what to include in an overlay analysis are almost always made
with one eye on what data are available. In an ideal world, we would have
digital data to the same standards of accuracy and precision for each desired
input layer, and these datawould all be georeferenced to the same coordinate
system. In practice, this is rare, and inputs are often scanned or digitized
maps, originally compiled to widely varying standards of accuracy, with
different locational precision and georeferenced to different coordinate
systems. It cannot be emphasized too strongly that if insufficient care is
taken, using such data can be a recipe for disaster. If the outputs from
overlay analysis are to be of reasonable quality, it is essential that the input
information is consistent in its accuracy and precision. There are at least four
traps awaiting the unwary:

1. Failure to realize that with digital map data, accuracy and precision
are themselves often a function of the map scale. This amounts to a
requirement that data sources are all at more or less the same map
scale or from recording devices that have similar accuracy and
precision. Further, the input scales should be consistent with the
scale required for the result. Overlaying, say, data from a 1:10,000
map of woodland areas on a geologic map at 1:250,000 does not
result in locational precision in the output map equivalent to that of
the 1:10,000 data, yet one often sees results of complex overlays that
seem to forget this simple truth.

2. In map overlay, the digitized data that purport to relate to the same
object, such as the boundary of an area, may come from different

Table 11.2 Boolean Overlay as Multiplication*

Unique Condition Map A Map B Map A&B

Granite/arable 0 0 0

Granite/woodland 0 1 0

Limestone/arable 1 0 0

Limestone/woodland 1 1 1

*This is the logical AND operation on the layers in Figure 11.1, where
limstone/woodland is the suitable combination of interest.
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sources. This means that the data contain more than one digital
approximation to the same objects, and these may be different. The
well-known result in map overlay in vector-based systems is the
creation of ‘‘sliver’’ polygons where the lines do not coincide. Similar
situations may also occur with differently resampled raster data.

3. The false belief that everything on amap is accurately located.Maps
are drawn with a view to the communication of information and
were never intended to be a source of data for a GIS. The data they
display have been generalized, often resulting in displacement of
the outlines of objects relative to their true positions to avoid
incomprehensible clutter. Alternatively many geographic entities
are represented by symbols, rather than by their true outline on the
ground. Perhaps the most obvious example of both practices is that
roads are shown on small-scale maps with lines whose widths are
much greater than their real widths on the ground.

4. Finally, even more care is required when the input maps are
themselves the results of data manipulations, such as an interpo-
lated field variable like a digital elevation matrix or, worse, some
derivative from it, such as a slope map.

All of this is not to say thatmixing data sources in these ways is completely
nonsensical; indeed, the spatial integration of diverse data sets is a major
motivation for the use of GIS. However, it is important to point out that the
results of overlay analysis must be interpreted with these issues inmind and
with a suitably questioning attitude.

Gett ing Data into the Same Coordinate System

A look at Figure 11.1 should convince you that map overlay is possible only if
all the input data have coordinates that are registered accurately to the same
locational coordinate system. We might, for example, have some data from a
GPS georeferenced to the WGS84 system that we wish to combine with data
georeferenced to a State Plane Coordinate System, to latitude/longitude, or
to another projection-based coordinate system such as the Universal Trans-
verseMercator. For an overlay tomake sense, the inputs must all refer to the
same parts of the Earth’s surface, making it necessary to coregister them all
to the same system.
Figure 11.2 shows what is involved. Here we have the same object, a river,

on twomaps, A and B, and the objective is to bring the data onMapB into the
system used onMap A. To do this, a grid-on-grid transformation is necessary
to do three things:
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� Move the origin of the coordinates used in Map B to the same point in
Map A. This is called a translation of the origin.

� Change the scale on both x- and y-axes. The locational coordinates in B
might be in units of 0.1 mm away from the origin, whereas in A they
might be on some nonmetric scale. This is a scaling of the axes.

� Because, as illustrated, Map B’s coordinates may well be in a system
where x and y are not parallel to the same axes in Map A, coordinates
may need to be rotated to correct for this. This is a rotation of the axes.

The coregistration problem arises frequently when transferring data from
a semiautomatic digitizer or scanner to a GIS system, and transforming one
set of coordinates into another is often required when integrating data from
several sources into a GIS. For this reason, this operation is part of the
standard GIS toolkit. Themethod often uses ‘‘tick marks’’ on each of themap
frames to guide the system in creating the correct coregistration using an
affine transformation that will translate the map origin and scale and rotate
the axes to bring the two map coordinate systems into alignment. The
mathematical details of this operation can be found in, among others sources,
Maling (1973) andHarvey (2008). The necessary information can be acquired
in one of at least three ways:

1. From knowledge of the source and target systems to develop the
appropriate transformation matrix, an example being a transfer
from known latitude/longitude coordinates to a projection-based

Source coordinatesystem on Map B

Target coordinate
system ( , ) onx y
Map A

Same object on Map A & B

Figure 11.2 The coregistration problem in map overlay. For an overlay

analysis to be accurate, it is essential that all the overlaid maps be registered

to the same coordinate system.
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system such as the Universal Transverse Mercator. The affine
transformation between known coordinate systems is mathemati-
cally defined for many common map projections.

2. By recording at least three known points on one of the maps—for
example, the southwest, southeast, and northeast corners—and
their equivalent values in the target coordinates and using these
to define the required transformation. These points are often
referred to as tick points.

3. An approach commonly used in operational GIS uses ordinary
multiple least squares regression relating the (x0, y0) coordinates
in a target coordinate system to those in the original system. Given
the availability of GPS, the original coordinates (x, y), of a set of so-
called ground control points (GCPs) might well be observed directly
in the field or read off from amap at as high a precision and accuracy
as feasible at that map scale. The same locations are then recorded
in the target system, and multiple regression is used to estimate the
best-fitting transformation constants. An affine transformation can
be reduced to two equations in which the two sets of coordinates are
related as follows:

x0 ¼ tx þ r11xþ r12y
y0 ¼ ty þ r21xþ r22y

ð11:1Þ

Here the intercept values tx and ty are associated with the translation
between the two coordinate systems, while any rotation and scaling
components are described by the set of values r11, r12, r21, and r22.
These equations are identical to the equations of multiple linear
regression and express the transformed coordinates x0 and y0 as linear
functions of the original coordinates x and y. Thus, we can rewrite
them using the standard notation as

x0 ¼ a0 þ a1xþ a2y
y0 ¼ b0 þ b1xþ b2y

ð11:2Þ

You should be able to see that the vectors of regression constants a and
b are estimates of the required parameters. This approach is used in
almost every GIS and allows use of more points than the simple tick
point approach. Mather (1995), Unwin andMather (1998), andMorad
et al., (1996) demonstrate that the quality of the estimated transfor-
mation depends on the number of ground control points used (themore
the better) and their spatial distribution (even coverage is preferred).
The locational accuracy and precision of the ground control points are
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also important, so well-defined locations, such as large-angle road
intersections or the corners of fields, should be favored, and coordi-
nates should be recorded as precisely as possible.

An advantage of the regression approach is that it can be extended to cover
transformations thatwarp one set of coordinates into another by a nonlinear
transformation, as may be required when source maps are based on un-
known projections. Nonlinear transformations may be estimated by includ-
ing additional higher-order terms in x2, y2, xy, and so on, in the regression,
exactly as in trend surface analysis (Section 10.2). For example:

x0 ¼ a0 þ a1xþ a2yþ a3x2 þ a4y
2 þ a5xy

y0 ¼ b0 þ b1xþ b2yþ b3x
2 þ b4y

2 þ b5xy
ð11:3Þ

Should this give an inadequate transformation, even higher-order terms
can be added, and this procedure is implemented in most proprietary GIS
software. Note here that increasingly better statistical fits to the data, as
might be reported by theGIS, do not necessarily imply better coregistrations.

Over laying the Maps

Once we have correctly coregistered the input maps, it is possible to overlay
them. In a raster GIS environment, this is straight forward. All that need be
done is to work over the entire map, pixel by pixel, testing whether or not the
various criteria have been met. For the moment, note that when sieve
mapping in a raster environment, simple arithmetic multiplication of the
0/1 unsuitable/suitable values suffices to produce values in the output map.

The same operation can be performed in a vector environment, although it
is a trickier business. In a vector environment, the software must:

� Create a new map of polygon objects by finding all the intersection
areas of the original sets of polygons

� Create attributes for each new polygon by concatenating attributes of
polygons in the original maps whose intersection formed it

� Reestablish the topological relationships between the new polygons
and ensure that the map remains planar enforced

� Identify which new polygons have the desired set of attributes

You will appreciate that the geometry involved in potentially thousands of
polygon intersection operations is far from trivial, so a fast, efficient, and
accurate polygon overlay algorithm is a sine qua non for any vector GIS.
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Logical Problems in Boolean Over lay

Despite its popularity in GIS analysis, sieve mapping using Boolean overlay
presents a number of difficulties and can almost always be improved upon,
often using exactly the same data. Problems arise mainly from simplistic
assumptions about the data and the implied relationships between the
attributes. The consequences of these assumptions for error in the final
maps deserve more detailed attention. For example:

1. It is assumed that the relationships really are Boolean: This as-
sumption is usually not only scientifically absurd, it frequently also
involves throwing away a great deal of metric information. In the
two simple case studies with which we began this chapter, there is
nothing particularly important about using a 30� value to represent
slopes above which landslides are deemed to be possible or a
population density of less than 490/km2 to represent suitable areas
for nuclear waste disposal. It is ridiculous to score slopes of 29� as
‘‘without risk’’ and those at 31� as ‘‘at risk.’’ The two-valued (yes/no)
nature of the logic in sieve mapping produces abrupt spatial dis-
continuities that do not adequately reflect the continuous nature of
at least some of the controlling factors.

2. It is assumed that any interval- or ratio-scaled attributes are known
without significant measurement error: In the simple limestone/
granite, woodland/arable example this issue doesn’t arise, but if
the observations had been on an interval- or ratio-scaled variable,

It Makes Me Cross

Since it involves computing whether or not every line segment in the data

intersects with every other possible segment, even the first step in a vector

overlay is tricky. In one of the most famous papers on GIS ever written, David

Douglas (1974) describes how he offered $100 to some hot-shot student

programmers to produce a routine that would do this with typical GIS data.

Nobody won the prize because, although the basic mathematics of an

algorithm is easy, there are numerous special cases for which any software

has to cater. Douglas’s paper was titled ‘‘It MakesMe Cross.’’ This illustrates a

well-known computer programmer’s dictum that 99% of the code is written

to handle the exceptions. Computational geometry (see de Berg et al., 1997)

produces many such exceptional cases.
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then error of some magnitude is certain to be present. There is a
particular problem if the data used are derived in some way. An
example would be slope angles derived by estimation from a digital
elevationmatrix that, in turn, was estimated fromeither spot heights
or contour data. Both the interpolation process used and the estima-
tion of slope introduce error, and whether or not this error is signifi-
cant when included an overlay operation is usually an open question.

3. It is assumed that any categorical attribute data are known exactly:
Examples might be in an overlay using categories such as rock or
soil type that are products of either a classification (for example,
satellite-derived land use) or an interpretative mapping (as in a
geologic or soil survey). In both of these cases, it is likely that the
category to which each land parcel is assigned is a generalization
and that there are also inclusions of land with other properties.

4. It is assumed that the boundaries of the discrete objects represented
in the data are certain and are recorded without any error: In our
example, we assume that the boundaries of the attributes shown are
exact. Yet, either as a result of real uncertainties in locating gradual
transitions in interpreted mapping or due to errors introduced in
digitizing a caricature of these boundaries from paper maps, this is
almost never the case. The boundaries of the mapped units may
themselves be highly uncertain. The archetypal example of a map
made up of ‘‘fuzzy’’ objects with indeterminate boundaries is a soils
map (Burrough, 1993; Burrough and Frank, 1996). If you are using
a raster data structure, then it is important to note that this
automatically introduces similar boundary errors into the data.

Accounts of these problems of error and generalization in GIS, and some of
the strategies that can be used to minimize them or at least understand their
impact on derived results, are found in Veregin (1989), Heuvelink and
Burrough (1993), and Unwin (1995, 1996).

11.3. A GENERAL MODEL FOR ALTERNATIVES
TO BOOLEAN OVERLAY

Fortunately, there are many methods other than simple Boolean overlay
that we can use in map overlay. Many authors have recognized two basic
approaches, characterized as either knowledge or data driven. In the
knowledge-driven approach, we use the ideas and experience of experts
in the field to determine which criteria to use. In the data-driven approach,
we use any available data to suggest which criteria should be used. In
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practice, most map overlay studies use some combination of the two, and
the distinction is not always clear-cut. First, we will examine the knowl-
edge-driven approach.
In this section, we develop a more general model for the map overlay

process based on the idea of a favorability function. Although the formal
detail is our own, the idea itself is based on work by the geologist Graeme
Bonham-Carter (1995). In this interpretation, a Boolean overlay evaluates
the favorability/suitability of parcels of land for some activity or process,
such as landslides or nuclear waste dumping.Moreover, as Table 11.2 shows,
what in mapping terms is a Boolean overlay operation can also be regarded
as the evaluation of a simple mathematical function at every location on the
input map. This function can be written

F sð Þ ¼
Ym

M¼1

XM sð Þ ð11:4Þ

where F(s) is the favorability evaluated as a 0/1 binary at each location s in
the study area, and XM(s) is the value at s in input map M coded ‘‘1’’ to
indicate if the cell is ‘‘favorable’’ and 0 if it is not according to the factor
recorded onmapM. The Greek capital letter pi (P) indicates that these input
values should be multiplied together—P indicating that the product is
required in the same way that the capital sigma (S) indicates the sum of
a series of terms. It may be easiest to think of the set of locations s as pixels in
a grid, but this is not necessary, although, as we have seen, the practical
implementation is more involved for areal unit maps. In its use of the single
symbols F and X to indicate whole maps, this is also an example of Tomlin’s
map algebra in action (Tomlin, 1990; see also Section 9.5). Notice too that in
its selection of the input maps and any critical thresholds, this is also a
wholly knowledge-based approach to map overlay.
This is a very limited approach to the problem, and we can improve it in

several ways:

� By evaluating the favorability, F, on a more graduated scale of
measurement such as an ordinal (low/medium/high risk) or even a
ratio scale. An appropriate continuous scale might be a spatial prob-
ability scale, on which each pixel is given a value in the range 0
(absolutely unfavorable) to 1 (totally favorable).

� By coding each of the criteria used (the map’s X_M values) on some
ordinal or ratio scale.

� By weighting the criteria used to reflect knowledge or data about their
relative importance. In a Boolean overlay all the inputs have the same
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weight, but we often have some ideas about the relative importance of
the criteria. In our favorability function, this is equivalent to inserting
into the equation a weight, wm, for each criterion.

� By using some mathematical function other than multiplication—for
example, by adding the scores.

All of these extensions to basic overlay have been tried, and sometimes
they have been developed into very sophisticated tools for making locational
decisions based on the favorability of sites under various assumed criteria
and weights. Some of the approaches have been used frequently enough to
have acquired their own names, but we can generalize this discussion by
arguing that Boolean overlay is a special case of a general favorability

function

F ¼ f w1X1;w1X1 . . . ;wmXmð Þ ð11:5Þ

In this equation,F is the output favorability, f represents ‘‘some function of,’’
and each of the inputmaps,X1 toXm, is weighted by an appropriateweight,w1

to wm. Note that we have dropped the (s) notation here, but it is understood
that evaluation of the function occurs at each location in the output map using
values at the same location in the input maps. In the following sections, we
discuss a number of alternatives to simple Boolean overlay that may be
considered specific examples of this generalized function.

11.4. INDEXED OVERLAY AND WEIGHTED
LINEAR COMBINATION

The simplest alternative is to reduce eachmap layer thought to be important
to a singlemetric and then add up the scores to produce an overall index. This
approach has been called an indexed overlay. In this approach, we add parcel
values together to give a favorability ‘‘score’’ for each:

F ¼
X
m

Xm ð11:6Þ

Although we have changed the functional form from multiplication to
addition, each input Xm remains as a binary map. The overall effect of this
change is to transformF into an ordinally scaled variable, withmþ 1 degrees
of favorability from 0 (no risk/unfavorable) to m (high risk/very favorable).

In its basic form, this is another example of a knowledge-based approach.
For example, in another study of the favorability of slopes for landslides,
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Gupta and Joshi (1990) used a variant of this method in the Ramganga
catchment of the Lower Himalaya but assigned ordinal scales to each input
map X. Based on the knowledge gained from an analysis of data on past
landslides, the individual criteria used were assigned to classes on an ordinal
scale of risk (low¼ 0, medium¼ 1, high¼ 2), and these classes were summed
to give an overall risk measure. Three input criterion maps were used
(lithology, land use, and distance from major tectonic features), so their final
favorability F was an ordinal scale with a range from 0 to 6.
An advantage of this approach is that attaching an additional weight, wm,

to each of the input criteria can easily modify it, so that the favorability
becomes

F ¼
X

wmXm ð11:7Þ

It is conventional to normalize such a summation by dividing by the sum of
the individual weights to give a final favorability

F ¼

X
m

wmXm

X
m

wm

ð11:8Þ

This is the classic approach known in the literature as weighted linear

combination (Malczewski, 2000). Numerous methods have been used to
determine the weights. In ecological gap analysis, they are often computed
in a data-driven approach by comparing the observed incidence of the species
on the particular habitat criterion to the numbers expected if that species
had no special habitat preference. In multicriteria evaluation (MCE), they
are often derived from expert knowledge and opinions but by a formal
procedure.
Return to the two examples of map overlay in Section 11.1. The authors of

these works overlaid theirmaps essentially using sieving inwhich each layer
acts as a Boolean yes/no constraint on the result. Deterministic overlay of
this sort is of limited use, and the authors of both works make this point
strongly. Especially in a controversial case such as nuclear waste disposal, it
is necessary to be able to handle multiple conflicting criteria and probably
also multiple conflicting objectives.
In such cases, not all stakeholders in the process would agree on the

objectives of the exercise, the necessary input layers, or the thresholds to be
applied to establish any constraints. Similarly, if some form of weights is to
be used, there would be disagreement on any or all of the weighting applied
to each factor in comparison to the others, the scores assigned to the
individual pixels or land parcels, and, in a mathematically literate example,
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perhaps also the nature of the arithmetic used in the combination. In
studies where GIS is used to inform a decision, these arguments could be
critical and this kind of operation is central to the use of spatial decision
support systems (SDSS; Jankowski and Nyerges, 2001). Furthermore, if the
objective is to allow public participation in the decision-making process, it is
clear thatmapping the outputs under different scenarios created by different
assumptions is a major advance (Elwood, 2006; Sieber, 2006). The classic
early paper on MCE is by Carver (1991), with more recent summaries by
Eastman (1999) and Malczewski (1999). The next box outlines a simple
example.

Using GIS to Suggest Sites for Wind Farms

Given the push to develop sources of renewable energy, in a number of

recent studies GIS overlay was used to suggest potential sites for wind farms.

Typically, such studies use overlay as their basic approach and use con-

straints/factors developed from some external source, such as published

planning guidance.

An early study by Sparkes and Kidner (1996) used 19 binary constraints on

wind farm in Wales, sieving out all those areas that were:

� Within 3 km of an airport
� Within 1 km of a National Park
� Within 1 km of a National Trust property
� Within 3 km of a military danger zone
� Within 1 km of a scenic area
� Within 1 km of a Forest Park
� Within 2 km of a built-up area
� Within 5 km of a city centroid
� Within 2.5 km of an urban centroid
� Within 1.5 km of a town centroid
� Within 1 km of a small town or village centroid
� Within 750 m of a small village, hamlet, or isolated settlement
� Within 250 m of a lake, marsh, or reservoir
� Within 300 m of a motorway, A road, or B road
� Within 250 m of a railway
� Within 200 m of a river or canal
� Within 250 m of a radio or TV mast
� Within 1 km of a picturesque or scenic feature
� Below 100 m in elevation
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It should be clear that the ability to devise weights both for map layers
and for criteria within a specific layer that in some sense capture the
general opinion would be extremely useful. One method that has been
implemented in GIS (Eastman et al., 1995) makes use of results from
Saaty’s analytical hierarchy process (Saaty, 1977), in which n � nmatrices
of pairwise comparisons between n factors are summarized as a best-fit
vector of weights by their first (the principal) eigenvector. There are also
other approaches.

11.5. WEIGHTS OF EVIDENCE

Sometimes it is unnecessary to use external knowledge to inform the choice
of weights. The weights of evidence method uses a knowledge-based ap-
proach to decide on themap layers to be included but then uses a data-driven
approach to determine appropriate weights. Its basis is to use the available
data to compute a weight of evidence and then use this to estimate the
favorability, F, as a probability in the range 0 to 1. The key concept is a
theorem due to the Reverend Thomas Bayes, known as Bayes’ Theorem.

Anti–wind farm protest groups would, of course, dispute almost all of

these constraints. How reasonable do they seem to you?

In a more recent but essentially similar study of the Baltic Sea region of

Denmark, Hansen (2005) used four absolute binary constraints related to

protected land and faunal habitats together with 23 weighted factors such

as proximity to the coast, lakes, power lines, and so on. The data layers

were selected after interviews with planning agencies and were integrated

together using an approach based on fuzzy set theory (see Section 1.3), in

which the study area was classified by the summation of the weighted

factors. The resulting map shows that for northern Jutland at least,

diminishing returns have set in and there is very little space for more

turbines.

If you think you could devise a set of criteria and weights, Hydro Tasmania

provides a simple interactive tool, ‘‘Where would you build a wind farm?’’ at

http//www.hydro.com.au/education/discovery/GIS/windfarm.htm.

The point to understand is that there is no ‘‘correct’’ answer to this

question, only a solution that is correct given the constraints, factors, and

weights you decide to use. All that the geographic information processing

system can do is make it easier to see the consequences of any particular set of

inputs and thus perhaps reduce the size of the solution space.
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Suppose we have two events that are independent of each other—the classic
example is flipping two unbiased coins. What is the probability of each
possible pair of outcomes? These probabilities are called joint probabilities,
denoted

P A&Bð Þ ð11:9Þ

If the events are truly independent, it is obvious that

P A&Bð Þ ¼ P Að Þ � P Bð Þ ð11:10Þ

So, for two heads as our events, we have

P H&Hð Þ ¼ P(H) � P(H) ¼ 0:5� 0:5 ¼ 0:25 ð11:11Þ

To understand the weights of evidence approach, we must introduce a
different probability linking two events. This is the conditional probability
of an event A given that the other event, B, is known to have occurred. It
is denoted

P A : Bð Þ ð11:12Þ

and referred to as the probability of A given B. This will usually not be the
same as the joint probability of A and B because the fact that B has already
occurred provides additional evidence either to increase or reduce the
chance of A occurring. In statistics, the theorem is used to guide how
additional evidence should lead us to adjust our expectations. For example,
consider the question of the probability of rain tomorrow (A), given that we
know that it has rained today (B). Clearly, the fact that it is raining today is
evidence we can use in our assessment of the hypothesis that it will rain
tomorrow, and in most climates, meteorological persistence means that if it
rains today, it is more rather than less likely to rain tomorrow.

Bayes’ Theorem allows us to find P(A:B). The basic building block that we
need to prove the theorem is the obvious proposition that

P A&Bð Þ ¼ P A : Bð ÞP Bð Þ ð11:13Þ

This may be obvious, but it is by no means self-evident: Study it carefully.
In words, this equation states that the joint probability of two events is,
indeedmust be, the conditional probability of the first, given that the second
has already occurred, P(A:B), multiplied by the simple probability of the
second event P(B). Note that the multiplication on the right-hand side of this
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equation is justified only if we are prepared to assume that A:B and B are
independent of each other. Exactly the same reasoning allows us to form the
symmetrical expression

P B&Að Þ ¼ P B : Að ÞP Að Þ ð11:14Þ

Now, it must be the case that

P A&Bð Þ ¼ P B&Að Þ ð11:15Þ

so that

P A : Bð ÞP Bð Þ ¼ P B : Að ÞP Að Þ ð11:16Þ

which leads to the theorem in the form in which it is usually stated:

P A : Bð Þ ¼ P(A)
P B : Að Þ
P Bð Þ ð11:17Þ

The term P(A) is the probability of event A occurring, and the ratio P(B:A)/
P(B) is termed the weight of evidence. If this ratio is more than 1, it shows
that the occurrence ofB increases the probability ofA; if the ratio is less than,
1 it reduces it.
In spatial work, it is usual to estimate the required probabilities using the

proportions of the areas involved. Thus, for P(B) we take the area over which
the criterionB occurs as a proportion of the total area, and for P(B:A) we take
the proportion of the area of A that is also B. The required conditional
probability P(A:B) can then be calculated. For example, consider a 10,000-
km2 region in which 100 landslide events have been recorded over the
previous 10 years. The probability of a landslide event per square kilometer
is then 1 in 100, or 0.01—this is the baseline probability P(landslide). Now,
say that of those 100 events, 75 occurred in regions whose slope was greater
than 30�, but that only 1000 km2 of the region has such slopes. The
probability of a landslide, given that the slope is greater than 30�, is then
0.075. This is consistent with Equation (11.17), because we have

P landslide : slope > 30�ð Þ ¼ P landslideð ÞP slope > 30� : landslideð Þ
P slope > 30�ð Þ

0:075 ¼ 0:01� 0:75

0:1
ð11:18Þ
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It is easy to see that the weight of evidence associated with land slopes over
30� is 7.5, considerably greater than 1. If we assume independence between
the slope factor and other factors for which we also have maps and can do
similar calculations, then overlay can be based on the weights of evidence
values to produce maps of the posterior probability of occurrence of land-
slides given the presence or absence of those factors at each location in the
study region. This approach to map overlay has been much used in explora-
tion geology and is illustrated and described in more detail in Bonham-
Carter (1991) and Aspinall (1992). Lee and Choi (2004) provide an extended
and clear example of the application of this approach to mapping landslide
susceptibility in Korea.

11.6. MODEL-DRIVEN OVERLAY USING REGRESSION

A third alternative to simple Boolean overlay is to use regression techniques
to calibrate a model linking the favorability to each of the criteria thought to
be involved. This also combines data-driven and knowledge-based
approaches, but essentially it relates back to the weighted linear combina-
tion version of the favorability function

F ¼
X
m

wmXm ð11:19Þ

and implements it as a standard multiple regression by adding an intercept
constant, w0, and an error term e:

F ¼ w0 þ
X
m

wmXm þ e ð11:20Þ

This model can be calibrated using real data to estimate values of w0

through wm that best fit the observed data according to the least squares
criterion of goodness of fit. In the map overlay context, this requires that we
have a sample of outcomes where we can associate some measure of favor-
ability with combinations of values of the criterion variables, X1 through Xm.
In our landslide example, Jibson and Keefer (1989) provide an illustration of
this approach in the context of predicting where landslidesmight occur. They
use a sample of landslide incidents together with a series of factors related to
each slide. Ordinary least squares regression enables them to say how
important each factor is, and from this they derive weights for use in the
production of a map of landslide favorability.

However, the ordinary least squares regression approach cannot easily be
used in most map overlay exercises for three reasons:
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1. The favorability, F, is rarely measured as a continuous, ratio-scaled
variable, as the model demands. Instead, it is usually the binary
(0/1) presence or absence of the phenomenon under study.

2. In many map overlay studies, the environmental factors involved
are best considered as categorical assignments, such as the geology
or soil type, rather than as continuous ratio-scaled numbers.

3. Any regression analysis makes assumptions about the error term
that are very unlikely to be upheld in any practical application. In
particular, our old friend spatial autocorrelation ensures that the
regression residuals are unlikely to be independent.

Technically, some of these difficulties can be circumvented using categori-

cal data analysis, where the dependent variable is restated as the ‘‘odds’’
(equivalent to the probability) of an occurrence and this is regressed on a set
of probabilities of membership of each of the criteria (see Wrigley, 1985, for
an accessible introduction to the method). It follows from the multiplication
law of probability that these terms must be multiplied together, and this is
achieved by formulating themodel in terms of the logarithms of the odds. The
result is a log-linearmodel. Estimation of such models is not simple; to date,
two methods have been adopted.
Wang and Unwin (1992) used a categorical model to estimate the proba-

bility of a landslide for each of the unique conditions given by their overlay,
calibrating a model of the form

P Landslideð Þ ¼ f slope aspect; rock type; slope angleð Þ ð11:21Þ

where all the criterion variables on the right-hand side of the equation
consisted of coded categories. Using logistic regression, the input layers may
consist of both categorical and numeric data. Modeling variation across a
region of the likelihood of deforestation, given the proximity of roads and
other human land-use activity, is a more recent application of this method
(see Apan and Peterson, 1998; Mertens and Lambin, 2000; Serneels and
Lambin, 2001).
Finally, it is worth noting that many researchers using some of the

techniques we have mentioned, especially model-driven approaches, might
not characterize their work as overlay analysis at all. They are more likely to
think of such work as spatial regression modeling of some sort, with sample
data sets consisting of pixels across the study region. Nevertheless, even-
tually, a new map is produced from a set of input maps, so within the broad
framework considered in this chapter, overlay analysis seems a reasonable
description of what they are doing. This perspective draws attention to the
issues of spatial accuracy we have discussed, which are easily overlooked in
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such work and which can dramatically affect the reliability of results. We
would also expect you to be wondering by now where the autocorrelation
problem has disappeared to in such work: surely the input data are not
independent random samples? The answer is that autocorrelation has
invariably not gone away, but it is routinely ignored.

More complex techniques that address the problem are available—spatial
autoregression (Anselin, 1988) and geographically weighted regression

(Fotheringham et al., 2000, 2002; see Section 8.5).

11.7. CONCLUSIONS

In this chapter, we have moved some way from the relatively well-defined
analytical strategies used when analysis is confined to a single map or its
digital equivalent and when the objective is to show that visually apparent
map patterns really are worthy of further attention. Typically in overlay
analysis, the objectives are less clear and the preferred analytical strategy is
less clearly defined. Very often, too, the quality of the data used may be
suspect. It follows that, when examining the results of an overlay analysis, it
is sensible to pay close attention to the compatibility of the data used, their
coregistration to the same coordinate system, and the way in which the
favorability function in the output map was computed.

The issue here is not some absolute standard of accuracy and precision,
but whether or not the ends justify the means. The ends in question are
very often policy related: what should be done to abate the identified risks
or to prepare for a change in areas where it is estimated to be likely?
Indeed, estimating the probability of change—whatever its nature—across

space, as we do with GIS, means that the output from such analysis is often
important in determining the likely scale and scope of a problem. This
means that overlay analysis can have a very significant impact on spatial
decision making.

It is tempting to conclude that a sufficiently smart analyst could produce
whatever output map suits the circumstances (and the requirements of
whoever is paying for the analysis). The uncertainties we have mentioned
and the range of options available to the analyst in approaching overlay
certainly provide the flexibility required to arrive at any desired conclusion.
Technically, the only way to address the uncertainty that this raises is to
perform sensitivity analyses where the variability in the possible output
maps is examined. Very often, it turns out that even the results obtained
with poor data and basic Boolean methods provide the guidance required for
appropriate responses, assuming, of course, that the attendant uncertainties
are kept in mind at all times.
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CHAPTER REVIEW

� Map overlay is a popular analytical strategy in GIS. Although we can
think of at least 10 basic overlay forms, area on area overlay is by far
the most common.

� Any overlay analysis involves four steps, all of which can be problem-
atic: determining the inputs, getting compatible data, coregistering
them on the same coordinate system, and performing the overlay
itself.

� Coregistration is achieved by means of a translation of the origin,
followed by rotation and scaling of the axes in an affine transforma-
tion. Typically in a GIS, this process involves regression using tick
points on both sources.

� Usually, polygon overlay is used in a Boolean yes/no analysis that
emulates a well-known technique from landscape planning called
sieve mapping.

� Boolean overlay makes many frequently unjustified assumptions
about the data and the relationship being modeled.

� Overlay can be classified as data or knowledge driven.
� Boolean overlay can often be replaced by alternatives that are more
satisfactory, such as indexed overlays, weighted linear combinations,
weights of evidence, and model-based methods using regression.

� In spatial decision support systems, there are formal ways in which
weights can be established.

� These can all be seen as ways of calibrating an underlying favorability
function.

� Finally, despite all the reservations outlined in the chapter, overlay
analysis works in the sense that its results are often good enough,
provided that the uncertainties we have discussed are kept in mind.
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Chapter 12

New Approaches to Spatial Analysis

C H A P T E R O B J E C T I V E S

This final chapter deals with methods for the analysis of geographic
information that rely heavily on the existence of computer power, a process
that has been called geocomputation. It differs from earlier chapters in two
respects. First, becausewe cover a lot of new ground in overview, youwill find
its style different, withmany pointers to further reading. If youwant to be up-
to-date with the methods we discuss, we advise you to follow up these
references to the research literature. Second, most of these methods have
been developed relatively recently. At the time of writing, we do not know if
any of them will become part of the mainstream geographic information
analyst’s toolkit. It follows that our treatment is provisional and, to an extent,
partial. However, because these methods originate in changes in the wider
scientific enterprise, rather than in the latest technological fads, we are
confident in presenting them as representative of new approaches to
geographic information analysis.

Bearing these comments in mind, our aims in this chapter are to:

� Discuss recent changes in the GIS environment, both technical and
theoretical

� Describe the developing field of geocomputation
� Describe recent developments in spatial modeling and the linking of
such models to existing GIS

After reading this chapter, you should be able to:

� Describe the impact on the GIS environment of increases in both
quantities of data and computer processing power
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� Briefly outline the implications of complexity for the application of
statistical ideas in geography

� Describe emerging geographic analysis techniques in geocomputation

derived from artificial intelligence, expert systems, artificial neural
networks, genetic algorithms, and software agents

� Describe cellular automaton and agent-based models and how they
may be applied to geographic problems, and outline possible ways of
coupling spatial models to GIS

� Describe the implications for spatial geographic information analysis
of developments in networked computing with reference to computa-
tional complexity

� Discuss how online virtual earth applications and user-generated map

content may affect geographic information analysis

12.1. THE CHANGING TECHNOLOGICAL
ENVIRONMENT

Imagine a world where computers are rare, expensive, enormous, and
accessible only to a small number of experts. This was the world in which
many of the techniques we have introduced in this book were first developed.
If you have consulted the references at the end of each chapter, you will have
unearthed research from as far back as the 1950s and some published even
earlier. Even some of the more advanced techniques we have discussed are
well into ‘‘middle age.’’ Kriging is a child of the 1960s (Matheron, 1963), with
venerable parents (Youden and Mehlich, 1937, cited in Webster and Oliver,
2007), while Ripleys’ K function first saw the light of day in 1976 (Ripley
1976). By contrast, the International Journal of Geographical Information
Systems first appeared in 1987. Spatial analysis was going strong well before
GISwas a gleam in the collective geographic eye. In short, contemporaryGIS
systems are used in a world that is very different from the one in which
classical spatial analysis was invented.

Of course, both of the methods mentioned above—kriging and the K

function—would be all but impossible without computers, and most of the
methods we have discussed have seen continuous development before,
during, and since the advent of cheap, powerful computing on the desktop.
Electronic computers themselves are well over half a century old, but it is
hard to exaggerate just how rapidly the computational environment has
changed. In the late 1960s in the United States, the earliest scientific
calculator cost around $5000—about $30,000 at today’s prices. So, 30 years
ago, for the price of 10 modern (very) powerful desktop personal computers
(PCs), you could buy a machine weighing 18 kg that could do basic
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arithmetic, some trigonometry, and not much else. By contrast, today’s
laptop PCs are as capable as the room-sized mainframe computers of 30
years ago, at a fraction of the cost.

This history and anecdote are interesting, but what do they have to
do with spatial analysis? One of the arguments of this chapter is that
changes in computing have completely altered how spatial analysis is and
should be conducted. This is not to diminish the importance of all the
classical material and concepts that you have plowed through to get
this far, but it is to suggest that the development of the computing
environment in which we work affects both the questions that are asked
and can be asked and the approaches that are and can be taken to
answer them. This claim is debatable, but the debate is important and
likely to have far-reaching effects for anyone engaged in GIS and spatial
analysis.
Two interrelated changes are often asserted to have occurred. First,

computer power is more plentiful and cheaper; second, data are more plenti-
ful, as well as easier and cheaper to acquire. These changes are interrelated
to the degree that most of the more numerous data are produced with the aid
of the more plentiful computing resources; conversely, much of the great
increase in computing power is dedicated to analyzing the growing amount of

A Personal Note

The first computer David O’Sullivan used regularly was an Apple II Plus, the

state of the art in desktop computers in 1980. That machine had a 1-

megahertz 8-bit processor, 64 kilobytes of random access memory (RAM)

and no hard drive. His most recently purchased computer, 2008 vintage,

used by his children, has twin 2.6-gigahertz 32-bit processors (around

20,000 times more processing power than the Apple II) and 2 gigabytes

of RAM plus 512 megabytes more on the video card (providing about

40,000 times as much RAM as the Apple II). This computer also has 500

gigabytes of hard disk space (which already seems limited), whereas the

1980s computer had only 140-kilobyte floppy disks. The laptop computer

this chapter is being written on (one of four ‘proper’ computers in a

household of four people) is similarly specified, and, of course, there are

mobile phones, digital cameras, and music players in the house, each

with as much processing power (if not more) than a PC from 30 or so

years ago.
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data. Although in broad outline these claims are self-evidently true, we should
pause to consider them a little more closely:

� Cheap, powerful computing is more widely available than ever. This
is obviously true, but it is worth pointing out that an enormous
proportion of current computing power either remains unused or is
used for tasks that make small demands on the available resources
(word processing, buying books online, answering trivia questions on
Wikipedia and so on).

� At first, the claim that data are cheaper and more plentiful than
ever is also hard to refute. Certainly, large generic data sets such as
(government-gathered census data and detailed, remote-sensed im-
agery) are more readily available to researchers in more convenient
forms than previously could have been imagined. We use the term
‘‘generic’’ advisedly: such data are often not gathered with specific
questions in mind. They are not gathered to assist researchers in
answering a specific question or to test a specific hypothesis. High-
quality data, properly controlled for confounding variables and so
forth, are as expensive as ever to obtain in the natural sciences, and in
the social sciences they are perhaps as unattainable as ever (see
Sayer, 1992).

So, although we would agree that the computational environment of GIS
has changed considerably, it is important to be clear about exactly what
has changed. None of the changes that have occurred have fundamentally
altered the basic concepts discussed in the previous chapters. This can
occasionally be a difficult truth to hold on to amid all the hype that
surrounds contemporary technological developments. It also warns against
the simplistic idea that so much data and computing power are now
available that we are in a position to answer all geographic questions.
First, many of the questions are difficult and are likely to remain resistant
to even the most computationally sophisticated methods. David Harel’s
book on computational complexity, Computers Ltd: What They Really Can’t
Do (Harel, 2000), lists a large number of interesting, essentially spatial
problems that simply cannot and will never be solved exactly using any
digital computer. Second, perhaps even because the data are cheap, many
readily available data sets simply may not allow us to answer many very
interesting questions. It may be more realistic to suggest that the data
merely allow us to ask more questions! Answering those questions may
actually require us to gather yet more data to answer them. Having
sounded this note of caution, we return to the theme of the most recent
technological developments in Section 12.4.
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12.2. THE CHANGING SCIENTIFIC ENVIRONMENT

Meanwhile, it’s not just technologies that have changed. Until relatively
recently, the scientific worldview was linear. If the world really was linear,
equations like Y ¼ aþ bX would always describe the relationships between
things very well. More importantly, in a linear world, the effect of X on Y
would always be independent of all the other factors that might affect Y. In
fact, we know very well that this view of things is rarely tenable. Simple
Y ¼ aþ bX expressions rarely describe the relationships between factors
very well. Most relationships are nonlinear, meaning that a small increase in
X could cause a small increase in Y, or a big increase in Y, or even a decrease
in Y, depending on everything else—in other words, all the other factors that
affect Y. In practice, even common day-to-day observable events are highly
interdependent and interrelated. Today’s air temperature is dependent on
numerous factors: yesterday’s air, ground and sea temperatures, wind
directions and speeds, precipitation, humidity, air pressure, and so on.
And all of these factors, in turn, are related to one another in complex
ways. The complexity we are describing should be familiar to you. For
example, when the U.S. Federal Reserve lowers interest rates by 0.25%,
25 different experts can offer 25 different opinions on how the markets will
react—only for the markets to react in a 26th way that none of the experts
anticipated. Indeed, writing in the wake of a year of turmoil in world
financial markets, the previous sentence would seem to dramatically under-
state the unpredictability! In spite of the ubiquity of complex realms like
these, where science, for all its sophistication, has relatively little useful to
say, the linear view of the world has persisted. This is partly because the
technologies that have been the product of that view have been so effective.
Complexity is a technical term for an emerging scientific, nonlinear view of

theworld (seeWaldrop, 1992). The study of complex systems has its origins in
thermodynamics (Prigogine and Stengers, 1984) and biology (Kauffman,
1993), two areas where large systems with many interacting elements are
common. Some of these ideas have begun to make their way into physical
geography and biogeography (Harrison, 1999; Malanson, 1999; Phillips,
1999), and also into human geography and the social sciences (Allen,
1997; Byrne, 1998; Portugali, 2000; Manson, 2001; O’Sullivan, 2004). Per-
haps the key insight provided by the complexity perspective is that when we
work with nonlinear systems, there is a limit to our power of prediction even
if we completely understand the mechanisms involved. This is why the
weather forecast is still wrong so often and why economic forecasts are
almost always wrong.
Critically, most of the mathematics required for this nonlinear worldview

is beyond the reach of analytic techniques, and computers are therefore
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essential to the development of theories about complex systems and com-
plexity. This is similar to the problem that statistical distributions can be
impossible to derive analytically but may be readily simulated by Monte
Carlo methods. It may even be that the reason that science remained blind
to the evident complexity of the real world until recently was not solely
the technological and explanatory success of the conventional view, but
the unavailability of any conceptual or practical tools with which to pursue
alternative views. In the same way that Galileo’s telescope enabled the
exploration of a new astronomy, the modern computer is enabling explora-
tion of the ‘‘new’’ world of complex systems. There is nothing unique or
revolutionary about this development: the tools and concepts of any research
program have always been interrelated in this way. Indeed, many of these
developments were foreseenmany years ago in a prophetic article byWarren
Weaver (1948).

The major topics in this chapter may all be seen as manifestations in
geography and GIS of these broader changes in the tools (computers) and
ideas (the world is complex and is not reducible to simple linear mathemati-
cal descriptions) of science more generally:

� Increases in computing resources have led to attempts to develop
automated ‘‘intelligent’’ tools for the exploration of the greatly in-
creased arrays of data that may contain interesting patterns indica-
tive of previously undiscovered relationships and processes. We have
already discussed the Geographical Analysis Machine (GAM), an
early example of this trend, in Section 6.7. In Section 12.3, we place
GAM in its wider context of geocomputation. Many of the methods we
discuss force no particular mathematical assumptions about the
underlying causes of patterns, so that nonlinear phenomena may
be investigated.

� Computer modeling and simulation are becoming increasingly impor-
tant throughout geography. Such models are distinct from the statisti-
cal process models discussed in Chapter 4 in that they aim to represent
the world as it is, in terms of the actual causal mechanisms that give
rise to observable phenomena. These models usually explicitly repre-
sent the elements that constitute the complex systems being studied.
We discuss the links between GIS and such models in Section 12.4.

12.3. GEOCOMPUTATION

The most direct response within the GIS and spatial analysis communities
to these changes has been a set of new techniques loosely gathered under
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the heading of geocomputation. This term has given rise to a conference
series, special journal issues, and two collections of articles (Longley et al.,
1998; Abrahart and Openshaw, 2000). Nevertheless, it remains difficult
to pin down its meaning, with a number of definitions offered in the
cited collections. At its simplest, it might be defined as ‘‘the use of comput-
ers to tackle geographic problems that are too complex for manual tech-
niques.’’ This is a little vague, leaving open, for example, the question of
whether or not day-to-day use of GIS qualifies as geocomputation. It is
also unclear how this distinguishes geocomputation from earlier work in
quantitative geography, since, even if they were big, sluggish, room-sized
beasts programmed by cards full of punched holes, computers were almost
always used.
While we use geocomputation in this section as a convenient catchall term

for a wide variety of approaches, we suspect that any formal definition will
ultimately be related to computational complexity (Harel, 2000). We return
to this concept in more detail in Section 12.4. For now, it is sufficient to see it
as making developments in programming algorithms and computer data
structures central to improvement in our capacity to tackle larger and more
difficult problems. Among the more ambitious of the variety of perspectives
available was that initiated by Stan Openshaw and which continues to be
developed by colleagues in the Centre for Computational Geography at the
University of Leeds. Their perspective focuses on the question: can we use
(cheap) computer power in place of (expensive) brain power to help us discover

patterns in geospatial data? Most methods that start from this question are
derived from artificial intelligence (AI) techniques, and this is probably what
most clearly differentiates geocomputational approaches from earlier work.
AI is itself a broad field, with almost as many definitions as there are
researchers. For our purposes, a definition from the geography literature
will serve as well as any other:

[AI] is an attempt to endow a computer with some of the intellectual capabilities

of intelligent life forms without necessarily having to imitate exactly the

information processing steps that are used by human beings and other biological

systems. (Openshaw and Openshaw 1997, p. 5)

Unsurprisingly, there are numerous approaches to endowing a computer
with intelligence. Wewill not concern ourselves with the question of whether
it is even possible, instead noting that in certain fields (chess, for example),
computer programs have certainly been designed that can outperform any
human expert. In any case, a number of AI techniques that have emerged
have been applied to geographic problems, and we discuss these in the
sections that follow.
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First, it is instructive to consider the example of the original Geographi-
cal Analysis Machine (GAM) (see Section 6.7 and Openshaw et al., 1987)
and to identify why it is not intelligent so that the techniques we consider
in this section are a little better defined. You will recall that the GAM
exhaustively searches a study area for incidences of unusually large
numbers of occurrences of some phenomenon relative to an at-risk popu-
lation. This not an intelligent approach, because the tool simply scans
the entire study area, making no use of anything it finds to modify sub-
sequent behavior. Equally, it does not change its definition of the problem
to arrive at an answer—for example, by searching in regions other than
circles. Both of these behaviors are characteristic of the way a human
expert might approach the problem. For example, as an investigation
proceeds, a researcher is likely to pay particular attention to areas similar
to others where suspected clusters have already been identified. If a
number of ‘‘linear’’ clusters associated with (say) overhead power trans-
mission lines were noted early on, a human-led investigation might re-
direct resources to search for this phenomenon. Such adaptability and the
ability to make effective use of previously acquired information—in other
words, to learn—are elements of many definitions of intelligence.

Expert Systems

One of the earliest AI approaches is the expert system (see Naylor, 1983). The
idea is to construct a formal representation of human expert knowledge in a
field of interest. This knowledge base is stored as a set of production rules

with the form

IF <condition> THEN <action> ð12:1Þ

A driving expert system might have a production rule

IF <red light> THEN <stop> ð12:2Þ

In practice, production rules are more complicated than this and may
involve assigning weights or probabilities to intermediate actions before a
final action is determined. A better example than a driving system is a
medical diagnosis expert system that uses information about a patient’s
symptoms to arrive at a disease diagnosis. Some recommended actions may
require tests for further symptoms, and a complex series of rules is followed
to arrive at a final answer.
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An expert system is guided through its knowledge base by an inference

engine to determine what rules to apply and in what order. The other
components of an expert system are a knowledge acquisition system and an
output device. Output from an expert system can ‘‘explain’’ why a conclu-
sion has been reached by storing the rules that were used to arrive at it.
This is important in many applications. Expert systems have been used
with some success in a number of areas, notably playing chess and medical
diagnosis. The basic idea is employed in numerous embedded processor
applications, where the expert system is not immediately apparent. Almost
without exception, modern cars use expert systems to control functions
such as fuel injection (dependent on driving conditions, temperature,
engine temperature) and braking (antilock braking systems are expert
systems). Some ‘‘fly-by-wire’’ airplanes also use expert systems to ‘‘inter-
pret’’ the pilot’s actions, ensuring that only changes to the control surfaces
that will not cause the plane to crash are acted upon.
The major obstacle to building an expert system is construction of the

knowledge base, which involves codifying complex human knowledge
that may not previously have been written down. The technique has
seen only limited application in geography. Applications in cartography
have attracted some interest, since it seems that a cartographer’s knowl-
edge might be easily codified, but no artificial cartographer has yet
been built. Instead, piecemeal contributions have been made that ‘‘solve’’
various aspects of the map design problem (Joao, 1993; Wadge et al., 1993).
A more ambitious attempt to construct an expert GIS is discussed by
Smith et al. (1987). It is not clear that an expert system could be success-
fully developed for the open-ended and ill-defined task of spatial analysis.
A related approach is for a computer to know enough about the stages
in a spatial analysis task that it can suggest candidate processing steps or
work flows that might achieve a desired outcome (O’Brien and Gahegan,
2004).

Art ific ia l Neural Networks (ANNs)

While expert systems are loosely based on a theory that

knowledgeþ reasoning ¼ intelligence ð12:3Þ

artificial neural networks (ANNs) are based on the less immediately obvious
idea that

brain-like structure ¼ intelligence ð12:4Þ
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An ANN is a very simple model of brain function. It consists of an
interconnected set of artificial neurons. A neuron is a simple element
with a number of inputs and outputs (McCulloch and Pitts, 1943). The value
of the signal at each output is a function of the weighted sum of all the signals
at its inputs. Usually, signal values are limited to 0 or 1 or must lie in the
range 0 to 1. Various interconnection patterns are possible. A typical
example is shown schematically in Figure 12.1. Note that each layer is
connected to subsequent layers. For clarity, many interconnections are
omitted from the diagram, and it is typical for each neuron to be connected
to all the neurons in the next layer. One set of neurons functions as the
system inputs and another as the outputs. Usually there are one or more
hidden layers to which the inputs and outputs are connected.

Networks can operate in either supervised or unsupervised mode. A
supervised network is trained on a set of known data. During training,
the input stage is fed with data for which the desired outputs are known. The
network adjusts the internal weights iteratively until a good match between
its outputs and the desired outputs is obtained. This process may be thought
of as learning. In general terms, learning proceeds by adjusting the connec-
tion weights in the network in proportion to how active they are during the
training process. An unsupervised network operates more like a traditional
classification procedure in that it eventually settles to a state such that
different combinations of input data produce different output combinations
that are similar to a cluster analysis solution.

Inputs Outputs

Hidden layers

Figure 12.1 Schematic representation of an ANN.
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In a typical geographic example, ANN inputs might be the signal levels on
different frequency bands for a remote sensed image. The required outputs
might be a code indicating what type of land cover is prevalent in each image
pixel. Training data would consist of ‘‘ground truth’’ at known locations for
part of the study area. Training stops when a sufficiently close match
between the network outputs and the real data has been achieved. At
this point, the network is fed new data of the same sort and will produce
outputs according to the learned coding scheme. This network can now be
used to classify land-cover types from the raw frequency band signal levels.
Gahegan et al. (1999) provide an example of this type of application.
The final, settled state of any neural network is effectively a function

that maps any combination of input data X onto some output combination
of values Y, which is similar to the result of many multivariate statistical
methods. Multivariate techniques that do the same thing are discriminant

analysis and logistic regression. However, these are restricted to combina-
tions of a small set of well-defined mathematical functions. The functional
relation found by an ANN is not subject to this constraint and may take any
form, restricted only by the complexity of the input and output coding
schemes. If we imagine the variables used by the network as a multi-
dimensional space, we can illustrate this schematically as in Figure 12.2.
Here, for simplicity, the variable space is shown as only two-dimensional.

In real problems, there are many more dimensions to the dataspace, and the
geometry is more complex. Cases of two different classes of observation are
indicated by filled and unfilled circles. As shown in the left-hand scatterplot,
the limitation of a linear classifier is that it can only ‘‘draw’’ straight lines
through the cases as boundaries between the two classes. Except for un-
usually well-defined cases, numerous wrong classifications are likely. De-
pending on the exact structure of the ANNused, it has the potential to draw a

Linear classifier Neural network

overtrained
solution

“dataspace”

Figure 12.2 Linear classifier systems versus neural networks.
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line of almost any shape through the cloud of observations in order to produce
a much more accurate classification. ANN solutions tend to scale up better
than traditional methods and are often able to handle larger, more complex
problems. However, there is no way of knowing beforehand that an ANNwill
perform better than any other approach.

Neural networks can suffer from the problem of overtraining when they
are matched too closely to the training data set. This means that the
network has learned the particular idiosyncrasies of the training data set
too well, so that when it comes to classifying other data, it performs poorly.
You can think of this as analogous to the problems that may arise when a
human expert becomes too familiar with a problem and tends to favor a
particular diagnosis, so that it becomes hard to see other possible answers.
The overtraining problem means that setting an ANN up well is a definite
skill, which takes time to acquire. It also makes the selection of good
training data important.

Perhaps the most troublesome thing about ANNs is just how good the
answers they provide can be, even though it is hard to understand exactly
how they work! In the jargon, they are black-box solutions, so called because
we can’t see what is going on ‘‘inside.’’ Whereas in an expert system it is clear
where the machine’s knowledge resides and how the system arrives at its
answers, with neural networks it is difficult to identify which part of the
system is doing what. After applying a neural network to a problem, we may
be able to solve similar problems in the future, but we may be no closer to
understanding the issues involved. Whether or not this matters depends on
what you are interested in. If it is your job to produce land cover maps based
on several hundred 1-gigabyte satellite images, and a neural network
solution works, then you may not care too much about not understanding
why it works. If, on the other hand, you used a neural network to assess the
fire risk in potential suburban development sites, you will need a better
answer than ‘‘Because my neural network says so’’ when faced with ques-
tions from developers, landowners, and insurance companies.

A good overview of both expert systems and ANNs is found in Fischer
(1994). Neural networks are just one example of a data mining technique.
This broader category of approaches is well covered byMiller andHan (2008)
in a geographic context.

Genet ic Algor i thms

Another AI technique that can generate answers without providing much
information about how is genetic algorithms (GAs). These also adopt a
simplified model of a natural process, in this case evolution (see Holland,
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1975). Evolution of animal and plant life is essentially a slow process of
trial and error. Over many generations, genetic adaptations and mutations
that prove successful become predominant in a population. To approach a
problem using GAs, we first devise a coding scheme to represent candidate
solutions. At the simplest level, each solution might be represented by a
string of binary digits, such as 10010000110011110101100. The GA works
by assembling a large population of randomly generated strings of this
type. Each potential solution is tried on the problem and scored on how
successful it is using some fitness criteria. Many early solutions will be very
poor (they are randomly generated, after all), but some will be better. In
each generation, more successful solutions are allowed to ‘‘breed’’ to
produce a new generation of solutions by various mechanisms. Two breed-
ing mechanisms are:

� Crossover randomly exchanges partial sequences between pairs of
strings to produce two new strings. The strings 10101j001j01 and
01011j100j11 might each be broken at the indicated points, and the
strings crossed over to give 10101j100j01 and 01011j001j11.

� Mutation creates new solutions by randomly ‘‘flipping’’ bits in a
member of the population. Thus, the string 1010100101 might mutate
to 1010000101 when its fifth bit changes state.

These methods are loosely modeled on genetic mechanisms from nature,
but in principle, any mechanism that ‘‘shakes things up’’ without completely
scrambling everything can be useful. The idea is that some aspect of the
relatively successful solutions must be right, but while there is room for
improvement, ‘‘tinkering’’ is still worth while. Overly dramatic mutations
are likely to lead to dysfunctional results, and many smaller mutations are
likely to have no discernible effect on the quality of a solution, but a few may
lead to improvements.
The new generation of solutions produced by breeding is tested and

scored in the same way, and the breeding process is repeated throughmany
generations until good solutions to the problem evolve. The net effect is an
accelerated ‘‘breeding program’’ for a solution to the problem at hand. GA-
generated problem solutions share with ANN the property that it is
difficult to determine how they work. In spatial analysis, the problem is
how to devise a way of applying the abstract general framework of GA to
the types of problems that are of interest. A major difficulty can be devising
fitness criteria for the problem at hand. After all, if we knew how to
describe a good solution, we might be able to find it ourselves, without
recourse to GAs. This is similar to the expert system problem of building
the knowledge base. Examples of GAs are rare in the spatial analysis and
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GIS literatures. They include Brookes (1997), Armstrong et al. (2003), and
Conley et al. (2005).

Agent-Based Systems

One final AI approach is agent technology. An agent is a computer program
with various properties, most importantly:

� Autonomy, meaning that it has the capacity for independent action
� Reactivity, meaning that it can react in various ways to its current
environment

� Goal direction,meaning that it makes use of its capabilities to pursue
tasks at hand

In addition, many agents are intelligent to the extent that this is possible
given the limits of current AI. Many are also capable of communicating

with other agents that they encounter. The best example of agent technol-
ogy is the software used by Internet search engine providers to build their
extensive databases of universal resource locations (URLs) and topics.
These agents search for Web pages, compile details of topics and keywords
as they go, and report details back to the search engine databases. Each
search engine company may have many thousands of these agents, or bots,
exploring the Internet at any given time, and this turns out to be an
efficient way to index cyberspace. The application of this type of agent
technology to searching large geospatial databases has been discussed by
Rodrigues and Raper (1999).

The ability to communicate with other agents is a key attribute of agents
employed in large numbers to solve problems in multiagent systems.
Communication capabilities allow agents to exchange information about
what they already know, so that they do not duplicate each other’s activi-
ties. The space-time-attributes creature (STAC) was an innovative system
using this idea coupled with GAs proposed by Openshaw (1993). The STAC
would live and breed in a geospatial database and spend its time looking for
repeated patterns of attributes arranged in particular configurations in
space and time. Successful creatures that thrived in the database would be
those that identified interesting patterns, and their breeding would enable
more similar cases to be found. MacGill and Openshaw (1998) presented an
implementation of this idea that was an adaptation of the basic GAM
technique. Instead of systematically searching the whole study region, a
flock of agents explores the space, continually communicating with one
another about where interesting potential clusters are to be found. This
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approach is more efficient than the original GAM and has the advantage of
being more easily generalized to allow searches in any space of interest
(Conley et al., 2005).

12.4. SPATIAL MODELS

In this book, we have talked often about spatial process models. The models
we have discussed are statistical and do not claim to represent the world as it
is. The simplest spatial process model we have discussed, the independent
random process, generates spatial patterns without claiming to represent
any actual spatial process (IRP). Almost immediately whenwe start to tinker
with the IRP, we describe models that are derived, at least in part, from a
process that is hypothesized to be responsible for observed spatial patterns.
For example, in the Poisson cluster process, a set of ‘‘parents’’ is distributed
according to a standard IRP. ‘‘Offspring’’ for each parent are then randomly
distributed around each parent, and the final distribution consists of the
offspring only. It is difficult to separate this description from a relatively
plausible account of the diffusion of plants by seeding (see Thomas, 1949).
This leads very naturally to the idea of developing process models that

explicitly represent the real processes and mechanisms that operate to
produce the observable geographic world. Such models might then be
used in three different ways:

� As a basis for pattern measurement and hypothesis testing in the
classical spatial analytic mode, as discussed in Chapter 5

� For prediction in an attempt to anticipate what might happen next in
the real world

� To enable exploration and understanding of the way the process
operates in the real world

Using statistical models does not raise serious questions about their
nature or the way that they represent external reality, provided that we
are properly cautious about our conclusions and keep in mind that statis-
tical methods do not allow us to prove hypotheses, only to add to the
evidence supporting alternative hypotheses. However, when we are seri-
ous about the process model as a representation of reality, our judgment
about its plausibility becomes at least as important as the results of any
statistical analysis.
Care is also required if we intend to use models for prediction or explora-

tion. In either of these applications, it is crucial that we are confident about
the model’s representation of reality. This leaves us with a problem. In
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the real world, everything is connected to everything else: the system is open.
Yet, if we want to model the dynamics of (say) a small stand of trees, it is
impractical to include all relevant or potentially relevant factors, from global
climate change to the economics of logging operations. Instead, we are forced
to build a closedmodel of an openworld.We can do this to an extent using, for
example, probabilistic simulations of climate treated as an external factor.
We might also decide to allow model users to control the climate and other
parameters so as to examine the impact of different possible futures. In fact,
this is often an important reason for building models—to explore different
future scenarios. However, when assessing the predictive ability of models, it
is important to keep the distinction between an open external world and
necessarily closed models in mind. For example, 1950s models of urban
housing markets in Western Europe and North America failed to anticipate
later marriage, higher divorce rates and other social changes, the resulting
smaller households, and the impact of these effects on the demand for
apartments and smaller housing units. These issues are discussed by Peter
Allen (1997) when he considers the appropriate use of models of human
settlement systems.

In this section, we examine two contemporary technologies commonly
applied to predictive spatial modeling. We also discuss some general issues
concerned with linking such models to GIS. More traditional spatial inter-
action models are discussed by Wilson (2000), Fotheringham et al. (2000,
Chapter 9), and Bailey and Gatrell (1995, pp. 348–366).

Cel lu lar Automata

A simple style of spatial model well suited to raster GIS is the cellular

automaton (CA). This consists of a regular lattice of similar cells, typically a
grid. Each cell is in one of a finite number of discrete states at any particular
moment, so that the cell state is a nominal variable. Cell states change
simultaneously with every model time step according to a set of rules that
define what cell state changes occur given the current state of a cell and its
neighbors in the lattice.

To get an idea of how rich this apparently very simple framework is,
examine Figure 12.3, which shows a very simple CA.Here the lattice is a one-
dimensional row of 20 cells, and each row of the diagram down the page
represents a single time step of the automaton’s evolution. Each cell’s
evolution is affected by its own state and the state of its immediate neighbors
on either side. Cells at the ends of a row are considered to have the cell at the
opposite end as a neighbor, so that rows loop a round on themselves. This
presentation of a one-dimensional automaton is convenient on the printed
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page. The rule for this automaton is that cells with an odd number of black
neighbors (counting themselves) will be black at the next time step; other-
wise, they will be white. Starting from a random arrangement at the top of
the diagram, the automaton rapidly develops unexpectedly rich patterns,
with alternating longish sequences of exclusively black or white cells, visible
as triangles in this view, as they appear and then collapse from each end over
subsequent time steps.
The all-time classic CA, John Conway’s Game of Life, is slightly more

complex. This runs on a grid with two cell states, usually called alive (black)
and dead (white). Each cell is affected by the state of its eight neighbors in
the grid. The rules are simple. A dead cell comes alive if it has three live
neighbors, and a live cells stays alive if it has two or three live neighbors. In
print, it is hard to convey the complex behavior of this simple system, but

Figure 12.3 The complexity of a simple CA. The lattice state at a

single moment is represented by a row of cells. Evolution of the lattice

state progresses down the page.
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numerous patterns of live cells have been identified that frequently occur
when the CA runs. Some patterns, called gliders or spaceships, move around
the lattice while preserving their shape. Others are stable configurations
that spring dramatically to life when hit by a glider. Still other patterns
‘‘blink’’ as they cycle through a sequence of configurations before returning to
their original pattern. All this rich behavior is best appreciated by watching
the Life CA run on a computer.More details about theGame of Life CA can be
found in Poundstone (1985).

Again, this is all very interesting but what does it have to do with
geography? The point is that it is possible to build simple CA-style models
in which the states and rules represent a geographic process. The important
insight derived from the abstract examples above is that CA models don’t
have to be very complicated to do interesting things. Simple local rules can
give rise to larger, dynamic, global structures. This suggests that, in spite of
the complexity of observable geographic phenomena, it may still be possible
to devise relatively simple models that replicate these phenomena and
provide a better understanding of what is going on (Couclelis, 1985). In a
geographic CA model, we replace the simple on/off, live/dead cell states with
more meaningful states that might represent (say) different types of vege-
tation or land use. The rules are then based on theory about how those states
change over time, depending on the context.

In practice, we must extend the CA framework considerably before we
arrive at geographically plausible models. In different applications, varia-
tions on ‘‘strict’’ CA have been introduced. Numeric cell states, complex cell
states consisting of more than one variable, rules with probabilistic effects,
nonlocal neighborhoods extending to several cells in every direction, and
‘‘distance-decay’’ effects are among the more common adaptations. Numer-
ous models have been developed and discussed in the research literature.
Examples of urban growth and land-use models are presented by Clarke et
al. (1997), Batty et al. (1999), Li and Yeh (2000), Ward et al. (2000), and
White and Engelen (2000). It is also relatively easy tomodel phenomena such
as forest fires (Takeyama, 1997) and vegetation or animal population dy-
namics using CA (Itami, 1994).

Agent Models

An increasingly popular alternative to CA models is agent-based models.
These are another application of the autonomous intelligent agents already
described. Instead of deploying agents in the ‘‘real world’’ of a spatial
database, in an agent-based model the agents represent human or other
actors in a simulated real-world environment. For example, the environ-
ment might be GIS data representing an urban center and agents might
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represent pedestrians. The model’s purpose is to explore and predict likely
patterns of pedestrian movement in the urban center (see Haklay et al.,
2001). Other examples are provided by Westervelt and Hopkins’s (1999)
model of individual animal movements, models by Portugali (2000) and
various coworkers examining ethnic residential segregation, models of
land-use change resulting from human activity (see Evans and Kelley,
2004; Jepsen et al., 2006; Manson, 2006; and Parker et al., 2003, for an
overview), and Batty’s (2001) work on the evolution of settlement systems.
On an altogether more ambitious scale is the TRANSIMS model of urban
traffic developed at Los Alamos (Beckman, 1997) or models of epidemic
spread (see Toroczai and Guclu, 2007, and Bian and Liebner, 2007, for a
general introduction). The former model attempts to simulate urban traffic
in large urban areas, such as Dallas–Fort Worth, at the scale of individual
vehicles, using extremely detailed data sets about households and their
places of work.
A good introduction to the ideas behind agent modeling is Resnick’s

book Turtles, Termites and Traffic Jams (1994). A more advanced text is
Epstein and Axtell’s Growing Artificial Societies (1996). A book that also
discusses CAs and other methods we have reviewed here is Gilbert and
Troitzsch’s Simulation for the Social Scientist (2005). Agent modeling
seems to have struck a chord with many researchers in various disciplines,
from economics to social anthropology (see O’Sullivan, 2008, for an over-
view in geography), and a number of toolkits for building models are
available. In general, users must write their own program code, so this
is not to be undertaken lightly. Among the available systems are StarLogo

from the MIT Media Lab; NetLogo, a closely related but independent
project at Northwestern University; RePast from the University of Chicago
and Argonne National Laboratories; and Swarm from the Santa Fe Insti-
tute. The links of each of these to GIS remain challenging to work with
(although see Gimblett, 2001).
Another note of caution should be sounded. The analysis of models like

these and CAs that produce detailed and dynamic map outputs is extremely
challenging. Statistics to compare two maps (the model and the actual one)
are of limited value when we don’t expect the model predictions to be exact,
but rather to similar to the way things might turn out. The reason we don’t
expect precise prediction is that models of these types acknowledge the
complexity and inherent unpredictability of the world. It is also difficult to
know how to analyze a model whose only predictions relate to the ephemeral
movement of people or animals across a landscape or another environment.
Cellular models are easier to handle because the predictions they make
generally relate tomore permanent landscape features, but they still present
formidable difficulties. At present, there are few well-developed methods for
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addressing these problems, and this remains an area for future research (see
Brown et al., 2005).

Even with better-developed map comparison techniques, the fundamental
problem of any model remains: there is no way of determining statistically
whether it is valid or not by examining how well it predicted past history.
There are two serious problems here. First the fact that a model does well at
predicting the historical record tells us nothing about how it will perform if
we then run it forward into the future. Thus, if we set a model running at
some known point in history (say, 1985), run it forward to a more recent
known time (say, 2005), and find that the model’s prediction is good, we can
still have only limited confidence in what the model predicts next. This is the
problem of an open world and a closed model. Second, and more fundamen-
tally, there is no guarantee that a totally different model could not produce
exactly the same result but would go on to make completely different future
predictions. This is called the equifinality problem, and there is no escaping it
except by acknowledging that, no matter what the statistics say, the theo-
retical plausibility of a model remains the most important criterion for
judging its usefulness for forecasting.

Coupl ing Models and GIS

An important point to consider from a GIS perspective is how different
available spatial models can be connected to available geospatial data. The
issues here are similar to the general question of how GIS may be linked to
spatial analytical and other statistical packages, and the fundamental
problem is the same. The models used in GIS for geographic data types
are different from those used in spatial modeling. Most significantly, data in
GIS are generally static, whereas in spatial models they are dynamic. The
raster or vector point, line, and polygon layers are not expected to change in
GIS. If they do, then a whole new layer is created. If a spatial model were
implemented in standard GIS, then a new layer (or layers) would be created
every time anything happened in the model. For a climate model operating
season by season, over a 100-year time horizon (not an unusual time span for
long-range climate change studies), we end up with 400 GIS layers and all
the attendant difficulties of storing, manipulating, querying, and displaying
these data. Of course, we can approach the problem this way, but the real
solution is to redesign the GIS data structures to accommodate the idea that
objects may change over time.

As an example, consider how we might handle the changes that occur in
the subdivision of land parcels over time. A plot may start out as a single
unit, as shown at time 0 in Figure 12.4. It may then ‘‘grow’’ by acquisition at
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time t ¼ 25, only to shrink again at time t ¼ 73, when a small part of the plot
is sold to a neighbor. Such simple changes are only the beginning. A plot
might be subdivided into several smaller parcels, some of which are retained
by the same owner. Matters become more complicated when we consider the
database queries that might be required in such a system. When we are only
concerned with spatial relations, the fundamental relationships are ‘‘inter-
section,’’ ‘‘contained within,’’ and ‘‘within distance x of.’’ Add to these ‘‘be-
fore,’’ ‘‘after,’’ ‘‘during,’’ and, for states that persist over time, ‘‘starting
before,’’ ‘‘ending after,’’ and so forth, and the complications for database
design are obvious. This does not even consider the software design problem
of how to make spatiotemporal data rapidly accessible so that animations
may be easily viewed. Suffice it to say that the complexities of introducing
time into GIS have yet to be widely or adequately addressed, although the
issue has been on the research agenda for a long time (see Langran, 1992;
O’Sullivan, 2005).
In the absence of an integrated solution to the use of models in the GIS

environment, three approaches can be identified:

� Loose coupling, in which files are transferred between the GIS and the
model and the dynamics are calculated in the model, with some
display and output of results in the GIS. Usually, since the model
is programmedmore or less from scratch, it can be written to read and
write GIS files directly. Alternatively, a good text editor, a

t = 0

t = 73

t = 25

Figure 12.4 The problems of dynamic data.
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spreadsheet, and a facility for writing script programs to do data
conversions are necessary. These will remain important GIS skills for
many years to come.

� Tight coupling, which is not very different. Data transfer is also
performed by files, but each system can write files that are readable
by the other. Developments in contemporary computer architectures
can make this look seamless, with both programs running and con-
tinuously exchanging data. However, it is still difficult to viewmoving
images in the GIS, and because each image requires a new file, this is
still a relatively slow process.

� Integrated model and GIS systems, which already exist. Integration is
slowly happening in three different ways: (1) by putting the required
GIS functions into the model; this is easier than it sounds, because a
spatial model must support spatial coordinates, measurement of
distances, and so forth anyway; (2) by putting model functions into
a GIS, which usually is harder, because it can be difficult to program
additional functions for a GIS; and (3) by developing a generic lan-
guage for building models in a GIS environment.

Distinctions between these approaches are becoming less clear-cut. As
suggested above, loosely and tightly coupled solutions effectively blend into
one another, depending on how and when file translation is performed,
particularly given the efficiency of contemporary scripting languages such as
Python, and their widespread accessibility from within GIS and other tools.
In addition, the increasingly widespread availability of free open source
tools, which perform many of the critical functions of a GIS, makes more or
less integrated solutions that start from the modeling platform, not the GIS,
the most attractive approach in many cases.

The generic modeling language approach is exemplified by PCRaster

(Wesseling et al., 1996). Developed at the University of Utrecht, this system
may be accessed online at http://pcraster.geo.uu.nl/. PCRaster is best under-
stood as an extended CA-style modeling environment that also provides a
GIS database, which copes with ‘‘stacks’’ of raster layers over time and time
series. It can also produce animated maps and time series plots. The
embedded dynamic modeling language (DML) makes it relatively easy to
build complex geomorphologic models using built-in raster analysis func-
tions such as aspect and slope (see Chapter 9). The system can also build
surfaces from point data using kriging (see Chapter 10). Raster GIS and the
CA modeling style are well suited to this integration.

More recently, there have been efforts to extend the basic CA idea of local
rule-based change to irregular, non-grid-based representations of spatial
data (Takeyama, 1997; O’Sullivan, 2001), and generalized spatial modeling
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within GIS may eventually become possible. Agent approaches seem a more
likely vehicle for such integration in the long run given their greater
flexibility (see Benenson and Torrens, 2004). However, it is important to
realize that the problems involved extend beyond the technicalities we have
been describing. In addition to the difficulties of developing appropriate
spatiotemporal data structures, defining a set of dynamic spatial functions
that would be required in a general system is a formidable task (see
O’Sullivan, 2005).

12.5. THE GRID AND THE CLOUD:
SUPERCOMPUTING FOR DUMMIES

Perceptive readers will have noticed that in this chapter on future devel-
opments, we have so far avoided much mention of perhaps the most notable
technology development of the last decade or so. Even advances in desktop
computing pale in comparison with the rapid growth of the Internet and
the World Wide Web. The World Wide Web is itself the most visible
manifestation of a move toward decentralized networked computing. These
developments provide instant access to data and, increasingly, to online
real-time computation. Large information technology companies routinely
run tens of thousands of networked processors and can offer time on those
processors as a purchasable commodity. In this setting, if you need a
supercomputer, it is possible simply to rent time on someone else’s net-
work. Whoever first claimed that ‘‘the network is the computer’’—it is Sun
Microsystems’ corporate motto, and various people associated with the
company are claimed to have coined the phrase—it has proved to be a
prophetic remark.
Networked computing is not a new development, but the scale of the

networks now available is. While high-performance computing in special-
ized areas (such as computational fluid mechanics, bioinformatics, or
particle physics) has historically relied first on supercomputers or, more
recently, on specialized, custom-built ‘‘clusters,’’ with specialized expertise
required to make effective use of these resources, commodity processing
power deployed as required relies on more diffuse architectures (the ‘‘grid’’
or the ‘‘cloud’’). In fact, the newer architectures are highly structured
behind the scenes, but the end user does not need to worry about how it all
works. A layer of computer software generically termed middleware

determines how best to partition a specific problem to run on many
processors; the end users do not have to concern themselves about this
question. In this environment, an application can be developed locally on
a desktop computer, and then, once satisfied that the analysis is
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conceptually sound, the user can scale up by simply requesting that the
processing be performed by whatever grid or cloud computing resources are
available.

Many spatial analysis tasks are well suited to this environment. The key to
effective use of multiprocessor architectures is to be able to partition the
problem into smaller problems that can be processed separately and then
recombined to provide a final result. Many spatial analysis methods, such as
interpolation, local indicators of spatial autocorrelation, geographically
weighted regression, and kernel smoothing, are readily partitioned simply
by sending all the data to every processor and asking each processor to
perform local operations on one part of the data set. Thus, for example, cloud
or grid computing architectures are valuable for generating digital elevation
models from LIDAR data sets, which would present significant challenges to
even the most powerful desktop machines. The common problem of generat-
ing many synthetic data sets by permutation or randomization as part of a
Monte Carlo procedure can also be run conveniently on multiple processors,
without any complex analysis of the problem structure.

It is important to realize, however, that there are some problems that
will not become more tractable using this technology. If you have ever
performed a GIS analysis that runs on a test data set of (say) 100 data
points, taking (say) 5 seconds to complete, but that seems to take forever
when applied to the real data set of 10,000 data points, then you have
encountered the issues central to the study of computational complexity.
Computational complexity, according to Fortnow and Homer (2003), was
first formulated by Hartmanis and Stearns (1965) and is concerned with
the analysis of how computer solutions or algorithms scale with the size of
the problem. Problems are defined by their size in terms of the data,
usually denoted n, although several symbols may be required for different
aspects of the problem, and algorithms are characterized in terms of how
their time and space (i.e., computer memory) requirements scale with
respect to the problem size. Analysis of an algorithm estimates how
much time or memory a particular programmatic solution to a problem
will require, depending on the size of the data set.

‘‘Big O’’ notation is used to summarize the computational complexity of an
algorithm. An O(n) algorithm is one whose run time increases linearly with
the problem size, so that if the problem size doubles, the run time doubles. An
O(log n) problem takes time, which increases only with the log of the problem
size, a slower than linear rate of increase. O(n2) and O(n3) algorithms are
termed polynomial. Many spatial analysis problems lie in this area. For
example, calculating all the interevent distances as part of an analysis using
Ripley’s K is an O(n2) process, where n is the number of events. If we double
the number of events, then the time required for the analysis increases
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four-fold. Denoting the required number ofMonte Carlo simulations for some
required significance level by k, then, the full analysis will be roughlyO(kn2).
A more challenging class of problems is those for which the time or space

requirements increase exponentially with the size of the problem—that is,
O(cn) problems, where c is some constant greater than 1. Here, doubling the
size of the problem, depending on the value of c, can lead to an explosion in
the time or space requirements. If (say) c ¼ 1.5, then for n ¼ 100 and
increasing to 200, the time requirements for a solution increase by a factor of
1.5100 or around 4� 1017, a very large number indeed. To put this in
perspective, even if your test problem (n ¼ 100) runs in 1 microsecond, a
twofold increase in the problem size results in a runtime of about 12,700
years! Regardless of the value of c, there will always be some point at which
relatively small increases in the size of the problem lead to dramatic
increases in the time or space requirements (or both) for a solution. In
this example, even if the n ¼ 10,000 problem size runs in 1 microsecond,
increasing n to just 10,100 (i.e., by 1%) will produce the same computational
explosion.
Roughly speaking, polynomial problems are easy and problems with

worse than polynomial characteristics are hard (which really means
‘‘impossible except for small data sets’’). In fact, even polynomial problems
can be problematic. Suppose your computer can produce a solution to a n ¼
100 test case in 1 minute, and the algorithm in use is O(n2); then the real
data set, with n ¼ 10,000, will take 1002 ¼ 10,000 minutes to complete. Ten
thousand minutes is almost a full seven-day week, and an O(n2 log n) or
O(n3) problem will be even worse. The reason such problems are regarded
as easy is that, in terms of computational complexity, polynomial require-
ments can usually be met. Faster processors, more memory, and access to
many processors bring the computational demands of such problems
within reach. Exponential problems are hard because they do not scale
so nicely, and even with improving technology, they will remain a chal-
lenge. It is these problems that demand the innovative methods discussed
elsewhere in this chapter.

12.6. CONCLUSIONS: NEOGEOGRAPHIC
INFORMATION ANALYSIS?

Finally, so far, we have ignored yet another development of the last few
years. In the realm of complexity studies, it is common to argue that
systems are more than the sum of their parts, that at some point, ‘‘more’’ is
not merely ‘‘more’’ but that it fundamentally alters the nature of the system
under discussion, so that ‘‘more is different’’ (Anderson, 1972). The
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enormous, rapid, and highly visible popularity of GoogleEarth and other
‘‘virtual earth’’ products is surely an example of such a moment in the
realm of geographic information. As is often the case with commercially led
developments, it can be hard to separate the hype from the reality and the
significant implications of such developments from the superficial. Perhaps
the most important consequence is that there is now widespread awareness
of the importance of the spatial or geographic aspect of all (or almost all)
data. Almost everybody now realizes that ‘‘where’’ is as important an
attribute of our data as ‘‘what.’’

Placement of the spatial aspect of data firmly in the domain of the World
Wide Web has opened up the field of geographic information analysis to a
much wider and less specialist audience than ever before. The sheer
number of ‘‘mashup’’ Web sites that combine spatial data from one source
with map backgrounds from another, and overlay data from several
sources to produce unique, new, and dynamic map products, is extraordi-
nary. It is difficult to keep up with these developments. One Web site that
tries can be found at http://googlemapsmania.blogspot.com/ and gives some
idea of the diversity of end user–generated mapping now being produced.
Such maps are examples of so-called neogeography, which is dominated by
user-generated mapping and often includes spatial data generated by
geolocated devices such as mobile phones or digital cameras. Geotagged
photographs are a good example, as are geographic diaries, where a phone
or another device has been used to track a person’s position on Earth over
time. Many of the data generated by such processes are difficult to
accommodate in the traditional framework of geographic information
analysis: can point pattern analysis be conducted on a collection of photo-
graphs, with appropriate attention paid to the content of the photographs?

Of course, not all such data call for spatial analysis at all, but the rapid
proliferation of ways in which data can be generated, geolocated, and
subsequently mapped brings us back to a remark made in Chapter 1, where
we commented that ‘‘we often need geographic information analysis to
answer questions about the significance or importance of the apparently
obvious.’’ This comment was originally made about the many user-generated
maps made in GISs, but it must apply with even more force to the less formal
products of neogeography, particularly where such products are used to
argue a point or make a case.

Equally, the explosion of mapping-related content online has increased
the rate at which free and open source software tools are being developed
for the manipulation and analysis of the associated data. The resulting
potential for innovative and interesting analysis to be carried out without
the need for complex, expensive GIS infrastructure is an exciting develop-
ment that we warmly welcome. Needless to say, we think that such
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developments only reinforce the need for greater awareness of many of the
topics and themes in this book.
In that context, themany new techniques and approaches discussed in this

chapter, which aim in one way or another to enhance our ability to carry out
spatial analysis on ever-larger and more complex datasets, are important.
We are certain that at least some of the techniques we have mentioned will
make it into the everyday toolbox of the geographic information analyst,
whether as additions to conventional GIS or, as seems more likely, as
standalone tools in the loosely coupled modern computing environment.
In any case, whatever the fate of artificially ‘‘intelligent’’ analysis techniques
and their kindred simulations of the real world, we firmly believe that there
will always be space for the sensitive application of human intelligence to
spatial analysis within the GIS and wider communities. And that seems a
good note on which to close this book.

CHAPTER REVIEW

� There have been profound changes in both the computational envi-
ronment and the scientific environment in which we analyze geo-
graphic information. These changes have led to the development of
methods of analysis and modeling that rely on what has been called
geocomputation.

� Computers are now far more powerful than they were when most of
the techniques discussed in this book were developed.

� Complexity theory, and a recognition of the need to model nonlinear
effects, mean that explicit spatial prediction is rarely possible.

� In developing models, biological analogies have often been used,
mimicking how humans reason in so-called expert systems, how brains
work in artificial neural networks (ANNs), how species evolve by trial
and error in genetic algorithms, (GAs), and how individuals respond to
their environment and communicate with each other in agent-based
systems. All of these have been experimented with in recent geo-
graphic research.

� True spatial models are dynamic—for example, in cellular automata
(CA) and agent models.

� Coupling these types of models to existing GIS is not easy. It has been
done loosely by file transfer, tightly by ‘‘wrapping’’ model software and
GIS together, and only rarely in fully integrated systems.

� Cloud and grid computing bring the resources of supercomputing
within reach of many more users than ever before, and many spatial
analysis methods lend themselves to these approaches.
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� Computational complexity demonstrates that many problems remain
intractable, even with virtually limitless computational resources,
and reinforces the need for continued innovation in spatial analysis
methods.
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Appendix A

Notation, Matrices, and Matrix Mathematics

A.1. INTRODUCTION

In this appendix, we outline the notation that we use in this book and then
some of the mathematics of matrices and closely related vectors. This
material is worth mastering, because notation is important in ensuring
consistency in many of the materials we present and, as will be discovered,
matrices are vital to pursuing many topics in spatial analysis (and many
other disciplines). In some cases, they provide a compact way of expressing
questions and problems, but they also provide a useful generic way of
representing the extremely important concept of adjacency in spatial
systems.
We have two aims: (1) that you acquire familiarity with the notation and

terminology of matrices and (2) that you become used to the way simple
arithmetic operations are performed with them.
Before starting, we must introduce the basics of mathematical notation.

A.2. SOME PRELIMINARY NOTES ON NOTATION

In using mathematical notation in an introductory book, such as this, one
has to steer a course between two extremes. Too rigorous adherence to a
particular notation scheme can mystify the reader just as easily as a too
casual approach can confuse. A further complication is that there are
standard uses in the literature that need to be followed if possible. In
developing this book, we have tried to be as consistent as possible and to
follow some relatively straightforward basics. We hope that readers un-
familiar with the field will find this description of these basics useful.
A single instance of some variable or quantity is usually denoted by a

lowercase italicized letter. Sometimes this is the initial letter of the quantity
we’re talking about—say, h for height or d for distance. More often, in
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introducing a statistical measure, we don’t really care what the numbers
represent (because they could be anything), so we employ one of the com-
monly used mathematical letters, say, x or y. Commonly used letters are x, y,
z, n, m, and k. In the main text, these occur frequently, and generally have
the meanings described in Table A.1. In addition to these six, you will note
that d, w, and s also occur frequently in spatial analysis. The reason for use
of an upright bold symbol for s is made clear later, where vectors and
matrices are discussed.

A familiar aspect of mathematical notation is that letters from the Greek
alphabet are used alongside the Roman alphabet letters that you are used
to. You may already be familiar with mu (m) for a population mean, sigma
(s) for population standard deviation, chi (x) for a particular statistical
distribution, and pi (p) for . . . well, just for ‘‘pi.’’ In general, we try to avoid
using any Greek symbols other than these, although lambda (l) is com-
monly used for the intensity of a spatial process. In statistical logic, it is
important to keep in mind the distinction between some parameter of an
entire defined population and any estimate of that same parameter arrived
at by analysis of a sample from that population. Usually, which is which
will be evident from the context, but we also use Greek letters (as above) to
indicate population parameters. Estimates of parameters are indicated by
a ‘‘hat’’ symbol above the letter used for the parameter. Thus, the unknown
intensity of a spatial process is indicated as l and an estimate of it as l̂.

Symbols are introduced so that we can use mathematical notation to talk
about related values or to indicate mathematical operations that we want to
perform on sets of values. So, if h (or z) represents our height value, then h2

(or z2) indicates ‘‘height value squared.’’ The symbols are a concise way of
saying the same thing, and that’s very important when we describe more
complex operations on data sets.

Table A.1 Commonly Used Symbols and Their Meaning in This Book

Symbol Meaning

x The Easting geographic coordinate or a general data value

y The Northing geographic coordinate or a general data value

z, a, b The numerical value of some measurement recorded at the geographic

coordinates (x, y)

n, m The number of observations in a data set

k Either an arbitrary constant or the number of entities in a spatial

neighborhood

d Distance

w The strength or ‘‘weight’’ of interaction between locations

s An arbitrary (x, y) location
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Two symbols that you will see often are i and j. However, i and j normally
appear in a particular way. To describe complex operations on sets of values,
we need another notational device: the subscript. Subscripts are small italic
letters or numbers below and to the right of normal mathematical symbols:
the i in zi is a subscript. A subscript is used to signify that there may be more
than one item of the type denoted by the symbol, so zi stands for a series or set
of z values: z1, z2, z3, and so on. This has various uses:

� A set of values is written between braces, so that z1; z2; . . . ; zn�1; znf g
tellsusthat therearenelements inthissetofzvalues. Ifrequired, theset
as awholemaybe denoted by a capital letter:Z. A typical value from the
set Z is denoted zi, and we can abbreviate the previous partial listing to
simply Z ¼ {zi}, where it is understood that the set has n elements.

� In spatial analysis, it is common for the subscripts to refer to locations
at which observations have been made and for the same subscripts to
be used across a number of different data sets. Thus, h7 and t7 refer to
the values of two different observations—say, height and tempera-
ture—at the same location (‘‘location 7’’).

� Subscripts may also be used to distinguish different calculations of
(say) the same statistic on different populations or samples. Thus, mA

and mB denote the means of two different data sets, A and B.

The symbols i and j usually appear as subscripts in one of these ways. A
particularly common usage is to denote summation operations, indicated by
the S symbol (another Greek letter, this time capital sigma). This is where
subscripts come into their own, because we can specify a range of values that
are summed to produce a result. Thus, the sum

a1 þ a2 þ a3 þ a4 þ a5 þ a6 ðA:1Þ
is denoted

Xi¼6

i¼1

ai ðA:2Þ

indicating that summation of a set of a values should be carried out on all the
elements from a1 to a6. For a set of n ‘‘a’’ values, this becomes

Xi¼n

i¼1

ai ðA:3Þ

which is usually abbreviated to either

Xn
i¼1

ai ðA:4Þ
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or X
i

ai ðA:5Þ

where the number of values in the set of a’s is understood to be n. If, instead
of the simple sum, we wanted the sum of the squares of the a values, then we
would have

Xn
i¼1

a2
i ðA:6Þ

instead. Or perhaps we have two data sets, A and B, and we want the sum of
the products of the a and b values at each location. This would be denoted

Xn
i¼1

aibi ðA:7Þ

In spatial analysis, more complex operations might be carried out between
two sets of values, and then we may need two summation operators. For
example,

c ¼ k
Xn
i¼1

Xn
j¼1

zi � zj
� �2 ðA:8Þ

indicates that c is to be calculated in two stages. First, we take each z value in
turn (the outer i subscript) and sum the square of its value minus every z
value in turn (the j subscript). You can figure this out by imagining first
setting i to 1 and calculating the inner sum, which would be

P
j z1 � zj
� �2

. We
then set i to 2, and do the summation

P
j z2 � zj
� �2

, and so on all the way toP
j zn � zj
� �2

. The final ‘‘double summation’’ is the sum of all of these
individual sums, and c is equal to this sum multiplied by k. This will
seem complex at first, but you will get used to it.

A.3. MATRIX BASICS AND NOTATION

A matrix is a rectangular array of numbers arranged in rows and columns;
for example,

2 4 7 �2
0 1 �3 3
5 �1 7 1

2
4

3
5 ðA:9Þ

376 GEOGRAPHIC INFORMATION ANALYSIS



As shown above, a matrix is usually written enclosed in square brackets.
This matrix has three rows and four columns. The size of a matrix is
described in terms of the number of rows by the number of columns, so
the example above is a ‘‘3 by 4’’ matrix. A square matrix has equal numbers of
rows and columns. For example,

3 1 2
1 �3 4
6 �1 0

2
4

3
5 ðA:10Þ

is a 3 by 3 square matrix. When we wish to talk about matrices in general
terms, it is usual to represent them using uppercase ROMAN BOLD
characters:

A ¼
2 4 7 �2
0 1 �3 3
5 �1 7 1

2
4

3
5 ðA:11Þ

Individual elements in a matrix are generally referred to using lowercase

italic characters, with their row and column numbers written as subscripts.
The element in the top left corner of the above matrix is a11 ¼ 2, and element
a24 is the entry in row 2, column 4, and is equal to 3. In general, the subscripts
i and j are used to represent rows and columns, and a general matrix has n
rows and p columns, so we have

B ¼

b11 � � � b1j � � � b1p

..

.
} ..

.

bi1 bij bip

..

.
} ..

.

bn1 � � � bnj � � � bnp

2
6666664

3
7777775

ðA:12Þ

Vectors and Matr ices

A vector is a quantity that has size and direction. It is convenient to represent
a vector graphically by an arrow of length equal to its size, pointing in the
vector’s direction. Typical vectors are shown in Figure A.1. In geography,
vectors might be used to represent winds or current flows. In amore abstract
application, they might represent migration flows. In terms of a typology of
spatial data (see Chapter 1), we can add vectors to our list of types of quantity
so that we have nominal, ordinal, interval, ratio, and vector types. In
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particular, we can imagine a vector field representing, for example, the wind
patterns across a region, as shown in Figure A.2.

How do we represent a vector mathematically, and what do vectors have to
do with matrices? In two-dimensional space (as in the diagrams), we can use
two numbers, representing the vector components in two perpendicular
directions. This should be familiar from geographic grid coordinate systems

Figure A.1 Typical vectors.

Figure A.2 A vector field.
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and is shown in Figure A.3. The three vectors shown have components a ¼
(�3, 4), b ¼ (4, 3), and c ¼ (6, �5) in the east–west and north–south
directions, respectively, relative to the coordinate system shown on the grid.
An alternative way to represent vectors is as column matrices, that is, as 2

by 1 matrices:

a ¼ �3
4

� �
; b ¼ 4

3

� �
; and c ¼ 6

�5

� �
ðA:13Þ

Thus, a vector is a particular type of matrix with only one column. As here,
vectors are usually denoted by a lowercase roman bold symbol. In the same
way, point locations relative to an origin can be represented as vectors. This
is why we sometimes use the notation in the main text where a point is
represented as

s ¼ x
y

� �
ðA:14Þ

Note also that we can represent a location in three dimensions in exactly
the same way. Instead of a 2 by 1 column matrix, we use a 3 by 1 column
matrix. More abstractly, in n-dimensional space, a vector will have n rows, so
that it is an n by 1 matrix.

A.4. SIMPLE MATRIX MATHEMATICS

Now let us review the mathematical rules by which matrices are
manipulated.

Figure A.3 Vectors in a coordinate space.
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Addit ion and Subtract ion

Matrix addition and subtraction are straightforward. Corresponding ele-
ments in the matrices in the operation are simply added (or subtracted) to
produce the result. Thus, if

A ¼ 1 2
3 4

� �
ðA:15Þ

and

B ¼ 5 6
7 8

� �
ðA:16Þ

then

A þB ¼ 1þ 5 2þ 6

3þ 7 4þ 8

� �

¼ 6 8

10 12

� � ðA:17Þ

Subtraction is defined similarly. It follows from this thatAþB¼BþA. It
also follows that A and B must each have the same number of rows and
columns for addition (or subtraction) to be possible.

For vectors, subtraction has a specific useful interpretation. If s1 and s2 are
two locations, then the vector from s1 to s2 is given by s2 � s1. This is
illustrated in Figure A.4, where the vector x from s1 to s2 is given by

x ¼ s2 � s1

¼ 5

7

� �
� 8

3

� �

¼ �3

4

� � ðA:18Þ

Mult ip l icat ion

Multiplication of matrices and vectors is more involved. The easiest way to
think of themultiplication operation is that we ‘‘multiply rows into columns.’’
Mathematically, we can define multiplication as follows: If

C ¼ AB ðA:19Þ
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then the element in row i, column j of C is given by

cij ¼
X
k

aikbkj ðA:20Þ

Thus, element in the ith row and jth column of the product ofA andB is the
sum of the products of corresponding elements from the ith row of A and the
jth column of B. Working through an example will make this clearer. If

A ¼ 1 �2 3
�4 5 �6

� �
ðA:21Þ

and

B ¼
6 �5
4 �3
2 �1

2
4

3
5 ðA:22Þ

then, for the element in row 1, column 1 of the product C, we have the
sum of products of corresponding elements in row 1 of A and column 1 of B,
that is,

c11 ¼ a11b11 þ a12b21 þ a13b31
¼ 1� 6ð Þ þ �2� 4ð Þ þ 3� 2ð Þ
¼ 6� 8þ 6
¼ 4

ðA:23Þ

S1

S2

x s - s= 2 1

Figure A.4 Vector subtraction gives the vector between two point locations.
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Similarly, we have

c12 ¼ 1��5ð Þ þ �2��3ð Þ þ 3��1ð Þ
¼ �5þ 6þ �3ð Þ
¼ �2

c21 ¼ �4� 6ð Þ þ 5� 4ð Þ þ �6� 2ð Þ
¼ �24þ 20þ �12ð Þ
¼ �16

c22 ¼ �4��5ð Þ þ 5��3ð Þ þ �6��1ð Þ
¼ 20þ �15ð Þ þ 6
¼ 11

ðA:24Þ

This gives us the final product matrix

C ¼ 4 �2
�16 11

� �
ðA:25Þ

Figure A.5 shows how multiplication works schematically. Correspond-
ing elements from a row of the first matrix and a column of the second are
multiplied together and summed to produce a single element of the product

row i

co
lu

m
n

j

product element ij

sum of
products

Figure A.5 Matrix multiplication.
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matrix. This element’s position in the product matrix corresponds to the
row number from the first matrix and the column number from the second.
Because of the way matrix multiplication works, it is necessary that the
first matrix has the same number of columns as the second has rows. If this
is not the case, then the matrices cannot be multiplied. If you write the
matrices you want to multiply as nAp (n rows, p columns) and xBy (x rows, y
columns), then you can determine whether they multiply by checking that
the subscripts between the two matrices are equal:

nAp xBy ðA:26Þ

If p ¼ x, then this multiplication is possible and the product AB exists.
Furthermore, the product matrix has dimensions given by the ‘‘outer’’
subscripts, n and y, so that the product will be an n by y matrix. On the
other hand, for

xBy nAp ðA:27Þ

if y 6¼ n, then BA does not exist and multiplication is not possible. Note that
this means that, in general, for matrices

AB 6¼ BA ðA:28Þ

and multiplication is not commutative: it is order dependent. This is impor-
tant when matrices are used to transform between coordinate spaces (see
Section A.6).
In the example above,

C ¼ AB ¼ 4 �2
�16 11

� �
ðA:29Þ

but

D ¼ BA ¼
26 �37 48
16 �23 30
6 �9 12

2
4

3
5 ðA:30Þ

Here the productD is not even the same size asC, and this is not unusual.
However, it is useful to know that (AB)C¼A(BC). The rule is that, provided
the written order of multiplications is preserved, multiplications may be
carried out in any sequence.
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Matr ix Transposit ion

The transpose of a matrix is obtained by swapping rows for columns. This
operation is indicated by a superscript T, so that the transpose ofA is written
AT. Hence,

1 2 3
4 5 6

� �T
¼

1 4
2 5
3 6

2
4

3
5 ðA:31Þ

Note that this definition, combined with the row-column requirement for
multiplication, means that ATA and AAT always exist. The product aTa is of
particular interest when a is a vector, because it is equal to the sum of the
squares of the components of the matrix. This means that the length of a
vector a is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aTað Þ

p
, from Pythagoras’s Theorem. See Section A.6 for

more on this topic.

A.5. SOLVING SIMULTANEOUS EQUATIONS
USING MATRICES

We now come to one of the major applications of matrices. Suppose we have a
pair of equations in two unknowns, x and y, for example:

3xþ 4y ¼ 11
2x� 4y ¼ �6

ðA:32Þ

The usual way to solve this is to add a multiple of one of the equations to
the other, so that one of the unknown variables is eliminated, leaving an
equation in one unknown, which we can solve. The second unknown is then
found by substituting the first known value back into one of the original
equations. In this example, if we add the second equation to the first, we get

3þ 2ð Þxþ 4� 4ð Þy ¼ 11þ �6ð Þ ðA:33Þ

which gives us

5x ¼ 5 ðA:34Þ

so that x ¼ 1. Substituting this into (say) the first equation, we get

3 1ð Þ þ 4y ¼ 11 ðA:35Þ
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so that

4y ¼ 11� 3 ðA:36Þ

which we easily solve to get y¼ 2. This is simple enough. But what if we have
3 unknowns, or 4, or 100, or 10,000? This is where matrix algebra comes into
its own. To understand how, we must introduce two more matrix concepts:
the identity matrix and the inverse matrix.

The Ident i ty Matr ix and the Inverse Matr ix

The identity matrix, written I, is defined such that

IA ¼ AI ¼ A ðA:37Þ

Think of the identity matrix as the matrix equivalent of the number 1,
since 1� z ¼ z� 1 ¼ z, where z is any number. It turns out that the identity
matrix is always a square matrix with the required number of rows and
columns for the multiplication to go through. Elements in I are all equal to 1
on the main diagonal from top left to bottom right. All other elements are
equal to 0. The 2 by 2 identity matrix is

I ¼ 1 0
0 1

� �
ðA:38Þ

The 5 by 5 identity matrix is

I ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 ðA:39Þ

and so on.
We now define the inverse A�1 of matrix A, such that

AA�1 ¼ A�1A ¼ I ðA:40Þ

Finding the inverse of amatrix is tricky and is not always possible. For 2 by
2 matrices it is simple:

a b
c d

� ��1

¼ 1

ad� bc
d �b

�c a

� �
ðA:41Þ
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For example if

A ¼ 1 2
3 4

� �
ðA:42Þ

then we have

A�1 ¼ 1

1� 4ð Þ � 2� 3ð Þ
4 �2

�3 1

" #

¼ � 1

2

4 �2

�3 1

" #

¼
�2 1

3

2
� 1

2

" #
ðA:43Þ

We can check that this really is the inverse of A by calculating AA�1:

AA�1 ¼ 1 2

3 4

� �
�

�2 1
3

2
� 1

2

" #

¼
1��2ð Þ þ 2� 3

2

� �
1� 1ð Þ þ 2� � 1

2

� �

3��2ð Þ þ 4� 3

2

� �
3� 1ð Þ þ 4� � 1

2

� �
2
64

3
75

¼ 1 0

0 1

� �
ðA:44Þ

We leave it to you to check that the product A�1A also equates to I.
Unfortunately, finding the inverse for bigger matrices rapidly becomes

much more difficult as the matrix gets bigger. Fortunately, it isn’t necessary
for you to know how to perform matrix inversion. The important things to
remember are its definition and its relation to the identity matrix. Almost
invariably, computer routines using well-known and reliable algorithms will
be employed to invert any large matrices you come across.

Some other points are also worth noting:

� The quantity ad � bc is known as the matrix determinant and is
usually denoted Aj j. If Aj j ¼ 0, then the matrix A has no inverse. The
determinant of a larger square matrix can be found recursively from
the determinants of smaller matrices known as the cofactors of the
matrix. You will find details in books on linear algebra (Strang, 1988,
is recommended).
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� It is also useful to know that

ABð Þ�1 ¼ B�1A�1 ðA:45Þ

You can verify this from

B�1A�1AB ¼ B�1 A�1A
� �

B

¼ B�1 Ið ÞB
¼ B�1B
¼ I

ðA:46Þ

� Also useful is

AT
� ��1

¼ A�1
� �T

ðA:47Þ

Now, Back to the Simultaneous Equat ions

Nowwe know about inverting matrices, we can get back to the simultaneous
equations:

3xþ 4y ¼ 11
2x� 4y ¼ �6

ðA:48Þ

The key is to realize that these can be rewritten as the matrix equation:

3 4
2 �4

� �
x
y

� �
¼ 11

�6

� �
ðA:49Þ

Now, to solve the original equations, if we can find the inverse of the first
matrix on the left-hand side, we can premultiply both sides of the matrix
equation by the inverse matrix to obtain a solution for x and y directly. The
inverse of

3 4
2 �4

� �
ðA:50Þ

is

� 1

20
�4 �4
�2 3

� �
ðA:51Þ

Doing the premultiplication on both sides, we get

� 1

20
�4 �4
�2 3

� �
3 4
2 �4

� �
x
y

� �
¼ � 1

20
�4 �4
�2 3

� �
11
�6

� �
ðA:52Þ
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which gives us

1 0

0 1

� �
x

y

� �
¼ � 1

20

�4� 11ð Þ þ �4��6ð Þ
�2� 11ð Þ þ 3��6ð Þ

� �

x

y

� �
¼ � 1

20

�44þ 24

�22� 18

� �

¼ � 1

20

�20

�40

� �

x

y

� �
¼ 1

2

� �
ðA:53Þ

which is the same solution for x and y that we obtained before. This all
probably seems a bit laborious for just two equations! The point is that this
approach can be scaled up very easily to much larger sets of equations, and
provided we can find the inverse of the matrix on the left-hand side, the
equations can be solved. We can generalize this result. Any system of
equations can be written

Ax ¼ b ðA:54Þ

and the solution is given by premultiplying both sides by A�1 to get

A�1Ax ¼ A�1b ðA:55Þ

Since A�1A ¼ I, we then have

Ix ¼ x ¼ A�1b ðA:56Þ

This is an amazingly compressed statement of the problem of solving any
number of equations. Remember that the matrix equation Ax ¼ b can
represent a system of hundreds or even thousands of equations, not just
two or three. Note also that if we calculate the determinant of A and find
that it is zero, then we know that the equations cannot be solved, since A
has no inverse. Furthermore, having solved this system once by finding
A�1, we can quickly solve it for any values on the right-hand side of the
equation.

Because of this general result, matrices have become central to modern
mathematics, statistics, computer science, and engineering. In a smaller
way, they are important in spatial analysis, as will become clear in the main
text.
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A.6. MATRICES, VECTORS, AND GEOMETRY

Another reason for the importance of matrices is their usefulness in repre-
senting coordinate geometry. We have already seen that a vector (in two or
more dimensions) may be considered a column vector where each element
represents the vector’s length parallel to each of the axes of the coordinate
space.We expand here on a point that we have already touched on relating to
the calculation of the quantity aTa for a vector. As we have already men-
tioned, this quantity is equal to the sum of the squares of the components of
a, so that the length of a is given by

jjajj ¼
ffiffiffiffiffiffiffiffiffi
aTa

p
ðA:57Þ

This result applies regardless of the number of dimensions of a.
We can use this result to determine the angle between any two vectors a

and b. In Figure A.6, the vector a forms an angle A with the positive x axis,
and b forms angle B. The angle between the two vectors (B � A) we label u.
Using the well-known trigonometric equality

cos B� Að Þ ¼ cosA cosBþ sinA sinB ðA:58Þ

we have

cosu ¼ cosA cosBþ sinA sinB

¼ xa
jjajj �

xb
jjbjj

	 

þ ya

jjajj �
yb
jjbjj

	 


¼ xaxb þ yayb
jjajjjjbjj

¼ aTbffiffiffiffiffiffiffiffiffi
aTa

p ffiffiffiffiffiffiffiffiffi
bTb

p

ðA:59Þ

Figure A.6 Derivation of the expression for the angle between

two vectors (see text).
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The quantity aTb is known as the dot product or scalar product of the two
vectors and is simply the sum of products of corresponding vector compo-
nents. One of the most important corollaries of this result is that two vectors
whose dot product is equal to zero are perpendicular or orthogonal. This
follows directly from the fact that cos 90� is equal to zero. Although we have
derived this result in two dimensions, it again scales to any number of
dimensions, even if we have trouble understanding what ‘‘perpendicular’’
means in nine dimensions! The result is also considered to apply to matrices,
so that if ATB ¼ 0, then we say that matrices A and B are orthogonal.

The Geometr ic Perspect ive on Matr ix Mult ip l icat ion

In this context, it is useful to introduce an alternative way of understanding
the matrix multiplication operation. Consider the the 2 � 2 matrix, A, and
the spatial location vector, s

A ¼ 0:6 0:8
�0:8 0:6

� �
; s ¼ 3

4

� �
ðA:60Þ

The product, As, of these matrices is

As ¼ 5
0

� �
ðA:61Þ

We can look at a diagram of this operation in two-dimensional coordinate
space, as shown on the left-hand side of Figure A.7. The vectorAs is a rotated
version of the original vector s. If we perform the same multiplication on a
series of vectors, collected together in the two-row matrix S so that each
column of S is a vector,

AS ¼ 0:6 0:8

�0:8 0:6

� �
1 3 0 �1 �2:5

1 �2 5 4 �4

� �

¼ 1:4 0:2 4 2:6 �4:7

�0:2 �3:6 3 3:2 �0:4

� � ðA:62Þ

then we can see that multiplication by the matrix A may be considered
equivalent to a clockwise rotation of the vectors (through 53.13� for the
record). These operations are shown on the right-hand side of Figure A.7 for
confirmation.

In fact, any matrix multiplication may be thought of as a transformation
of some coordinate space. This property of matrices has ensured their
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widespread use in computer graphics, where they are an efficient way of
doing the calculations required for drawing perspective views. Transfor-
mation matrices have the special property that they project the three
dimensions of the objects displayed into the two dimensions of the
screen. By changing the projection matrices used, we change the viewer’s
position relative to the displayed objects. This perspective on matrices
is also important for transforming between geographic projections (see
Chapter 11).
This perspective also provides an interpretation of the inverse of a matrix.

Since multiplication of a vector s by a matrix, followed by multiplication by
its inverse, returns s to its original value, the inverse of a matrix performs
the opposite coordinate transformation to that of the original matrix. The
inverse of the matrix above therefore performs a 53.13� counterclockwise
rotation. You may care to try this on some examples.

A.7. EIGENVECTORS AND EIGENVALUES

Two properties important in statistical analysis are the eigenvectors and
eigenvalues of a matrix. These only make intuitive sense in light of the
geometric interpretation of matrices we have just introduced—although you
will probably still find it a stretch. The eigenvectors e1 . . . enf g and

Figure A.7 Matrix multiplication as a transformation of coordinate space. In the

left-hand grid, the multiplication As is shown. In the right-hand grid, each column

of S is shown as a vector that is rotated after multiplication by A (see text).
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eigenvalues l1 . . . lnf g of an n � n matrix A each satisfy the following
equation:

Aei ¼ lei ðA:63Þ
Seen in terms of the multiplication-as-transformation view, this means

that the eigenvectors of a matrix are directions in coordinate space that are
unchanged under transformation by that matrix. Note that the equation
means that the eigenvalues and eigenvectors are associated with one
another in pairs l1; e1ð Þ; l1; e1ð Þ; . . . ln; enð Þf g. The scale of the eigenvec-
tors is arbitrary, since they appear on both sides of the above equation, but
normally they are scaled so that they have unit length. We won’t worry too
much about how the eigenvectors and eigenvalues of a matrix are deter-
mined (see Strang, 1988, for details). As an example, the eigenvalues and
eigenvectors of the matrix in our simultaneous equations

3 4
2 �4

� �
ðA:64Þ

are

l1 ¼ 4; e1 ¼ 0:9701
0:2425

� �	 

and l2 ¼ �5; e2 ¼ �0:4472

0:8944

� �	 

ðA:65Þ

It is straightforward to check this result by substitution into the defining
equation above.

Figure A.8 may help to explain the meaning of the eigenvectors and
eigenvalues. The unit circle shown is transformed to the ellipse shown under
multiplication by the matrix we have been discussing. However, the eigen-
vectors have their direction unchanged by this transformation. Instead, they
are each scaled by a factor equal to the corresponding eigenvalue.

An important result (again, see Strang, 1988) is that the eigenvectors of a
symmetric matrix are mutually orthogonal. That is, if A is symmetric about
its main diagonal, then any pair of its eigenvectors ei and ej have a dot
product eT

i ej ¼ 0. For example, the symmetric matrix

1 3
3 2

� �
ðA:66Þ

has eigenvalues and eigenvectors

4:541;
0:6464
0:7630

� �	 

and �1:541;

�0:7630
0:6464

� �	 

ðA:67Þ
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and it is easy to confirm that these vectors are orthogonal. The widely used
method, principal components analysis, makes use of this result.
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Figure A.8 The geometric interpretation of eigenvectors and

eigenvalues (see text).
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Accuracy, 320, 321, 336
Addition, of matrices, 380
Adjacency, 34, 41, 43–44, 48, 181, 191,

201, 219, 234, 373. See also
Contiguity

Affine transformation, 322–324
Agent-based systems, 354–355,

358–360, 363
Aggregation, 37, 73, 189
Alberta, temperature analysis,

251–252, 281–284, 300–301
Altitude, 246. See also Elevation;

Height
Animation, 63–64, 361
Anisotropy, 108, 289–290, 300, 309,

310
Apple II, David’s, 343
Approximation, of a surface,

246–247
ArcGISTM, 11, 206, 286
Areas, 6, 75, 171, 188–191, 188, 219
and spatial processes, 113–114
as sampling, 188
calculation from vertices, 192–193
geometric properties of, 191–199
imposed/command, 188
of habitats, 199
perception of, 71
See also Polygons

Artificial intelligence (AI), 347
Aspect, 242, 249, 250, 263, 264–266,

267, 318, 362
Atmospheric pollution, 279
Atmospheric pressure, 247, 263
Auckland, 201, 206–210, 220
Australia, 193–194
Authorization, 295

Automatons, 356–357
Autonomy, in agent models, 354

Bandwidth, 69–70, 229
Baye’s Theorem, 162, 331–333
Bertin, Jacques, see Graphic variables
Binary, maps of data, 72, 211, 316, 329
Bonferroni correction, 224
Boolean overlay, problems in,

325–326, 327, 328, 336
Boundaries, uncertainty in, 16–18
Boxplots, 290, 292–293
Brushing, 64, 207
Bubble plots, 80
Buffering, 317
Bulls eyes, in interpolation, 308–309

Cancer clusters, 166–177
Cartograms, 65, 78–79
Cartography, 56–58, 246, 347, 349
Case/control studies, in point pattern

analysis, 171–172
Catchments, 268
Categorical data analysis, in overlay,

335–336
Categorical variables, 7
Cellular automata (CA), 356–358
Census data, of population, 95, 169,

175, 188, 206, 344
Central limit theorem, 257
Central place theory, 107
Centrography, 125–126
Centroid, 171, 175, 219
Channels, 268
Chaos, 58, 97
Chi-square statistic, in mapping, 77
Cholera, 166
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Chorochromatic maps, 72–73
Choropleth maps, 73–79, 113
Classification, 75–76
Closed-system models, 356
Cloud computing, 363–364
Clustering, 100, 107, 122, 125, 130,

139, 144, 145, 164–165,
173–177, 180, 217, 355

Coefficient of determination, in trend
surface analysis, 285

Cofactors, of matrices, 386
Coffee shops, 65–66, 110–111,

129–130
Combinations, 102–103, 316
Compactness ratio, 197
Complete spatial randomness (CSR),

99. See also IRP/CSR
Complexity, 344, 345–346, 347, 364,

365–366
Confidence intervals, 95
Connection, in networks, 108
Contact numbers, 197–198
Contiguity, 203, 219. See also

Adjacency
Continuity, 240–241, 252, 254, 295
Contours, 70, 80–82, 243, 244, 246,

257, 261, 274, 288, 326. See also
Isolines

Control points, 243, 245, 247, 248, 250,
253, 256–257, 261, 262, 278,
279, 287, 294, 307, 308, 323

Coordinates, 278, 279, 281, 287, 378
Cartesian, 85, 96, 122
geometric operations on, 389–390
coregistration of, 321–324, 336

Correlation coefficient, 86, 206, 208
Coupling, models and GIS, 360–363
Covariance, 205
Crime, patterns of, 36, 39, 70
CrimeStat III program, 150, 177
Cross-validation, 261
Crossover, in genetic algorithms,

353
Crowd sourcing, 57
Curvature, of fields, 83, 247, 270

D(d) function, 171–172
Dasymetry, in maps, 78
Data:

categorical, 211
dimensions of, 22
driven approaches in overlay,

326–327, 329, 331, 334
effects of availability, 343–344
interval and ratio, 20–21
manipulations in GIS, 2–4
mining of, 352
multidimensional, 10
nominal, 19–20
ordinal, 20
time change in, 10–11
typologies of, 19–22
units of, 22–23

Decision support system, 330
Delauney triangulation, 203, 210, 250,

262. See also Triangulation,
irregular network

DEM, see Digital elevation matrix
(DEM)

Density, 68, 124, 126, 192
of population, 73–74, 279
See also Intensity

Derivatives, of height, 241,
Determinants, of matrices, 386
Diagnosis, and expert systems,

348–349, 352
Digital elevationmatrix (DEM), 7, 243,

248–249, 250, 263, 267, 268,
269, 318, 321

Dimensional analysis, 9, 22
Direction, 108, 111, 293. See also

Anisotropy
Discriminant analysis, 351
Display, 57–60. See also

Geovisualization; Maps;
Visualization

Distance, 34, 41, 41–43, 47, 201, 203,
219, 220, 234

as relation on a set, 85
decay models, 173
in semivariograms, 302
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in shapes, 110
to nearest neighbor, 123, 130–133,

132, 134, 140
Dot maps, 66–71, 98, 108, 124
Dot product, of vectors, 390
Dounreay (Scotland), 167, 172–173
Drainage, networks of, 268–269
Drift, in a spatial process, 107, 115,

300–301, 310. See also
Stationarity

Drift analysis of regression
parameters (DARP), 229

Drumlins, 144–145

Eccentricity, 197
Ecological fallacy, 34, 39–40, 189
Ecology, 122, 127, 196, 241, 163–164,

263, 317, 329
Edge effects, 34, 40–41, 95, 122–123,

137–139, 148, 150, 290
Eigensystem, of a matrix, 204, 331,

391–392
Elevation, 35, 240, 241–242, 252, 263,

267, 308. See also Altitude;
Height

Elongation ratio, 197
Entities, in representation, 8
Enumeration district, 175
Epidemiology, 122, 128, 152, 153, 158,

163–164, 168, 170, 359
Equifinality, 360
Error, 267, 278, 279, 280, 296
in area estimates, 194
in geometric operations, 27–28
in overlay inputs, 325–326

Events, in point patterns, 99,
101–104, 122, 134–135

Evolution, 352–354
Expert systems, 348–349
Exploratory data analysis, 58, 217, 235
Exponential, time order, 366

F ratio, in trend surface analysis, 285–
286

F(d)function,135–137,139,145,152,181

Facets, 250, 262
Factorials, 103, 106
Fallacy, ecological, 34, 39–40, 189
Favorability, functions of, 326–328,

336
Fields, 96, 114–115, 189, 239–274

curvature of, 83
data sources, 243–244
derived measures on, 263–270
display of, 80–84
gradients of, 80, 82
locally valid, 247–248
mapping of, 80–84
models for area data, 78
representation of, 245–250
vector, 82–83, 378

First Law of Geography, see Tobler’s
Law

First-order effects, 36, 102, 107–108,
124, 152, 159, 162–164, 279

Fishnet plot, 83
Fitness criteria, 353
Focal operations, 272–273
Focused tests, 166, 172–173
Form ratio, 197
Fractals, 13–17
Fragmentation, 198–199
FRAGSTATS program, 199, 211
Frequency distribution:

probability of events in a pattern,
101–102

of line lengths, 109–110
Functions, in map algebra, 271
Fuzziness, 16–18, 194

G(d) function, 132–134, 145, 152, 181
Gabriel graph, 178–179
Gap analysis, 263, 317, 329
Gaussian model, for semivariogram,

297–298
Geary’s C, 35, 211, 293
General tests, 166
Genetic algorithms (GA), 177,

352–354
Genomes, as geography, 85
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Geocomputation, 174, 177, 346–348
GeoDaTM program, 206–207
Geographic information analysis, and

cartography, 56–58, 59
Geographic information system (GIS),

2, 3, 4, 6, 8, 24–28, 34, 56, 66, 71,
73, 78, 107, 121, 174, 177, 181,
189, 190, 191, 192, 193, 219, 235,
242, 243, 246, 248, 250, 259, 261,
262, 263, 268, 270, 282, 286, 297,
302, 307, 316, 318, 321, 322, 324,
325, 326, 330, 343, 346, 347, 349,
354

Geographical analysis machine
(GAM), 356, 359, 360–363, 366,
367

Geographically weighted regression
(GWR), 65, 216, 226–233, 279,
336, 364

Geography, quantitative, 41,
347

Geometry, 25–26, 325
Geomorphology, 263–265
Georeferencing, 189, 320, 321–324.See

also Coordinates
Geostatistics, 115, 294–295, 310. See

also Kriging
Geotagging, 366
Geovisualization, 55–87, 174. See also

Display; Maps; Visualization
Getis-Ord statistics, 219–222,

224
GIS, see Geographic information

system (GIS)
Global operations, in map algebra, 273
Global positioning system (GPS), 56,

72, 73
Globes, virtual, 366
Goals, in agent models, 354
GoogleTM, 56–57, 66, 68, 113, 366
Gould, Peter, 158, 160
GPS, see Global positioning system
Gradient, see Slope, of a field; Aspect
Graphic variables, 60–65
Grid computing, 363–365

Grid-on-grid, 321–324
Ground truth, 351
GS+ program, 308
GSLIB program, 308
GWR, see Geographically weighted

regression

Hachures, 82
Harvey, David, 160
Height, 241–242, 252, 263, 278.

See also Altitude; Elevation
Hexagons, 189, 196
Hierarchy, analytical process, 331
Hill shading, 82
Hot spots, 70, 122
House prices, 229–230
Hydrology, 241, 263

IAN program, 199
Identity matrix, 385
IDRISITM program, 286
Independence, 101, 345
Independent random process,

see IRP/CSR
Indicator variables, 311
Inference, 220, 223–226, 233, 235, 349
Information, spaces of, 85
Inhibition process, 165
Inhomogeneity, in a Poisson process,

164, 168–172, 175–177, 221
Intensity, 68, 107–108, 126–127, 160,

164, 170, 229
Interaction, 23, 34, 41, 44–45, 201, 203,

356
Internet, 56, 112, 354. See also World

Wide Web (WWW)
Interpolation, 44, 70, 79, 80, 200, 243,

245, 246, 250–263,
278–279, 317, 321, 326, 364

as a local statistical operation, 216,
234

need for caution, 273–274
of nominal data, 255
See also Kriging

Intrinsic hypothesis, 302
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Inverse distance weighting (IDW),
257–261, 293–295, 306, 308,
311–312. See also Interpolation;
Kriging

Inverse matrix, 385–388
IRP/CSR, 94, 99, 122, 130, 137,

140–141, 151, 159, 161, 164,
165, 166, 355

alternatives to, 162–165
and local statistics, 223
See also Process, independent

random (IRP/CSR)
Isolines, 80–82, 115, 124, 145. See also

Contours
Isotropy, 108, 293, 302, 310

Joins count statistics, 211

K(d) function, 146, 152, 181, 342, 364–
365

Kernel density estimation (KDE), 68–
71, 79, 124, 139, 152, 165, 170–
171, 174, 228, 233, 364

Knowledge:
role in expert systems, 348, 349
role in overlay, 326–327

Kriging, 261, 279, 293–312 342, 362.
See also Interpolation

L(d) function, 146,
Lagrangian, 303, 304, 306
Lags, spatial, 199, 203, 209–210, 227,

290, 292, 295
Land cover/use, 242, 264, 269, 316,

330–331, 351, 358, 359, 360–361
Landserf program, 84
Landslides, overlay examples, 317,

325–326, 327, 328–329
Latitude/longitude, 321, 322. See also

Coordinates
Layer coloring, 81
Layers, 189, 350
Learning, in artificial neural nets, 350
Least squares, 226–227, 230, 280, 281–

284, 294, 304

Length, 108–110
Leukemia, 166–177
LIDAR, 244–245, 364
Life, Game of, 357–358
Likelihood, 161–162
Line objects, 6, 108–109
Linear model, for semivariogram, 295–

304
Linear regression, 226, 230, 279, 323,

334–346
Linking, maps to data, 64, 207
Local:

indicators of spatial association
(LISA), 222–223, 364

operations, in map algebra,
271–272

rules, 358, 362
spatial average, 255–256
statistics, 65, 216–235
valid analytic surfaces, 267, 287

Locations, in point pattern description,
122, 124, 133

Log-linear modeling, in overlay,
335

Map algebra, 216, 270–274, 327
Map Explorer program (MAPEX), 177
Maps, 55–92

and processes, 94–100
and time, 63–64
as propositions, 66
binary, 7, 211, 316, 329
of local statistics, 217, 229–230, 232
of nonspatial data, 84
overlay of, 316–336
See also Display; Geovisualization;

Visualization
Marking, of a point pattern, 122, 124
Mashups, 366
Matrices:

in analysis, 47–50
in point pattern analysis, 180–182
inversion of, 283, 286, 304, 306, 307
multiplication of, 203, 282–284, 380–

384, 390–391
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MAUP, see Modifiable areal unit
problem

Mean center, 125, 195
Measurement, rules of, 18, 63, 97
Meningitis, 167
Minimum spanning tree, 178–179
Mining, of data, 352
MINITABTM program, 287
Misspecification, 227
Modifiable areal unit problem

(MAUP), 34, 36–39, 95, 122,
127, 138, 144–146, 169, 170,
173, 188–189

Monte Carlo methods, 148–152,
208–209, 217, 225, 235, 346,
364, 365. See also Simulation

Moran scatterplot, 65, 207–208, 221
Moran’s I, 35, 205–210, 222
Multiagent systems, 354
Multicolinearity, 233
Multicriteria evaluation (MCE), 329–

330
Multidimensional scaling, 86
Multilevel modeling, 228
Multiple testing, and local statistics,

224
Multiquadric analysis, 262
Mutation, in genetic algorithms, 353

Nationalmapping agencies, 57, 81, 191
Nearest neighbor, 48, 180–181, 201

analysis, 140, 143–145, 152
density function, 137
regression, 229

Negative exponential, 260
Neighborhood, 34, 41, 45–46,

200–205, 234
from range in geostatistics, 296
in map algebra, 272

Neogeography, 56–58, 365–367
NetLogoTM program, 359
Networks, 204, 268

analysis of, 112–113
neural, 349–352
of computers, 364

Neurons, in artificial neural nets, 350
New Zealand, 13, 73
Nonlinearity, and science, 345
Nuclear waste, overlay examples, 318–

319, 325–326, 327, 329
Nugget effect, 296, 297, 300, 308

O notation, 364–365
Objects, 6–7, 9, 94, 240

and change over time, 360
complications, 10–17
effects of scale on, 11–12

Operators, in map algebra, 270
Optimality, in interpolation, 279, 294,

309. See also Kriging
Ordinal data, in overlay, 327, 328
Ordnance Survey, 12, 81, 175, 249
O-ring statistic, 137
Orthogonality, 390, 392
Overfitting, in trend surface analysis,

286
Overlay, 316–33, 366

Packing process, effects of, 165
Pair correlation function, 137, 151
Passes, 248, 250. See also Peaks; Pits;

Plains; Ridges
Patches, in ecology, 199
Pattern, 94, 200
PCRasterTM program, 11, 362
Peaks, 248, 250, 267. See also Passes;

Pits; Plains; Ridges
Pedestrianflows,predictionof, 358–359
Perimeter, 196
Pie charts, 71
Pin maps, see Dot maps
Pits, 248, 250, 267–268. See also

Passes; Peaks; Plains; Ridges
Plains, 268. See also Passes; Peaks;

Pits; Ridges
Planar enforcement, 190, 317, 324
Point patterns, 121–155, 366
Points, very important (VIP), 250. See

also Passes; Peaks; Pits; Plains;
Ridges
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Polygons, 219, 250
area of, 191–194
centroid of, 195
overlay of, 317–320
skeleton of, 195
See also Areas

Polynomials, 267, 280–287
time order, 364–365
See also Local, valid analytical

surfaces; Trend surfaces
Populations, in spatial analysis, 95
Post hoc testing, 173
Precision, in data, 320, 336
Principal components analysis, 86, 393
Probability 161, 348
distributions and spatial processes,

99, 101–105
normal distribution of, 99, 149
Poisson distribution of, 130,

142–142, 169
binomial distribution of, 103,

113
chi-square distribution of,

142–143
conditional, 332
density functions, 74, 109
hypergeometric distribution of, 113
in overlay, 327
joint, 332
maps of, 78

Process:
deterministic, 95–96
independent random (IRP/CSR), 94,

96, 99, 100–104, 107, 117
spatial, 94–100

Projection, 79, 122, 242, 391
Proportionate symbol maps, 71–72
Proximity polygons, 34, 50–52,

177–180, 189, 201, 250, 254–255
P-values, 161, 208, 224, 225
Pythagoras theorem, 42, 131, 266, 384
Python language, 362

Quadrat analysis, 101–106,
127–129, 142–143

Qualitative methods, 217–218, 311
Queens case, 201, 209–210, 268

R language, 177, 206–207, 286
Radial line index, 197
Rainfall, 115, 230–232, 243, 247, 254,

262, 263, 278, 332
Randomness, in spatial processes, 96–

98, 99
Range, in semivariogrammodels, 296–

297, 300
Raster, 189, 216, 248, 318, 319, 324,

362
Rates, 77, 327, 335
Ratio data, of incidence, 169–170
Reactivity, in agent models, 354
Realizations, of a spatial process,

96–99, 104, 105, 108, 140–141
Redundancy, in spatial data, 35
Regionalized variable theory, 115,

294–295. See also Geostatistics:
Kriging

Regression,
logistic, 335–336, 351
with spatial data, 227. See alsoLeast

squares; Trend surfaces
Relations, on a set, 85
Relief, 82–83, 241, 263–264,

287–291
Remote sensing imagery, 351
RePast language, 359
Representation, 5, 8–9, 250

changes in, 26–27
in spatial models, 355–356
multiple problem, 12

Residuals, 227, 231, 253, 280,
284–285

Resolution, 170, 249, 267
Richardson plot, 15
Ridges, 267–268. See also Passes;

Peaks; Pits; Plains
R-index, 138, 143–144, 148–149
Rooks case, 201, 209–210, 268
Rotation, of axes, 32
Roughness, of a surface, 263
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Rules, in expert systems, 348
Rural newcomers hypothesis, 168

Sampling, 34, 95, 123, 132, 141–142,
158, 159, 209, 243–244,
248–250

Scalars, 82, 240, 279
Scale, 11–12, 34, 38, 40, 63, 95, 320
Scaling, of axes, 322
Scan statistics, 166, 173–174,

177
Science, 57, 345–346
Second-order effects, 36, 102,

107–108, 124, 130, 152, 159,
162–164

Semiology, 60
Semivariogram, 200, 210, 292–302,

304, 305, 307, 308
Sensitivity analysis, of results in

overlay, 336
Shape, 109–110, 263
Shortest path, 203, 273
Sieve mapping, 316, 319, 324,

330–331
Sill, in semivariogram models, 296,

300, 308
Simulation, 37–38, 58, 110, 114, 116,

138, 140, 142, 150–151, 160,
162, 208–209, 217, 220, 225,
235, 269, 346, 356, 359, 364. See
also Monte Carlo methods

Simultaneous equations, solution of,
384–388

Slivers, 321
Slope, of a field, 242, 246, 247, 249, 250,

263, 264–267, 318, 321, 326,
362. See also Gradient

Smoothing, of a surface, 270
Snow, John, 66, 166
Soil, maps of, 326
Space, 34, 40, 85, 94–100
Space/Time Attribute Creature

program (STAC), 177, 354
Spatial autocorrelation, 34–36, 94,

114, 199–211, 216, 228,

251, 287, 290, 293, 312, 335,
336

Spatial data:
aggregation effects in, 37, 39
ecological fallacies with, 34
edge effects in, 34
GIS manipulations of, 2–4
modeling of, 3, 346, 355–363
pitfalls, 34–41
redundancy in, 35
typology of, 23

Spatial statistical analysis, problems
and developments, 158–165

Spatial structure matrix, 200–205, 209
Spatialization, of relationship data,

84–86
Spherical model, for semivariogram,

297–298
Spline surfaces, 261
Spot heights, 80, 243, 244, 288, 326
SPSSTM program, 287
Square root difference cloud,

287–293
Standard distance, 125
Standardized mortality rates,

77
StarLogoTM language, 359
Stationarity, 107–108, 302
Statistics, local variants, 216–235
Subtraction, of matrices, 380
Surfaces, see Fields
Swarm program, 359
SYMAP program, 257, 260
Symbols, 56, 60–63, 71. See also

Graphic variables

Technology, influences on analysis,
342–344

Temperature, 240, 243, 245,
251–253, 263, 278, 279, 281,
300–301, 345

Tessellation, 189
Thermodynamics, 345
Thiessen polygons, see Proximity

polygons
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Thomas process, 164–165
Tick points, 322, 323–324
Till fabric analysis, 111–112
Time, 126, 360–361
TIN see Triangulation, irregular

network
Tobler’s Law, 114, 199, 251
Town centers, 27
Training, in artificial neural nets, 350–

351, 352
Transformation, 24–27, 65, 68,

70–71, 79, 195
TRANSIMS model, 359
Translation, of axes, 322
Transposition, of matrices, 384
Trapezoidal rule, 192–193
Trend surfaces, 247, 278–287, 294,

301, 310, 324
Triangulation, 189
Delauney, 51, 177–178
irregular network (TIN), 51–52, 243,

249–250, 262, 265, 269
points, 80

Tuberculosis, example data on,
206–210, 220

Typology, of data, 377

Uncertainty, in boundaries, 32, 194
Unique conditions, in overlay, 319, 335
Universal transverse Mercator

projection, 321, 323

Valency, of a junction, 269
Value, in map algebra, 270
Variance:

of kriging estimates, 309–310
to mean ratio (VMR), 130, 142–143

Variogram cloud, 35, 287. See also
Semivariogram

Variowin program, 308
Vectors, 82–83, 242–243, 264–265,

318, 321, 324
Viewshed, 269–270
Virtual reality, 82–83
Visualization, 57, 58–60, 162, 217. See

also Geovisualization; Maps
Voronoi polygons, see Proximity

polygons

Warping, 324
Watersheds, 268, 269
Weather forecasting, 117
Weights, 45, 48–49, 69, 302, 348

in GWR, 228–229
in overlay, 328–329
inverse distance, 257–261
linear combination of, 329, 334
matrices of, 200–205, 218–219, 220
of evidence, 331–332

WGS84, 321
Wind farms, examples in overlay, 330–

331
Windowing, 317
World Mapper project, 79
World Wide Web (WWW), 61, 64, 72,

85, 354, 363, 366–367

Zonal operations, in map algebra, 273
Zoning, 38. See also Modifiable areal

unit problem (MAUP)
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